化工进展 ›› 2019, Vol. 38 ›› Issue (10): 4684-4692.DOI: 10.16085/j.issn.1000-6613.2019-0133
收稿日期:
2019-01-21
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
曹贵平
作者简介:
方丽瑶(1993—),女,硕士研究生,研究方向为正渗透膜改性。E-mail:基金资助:
Liyao FANG(),Hui LÜ,Jiabei FU,Haoran ZUO,Huiqing LIU,Guiping CAO()
Received:
2019-01-21
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guiping CAO
摘要:
通过两步无皂乳液聚合法,改变第二步对苯乙烯磺酸钠的加入量,制备表面携带磺酸根基团量不同的纳米粒子(PSS),并将其应用于正渗透(FO)膜的制备。采用红外光谱仪(FTIR)和光电子能谱仪(XPS)表征粒子组成,通过扫描电子显微镜(SEM)表征膜的表面和断面形貌,测定膜孔隙率和亲水性,考察表面磺酸根量不同的聚合物粒子对膜结构性能的影响。结果表明,PSS的引入能提高膜的孔隙率,改善膜的亲水性,且随着粒子表面携带的磺酸根基团量增多,膜的孔隙率与亲水性也随之提高。这是因为PSS粒子可以支撑内部孔道,且表面携带的亲水基团-SO3Na可以提高膜的亲水性,影响活性层的形成。所制备的FO膜性能也得到相应改善,水通量达到了61.1L/(m2·h),为纯聚砜膜的2.8倍,盐截留率达到93.2%,Js/Jv值仅为0.31g/L,性能得到极大提升。
中图分类号:
方丽瑶,吕慧,付佳蓓,左浩然,刘慧清,曹贵平. 聚苯乙烯磺酸钠掺杂正渗透膜的制备及其性能[J]. 化工进展, 2019, 38(10): 4684-4692.
Liyao FANG,Hui LÜ,Jiabei FU,Haoran ZUO,Huiqing LIU,Guiping CAO. Preparation and characterization of sodium polystyrene sulfonate particle doped FO membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4684-4692.
粒子名称 | 第一步投料 | 第二步投料 | ||||
---|---|---|---|---|---|---|
St/g | NaSS/g | DVB/g | St/g | NaSS/g | DVB/g | |
PSS1 | 12.8 | 0.11 | 0.45 | 2.56 | 0.42 | 0.09 |
PSS2 | 12.8 | 0.11 | 0.45 | 2.56 | 0.63 | 0.09 |
PSS3 | 12.8 | 0.11 | 0.45 | 2.56 | 0.84 | 0.09 |
表1 无皂乳液聚合配方
粒子名称 | 第一步投料 | 第二步投料 | ||||
---|---|---|---|---|---|---|
St/g | NaSS/g | DVB/g | St/g | NaSS/g | DVB/g | |
PSS1 | 12.8 | 0.11 | 0.45 | 2.56 | 0.42 | 0.09 |
PSS2 | 12.8 | 0.11 | 0.45 | 2.56 | 0.63 | 0.09 |
PSS3 | 12.8 | 0.11 | 0.45 | 2.56 | 0.84 | 0.09 |
正渗透膜名称 | 支撑层名称 | PSS质量 分数/ % | PSF溶液质量分数/ % |
---|---|---|---|
PSF-T | PSF-S | 0 | 100 |
PSS1_2.5T | PSS1_2.5S | 2.5 | 97.5 |
PSS1_5.0T | PSS1_5.0S | 5.0 | 95.0 |
PSS2_2.5 T | PSS2_2.5S | 2.5 | 97.5 |
PSS2_5.0 T | PSS2_5.0S | 5.0 | 95.0 |
PSS3_2.5 T | PSS3_2.5S | 2.5 | 97.5 |
PSS3_5.0 T | PSS3_5.0S | 5.0 | 95.0 |
表2 不同掺杂量的铸膜液配制
正渗透膜名称 | 支撑层名称 | PSS质量 分数/ % | PSF溶液质量分数/ % |
---|---|---|---|
PSF-T | PSF-S | 0 | 100 |
PSS1_2.5T | PSS1_2.5S | 2.5 | 97.5 |
PSS1_5.0T | PSS1_5.0S | 5.0 | 95.0 |
PSS2_2.5 T | PSS2_2.5S | 2.5 | 97.5 |
PSS2_5.0 T | PSS2_5.0S | 5.0 | 95.0 |
PSS3_2.5 T | PSS3_2.5S | 2.5 | 97.5 |
PSS3_5.0 T | PSS3_5.0S | 5.0 | 95.0 |
PSS | Dn/nm | Dw/nm | PDI |
---|---|---|---|
PSS1 | 115.19 | 117.54 | 1.0204 |
PSS2 | 117.78 | 120.21 | 1.0207 |
PSS3 | 114.85 | 117.10 | 1.0198 |
表3 聚合物粒子PSS数均粒径(Dn),重均粒径(Dw)及聚合 分散指数(PDI)
PSS | Dn/nm | Dw/nm | PDI |
---|---|---|---|
PSS1 | 115.19 | 117.54 | 1.0204 |
PSS2 | 117.78 | 120.21 | 1.0207 |
PSS3 | 114.85 | 117.10 | 1.0198 |
PSS | |||||
---|---|---|---|---|---|
PSS1a | 96.27 | 2.52 | 0.59 | 0.61 | 0.22 |
PSS1t | 92.60 | 3.43 | 2.29 | 1.68 | 0.88 |
PSS2a | 94.14 | 3.87 | 0.89 | 1.10 | 0.34 |
PSS2t | 89.64 | 4.81 | 3.20 | 2.35 | 1.26 |
PSS3a | 92.61 | 4.82 | 1.09 | 1.48 | 0.42 |
PSS3t | 87.05 | 6.01 | 4.00 | 2.94 | 1.59 |
表4 聚合物PSS元素组成及表面磺酸根量
PSS | |||||
---|---|---|---|---|---|
PSS1a | 96.27 | 2.52 | 0.59 | 0.61 | 0.22 |
PSS1t | 92.60 | 3.43 | 2.29 | 1.68 | 0.88 |
PSS2a | 94.14 | 3.87 | 0.89 | 1.10 | 0.34 |
PSS2t | 89.64 | 4.81 | 3.20 | 2.35 | 1.26 |
PSS3a | 92.61 | 4.82 | 1.09 | 1.48 | 0.42 |
PSS3t | 87.05 | 6.01 | 4.00 | 2.94 | 1.59 |
膜名称 | AL-FS | AL-DS | ||||
---|---|---|---|---|---|---|
Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | |
PSF-T | 9.6 | 5.5 | 0.58 | 22.0 | 12.7 | 0.58 |
PSS1_2.5T | 26.4 | 4.0 | 0.15 | 48.6 | 10.7 | 0.22 |
PSS1_5.0T | 14.3 | 17.2 | 1.20 | 30.5 | 27.4 | 0.90 |
PSS2_2.5 T | 30.6 | 18.7 | 0.61 | 61.1 | 18.8 | 0.31 |
PSS2_5.0 T | 16.8 | 22.2 | 1.32 | 31.7 | 32.5 | 1.02 |
PSS3_2.5 T | 25.3 | 14.7 | 0.58 | 50.6 | 22.3 | 0.44 |
PSS3_5.0 T | 17.1 | 24.7 | 1.44 | 32.0 | 32.8 | 1.03 |
表5 AL-FS和AL-DS模式下正渗透膜性能
膜名称 | AL-FS | AL-DS | ||||
---|---|---|---|---|---|---|
Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | |
PSF-T | 9.6 | 5.5 | 0.58 | 22.0 | 12.7 | 0.58 |
PSS1_2.5T | 26.4 | 4.0 | 0.15 | 48.6 | 10.7 | 0.22 |
PSS1_5.0T | 14.3 | 17.2 | 1.20 | 30.5 | 27.4 | 0.90 |
PSS2_2.5 T | 30.6 | 18.7 | 0.61 | 61.1 | 18.8 | 0.31 |
PSS2_5.0 T | 16.8 | 22.2 | 1.32 | 31.7 | 32.5 | 1.02 |
PSS3_2.5 T | 25.3 | 14.7 | 0.58 | 50.6 | 22.3 | 0.44 |
PSS3_5.0 T | 17.1 | 24.7 | 1.44 | 32.0 | 32.8 | 1.03 |
支撑层掺杂的粒子种类 | 孔隙率ε /% | 水接触角 / (°) | 盐截留率R /% |
---|---|---|---|
PSF | 82.18 | 71 | 98.2 |
PSS1 | 89.10 | 70 | 98.8 |
PSS2 | 90.25 | 68 | 93.2 |
PSS3 | 90.82 | 65 | 87.2 |
表6 不同FO膜孔隙率,水接触角及盐截留率
支撑层掺杂的粒子种类 | 孔隙率ε /% | 水接触角 / (°) | 盐截留率R /% |
---|---|---|---|
PSF | 82.18 | 71 | 98.2 |
PSS1 | 89.10 | 70 | 98.8 |
PSS2 | 90.25 | 68 | 93.2 |
PSS3 | 90.82 | 65 | 87.2 |
1 | 李刚, 李雪梅, 王铎, 等. 正渗透膜技术及其应用[J]. 化工进展, 2010, 29(8): 1388-1398. |
LIGang, LIXuemei, WANGDuo, et al. Forward osmosis membranes and applications [J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1388-1398. | |
2 | CHEKLIL, PHUNTSHOS, KIMJ E, et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects [J]. Journal of Membrane Science,2016, 497: 430–449. |
3 | KIMB, GWAKG, HONGS. Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S) [J]. Desalination, 2017, 422: 5-16. |
4 | LIM S, PARKM J, PHUNTSHOS, et al. Dual-layered nanocomposite substrate membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis [J]. Polymer, 2017, 110: 36-48. |
5 | TIANE, WANGX Z, ZHAOY T, et al. Middle support layer formation and structure in relation to performance of three-tier thin film composite forward osmosis membrane [J]. Desalination, 2017, 421: 190-201 |
6 | CATHT Y, CHILDRESSA E, ELIMELECHM. Forward osmosis: principles, applications, and recent developments [J]. Journal of Membrane Science, 2006, 281(1): 70-87. |
7 | GRAYG T, MCCUTCHEONJ R , ELIMELECHM. Internal concentration polarization in forward osmosis: role of membrane orientation [J]. Desalination, 2006, 197(1/3): 1-8. |
8 | GAOY B, WANGY N, LIW Y, et al. Characterization of internal and external concentration polarizations during forward osmosis processes [J]. Desalination, 2014, 338(1): 65-73. |
9 | YASUKAWAM, MISHIMAS, SHIBUYAM, et al. Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support [J]. Journal of Membrane Science, 2015, 487: 51-59. |
10 | HEIKKINENJ, KYLLONENH, JARVELAE, et al. Ultrasound-assisted forward osmosis for mitigating internal concentration polarization [J]. Journal of Membrane Science, 2017, 528: 147-154. |
11 | HUANGY, JINGH Y, YUP, et al. Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis [J]. Desalination & Water Treatment, 2015, 57(43): 20177-20187. |
12 | OBAIDM, GHOURIZ K, FADALIO A, et al. Amorphous SiO2 NP-incorporated poly(vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination [J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4561-4574. |
13 | SERGIOS M, CARLAM P E, JOSEL F, et al. Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials [J]. Journal of Membrane Science, 2016, 520: 326-336. |
14 | 胡念, 左浩然, 付佳蓓, 等. 石墨烯掺杂聚砜基正渗透膜的结构和性能[J]. 化工进展, 2017, 36(12): 4524-4532. |
HUNian, ZUOHaoran, FUJiabei, et al. Structure and performance of forward osmosis membranes based on polysulfone substrates incorporated with graphene [J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4524-4532. | |
15 | LIUX , NG H Y. Fabrication of layered silica-polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane [J]. Journal of Membrane Science, 2015, 481: 148-163. |
16 | TIANM, WANGY N, WANGR, et al. Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate [J]. Desalination, 2016, 401: 142-150. |
17 | EMADZADEHD, LAU W J, ISMAILA F. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection [J]. Desalination, 2013, 330(12): 90-99. |
18 | EMADZADEHD, LAU W J, MATSUURAT, et al. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination [J]. Chemical Engineering Journal, 2014, 237(2): 70-80. |
19 | HANG, CHUNGT S, TORIIDAM, et al. Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination [J]. Journal of Membrane Science, 2012, 423/424(51): 543-555. |
20 | WANGK Y, CHUNGT S, AMY G. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization [J]. AIChE Journal, 2012, 58(3): 770-781. |
21 | WIDJOJON, CHUNGT S, WEBERM, et al. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO) [J]. Chemical Engineering Journal, 2013, 220(11): 15-23. |
22 | ZENGF, SUNZ W, WUS Z, et al. Preparation of highly charged, monodisperse nanospheres [J]. Macromolecular Chemistry & Physics, 2015, 203(4): 673-677. |
23 | ZUOH R, FUJ B, CAOG P, et al. The effects of surface-charged submicron polystyrene particles on the structure and performance of PSF forward osmosis membrane [J]. Applied Surface Science, 2017, 436: 1181-1192. |
24 | ZUOH R, LUH, CAOG P, et al. Ion exchange resin blended membrane: enhanced water transfer and retained salt rejection for forward osmosis [J]. Desalination, 2017, 421: 12-22. |
25 | SAENZJ M , ASUAJ M. Dispersion polymerization in polar solvents [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33(9): 1511-1521 |
26 | BABUS H, JETHMALANIJ M , FORDW T. Synthesis of crosslinked poly(styrene-co-sodium styrenesulfonate) latexes [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 32(8): 1431-1435. |
27 | 邓康为, 陈龙, 潘丹, 等. 苯乙烯-苯乙烯磺酸钠共聚物的制备及其流变性能[J]. 功能高分子学报, 2017, 30(1): 83-90. |
DENGKangwei, CHENLong, PANDan, et al. Preparation and rheological properties of styrene and sodium styrene sulfonate copolymer [J]. Journal of Founctional Polymers, 2017, 30(1): 83-90. | |
28 | LIJ F, XUZ L, YANGH, et al. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane [J]. Applied Surface Science, 2009, 255(9): 4725-4732. |
29 | ZHAOS, YANW T, SHIM Q, et al. Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone [J]. Journal of Membrane Science, 2015, 478: 105-116. |
30 | SHENJ N, RUANH M, WUL G, et al. Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pretreatment [J]. Chemical Engineering Journal, 2011, 168(3): 1272-1278. |
31 | WUH, TANGB , WUP. Development of novel SiO2-GO nanohybrid/polysulfone membrane with enhanced performance [J]. Journal of Membrane Science, 2014, 451(1): 94-102. |
32 | GARCIA-IVARSJ, IBORRA-CLARM I, ALCAINA-MIRANDAM I, et al. Comparison between hydrophilic and hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes [J]. Journal of Membrane Science, 2015, 493(1): 709-722. |
33 | BARRYE, MABRIDES P, JAEGERH M, et al. Ion transport controlled by nanoparticle-functionalized membranes [J]. Nature Communications, 2014, 5(5): 5847. |
34 | AHMADA L, MAJIDM A, OOI B S. Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation [J]. Desalination, 2011, 268(1): 266-269. |
35 | VATANPOURV, MASAWNIS S, RAJABIL. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes [J]. Journal of Membrane Science, 2012, 401/402: 132-143. |
36 | TIRAFRRIA, YIP N Y, PHILLIPW A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure [J]. Journal of Membrane Science, 2011, 367(1): 340-352. |
37 | WEIJ, QIUC Q, TANGC Y, et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes [J]. Journal of Membrane Science2011, 372: 292-302. |
38 | SHENL, BIANX, LUX, et al. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes [J]. Desalination, 2012, 293(293): 21-29. |
39 | GHOSHA K , HOEKE M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J]. Journal of Membrane Science, 2009, 336(1): 140-148. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[3] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[4] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[5] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[6] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[7] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[8] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[9] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[10] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[11] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[12] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[13] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[14] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[15] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |