化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4360-4370.DOI: 10.16085/j.issn.1000-6613.2020-1830
收稿日期:
2020-09-10
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
陈金庆
作者简介:
刘祎(1994—),男,硕士研究生,研究方向为纳米功能材料。E-mail:基金资助:
LIU Yi(), WANG Mingwang, LYU Hongling, CHEN Jinqing()
Received:
2020-09-10
Online:
2021-08-05
Published:
2021-08-12
Contact:
CHEN Jinqing
摘要:
共价有机骨架聚合物(COFs)是由共价键连接,经热力学可逆聚合形成的有序多孔有机晶态材料,具有比表面积大、孔分布规则可调和可拆剪等特性,其二维或三维COFs功能膜在气体分离、化学传感、催化、药物传输等方面具有广阔的发展前景。COFs膜材料的制备决定膜组成、微规整结构和性能,成为COFs膜功能应用的研究基础和技术关键。本文综述了COFs材料提出以来形成的共混法、原位聚合法、层层堆叠法和界面聚合等制备方法的研究现状,结合各方法优缺点,分析并提出COFs膜制备技术的关键方向和技术要点。为COFs功能膜分子设计、优化和功能化应用提供合理的制备方法,促进高性能COFs功能膜实用化制备方法的形成。
中图分类号:
刘祎, 汪明旺, 吕宏凌, 陈金庆. 共价有机骨架聚合物功能膜制备方法的研究进展[J]. 化工进展, 2021, 40(8): 4360-4370.
LIU Yi, WANG Mingwang, LYU Hongling, CHEN Jinqing. Research progress in the preparation method of covalent organic framework polymers (COFs) functional membranes[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4360-4370.
1 | GENG K Y, HE T, LIU R Y, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
2 | HAO S, JIANG L, LI Y L, et al. Facile preparation of COF composite membranes for nanofiltration by stoichiometric spraying layer-by-layer self-assembly[J]. Chemical Communications, 2020, 56(3): 419-422. |
3 | WANG Z, SI Z H, CAI D, et al. Synthesis of stable COF-300 nanofiltration membrane via in-situ growth with ultrahigh flux for selective dye separation[J]. Journal of Membrane Science, 2020, 615(12): 118466-118471. |
4 | 吴降麟, 张朝晖, 王亮, 等. 宽流道反渗透膜元件抗污染性能分析[J]. 化工学报, 2019, 70(4): 1446-1454. |
WU Jianglin, ZHANG Zhaohui, WANG Liang, et al. Analysis of anti-fouling performance of wider spacer RO membrane module[J]. CIESC Journal, 2019, 70(4): 1446-1454. | |
5 | 胡月, 李盼, 吕宏凌, 等. 纳米MnO2 /羧甲基纤维素复合膜制备及光催化降解罗丹明B性能研究[J]. 化工新型材料, 2019, 47(11): 167-170, 174. |
HU Yue, LI Pan, Hongling LYU, et al. Preparation of nano-MnO2 /CMC composite film and its photocatalytic performance for degrading Rhodamine B[J]. New Chemical Materials, 2019, 47(11): 167-170, 174. | |
6 | DING S Y, WANG W. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
7 | LI C, LI S X, TIAN L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 572(2): 520-531. |
8 | YANG H, CHENG X P, CHENG X X, et al. Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways[J]. Journal of Membrane Science, 2018, 565(11): 331-341. |
9 | YANG H, WU H, PAN F S, et al. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution[J]. Journal of Membrane Science, 2016, 520(12): 583-595. |
10 | WANG C B, LI Z Y, CHEN J X, et al. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination[J]. Journal of Membrane Science, 2017, 523(2): 273-281. |
11 | 李路路, 刘帅, 章琴, 等. 共价有机框架材料研究进展[J]. 物理化学学报, 2017, 33(10): 1960-1977. |
LI Lulu, LIU Shuai, ZHANG Qin, et al. Advances in covalent organic frameworks[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1960-1977. | |
12 | 张成江, 袁晓艳, 袁泽利, 等. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382. |
ZHANG Chengjiang, YUAN Xiaoyan, YUAN Zeli, et al. Covalent organic framework materials based on Schiff-base reaction[J]. Progress in Chemistry, 2018, 30(4): 365-382. | |
13 | BISWAL B P, CHAUDHARI H D, BANERJEE R, et al. Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation[J]. Chemistry, 2016, 22(14): 4695-4699. |
14 | YANG H, WU H, PAN F S, et al. Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 90-97. |
15 | PENG Y W, XU G D, HU Z G, et al. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity[J]. ACS Applied Materials and Interfaces, 2016, 8(28): 18505-18512. |
16 | 任亮, 陈建新, 卢卿, 等. 压力驱动薄层复合膜中微孔基底的研究进展[J]. 化工进展, 2020, 39(6): 2156-2165. |
REN Liang, CHEN Jianxin, LU Qing, et al. Recent progress on microporous substrate for pressure-driven thin film composite membranes[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2156-2165. | |
17 | MARCHETTI P, JIMENEZ SOLOMON M F, SZEKELY G, et al. Molecular separation with organic solvent nanofiltration: a critical review[J]. Chemical Reviews, 2014, 114(21): 10735-10806. |
18 | ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
19 | LIU X H, GUAN C Z, DING S Y, et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions[J]. Journal of the American Chemical Society, 2013, 135(28): 10470-10474. |
20 | KANDAMBETH S, BISWAL B P, CHAUDHARI H D, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes[J]. Advanced Materials, 2017, 29(2): 1603945-1603953 |
21 | HALDER A, KARAK S, ADDICOAT M, et al. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding[J]. Angewandte Chemie International Edition, 2018, 57(20): 5797-5802. |
22 | SASMAL H S, AIYAPPA H B, BHANGE S N, et al. Superprotonic conductivity in flexible porous covalent organic framework membranes[J]. Angewandte Chemie International Edition, 2018, 57(34): 10894-10898. |
23 | FAN H W, GU J, MENG H, et al. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration[J]. Angewandte Chemie International Edition, 2018, 57(15): 4083-4087. |
24 | PAN F S, GUO W X, SU Y L, et al. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation[J]. Separation and Purification Technology, 2019, 215(5): 582-589. |
25 | FAN H W, MUNDSTOCK A, FELDHOFF A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098. |
26 | SHI X S, XIAO A K, ZHANG C X, et al. Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration[J]. Journal of Membrane Science, 2019, 576(4): 116-122. |
27 | KOENIG S P, WANG L, PELLEGRINO J, et al. Selective molecular sieving through porous graphene[J]. Nature Nanotechnology, 2012, 7(11): 728-732. |
28 | 刘阳, 顾平, 张光辉. 氧化石墨烯分离膜的制备及其水处理领域的应用进展[J]. 化工进展, 2017, 36(11): 4151-4159. |
LIU Yang, GU Ping, ZHANG Guanghui. Fabrication of graphene oxide-assisted membranes and its applications in water treatment and purification[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4151-4159. | |
29 | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
30 | NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
31 | KUEHL V A, YIN J, DUONG P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[J]. Journal of the American Chemical Society, 2018, 140(51): 18200-18207. |
32 | LI G, ZHANG K, TSURU T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets[J]. ACS Applied Materials and Interfaces, 2017, 9(10): 8433-8436. |
33 | ZHANG W X, ZHANG L M, ZHAO H F, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving[J]. Journal of Materials Chemistry A, 2018, 6(27): 13331-13339. |
34 | ZHANG X K, LI H, WANG J, et al. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation[J]. Journal of Membrane Science, 2019, 581(7): 321-330. |
35 | WANG H, ZENG Z T, XU P, et al. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives[J]. Chemical Society Reviews, 2019, 48(2): 488-516. |
36 | YUAN S S, LI X, ZHU J Y, et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10): 2665-2681. |
37 | KHAYUM M A, KANDAMBETH S, MITRA S, et al. Chemically delaminated free-standing ultrathin covalent organic nanosheets[J]. Angewandte Chemie International Edition, 2016, 55(50): 15604-15608. |
38 | BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(14): 5328-5331. |
39 | LIU G H, JIANG Z Y, YANG H, et al. High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer[J]. Journal of Membrane Science, 2019, 572(2): 557-566. |
40 | YING Y P, LIU D H, MA J, et al. A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation[J]. Journal of Materials Chemistry A, 2016, 4(35): 13444-13449. |
41 | KAHVECI Z, ISLAMOGLU T, SHAR G A, et al. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework[J]. Crystal Engineering Communications, 2013, 15(8): 1524-1527. |
42 | MITRA S, KANDAMBETH S, BISWAL B P, et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs)[J]. J. Am. Chem. Soc., 2016, 138(8): 2823-2828. |
43 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5):16081 |
44 | LEE K P, ARNOT T C, MATTIA D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1/2): 1-22. |
45 | 陈金庆, 吕宏凌, 汪明旺, 等. 一种渗透汽化膜法分离甲基环戊二烯和环戊二烯的工艺及装置: CN105949029A[P]. 2016-09-21. |
CHEN Jinqing, Hongling LYU, WANG Mingwang, et al. A process and device for separation of methylcyclopentadiene and cyclopentadiene by pervaporation membrane method: CN105949029A[P]. 2016-09-21. | |
46 | SHINDE D B, SHENG G, LI X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2018, 140(43): 14342-14349. |
47 | DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. |
48 | MATSUMOTO M, DASARI R R, JI W, et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates[J]. Journal of the American Chemical Society, 2017, 139(14): 4999-5002. |
49 | MATSUMOTO M, VALENTINO L, STIEHL G M, et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films[J]. Chem., 2018, 4(2): 308-317. |
50 | WANG R, SHI X S, XIAO A K, et al. Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations[J]. Journal of Membrane Science, 2018, 566(11): 197-204. |
51 | WANG R, SHI X S, ZHANG Z, et al. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation[J]. Journal of Membrane Science, 2019, 586(9): 274-280. |
52 | ZHANG C, WU B H, MA M Q, et al. Ultrathin metal/covalent-organic framework membranes towards ultimate separation[J]. Chemical Society Reviews, 2019, 48(14): 3811-3841. |
[1] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[2] | 张赛晖, 李校阳, 高慧, 王丽丽. 制备聚酰胺复合膜中界面聚合反应添加剂研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
[3] | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
[4] | 刘娟, 陈宇昊, 叶海星, 孙海翔. 界面聚合在渗透汽化膜分离领域的应用进展[J]. 化工进展, 2021, 40(8): 4314-4326. |
[5] | 陈宇昊, 刘家辉, 刘娟, 章洪斌, 孙海翔. 新型复合纳滤膜研究进展[J]. 化工进展, 2021, 40(5): 2665-2675. |
[6] | 张琪, 张奎, 钟璟, 徐荣. 磺化聚苯并咪唑/膦酸改性氧化石墨烯质子交换复合膜的制备及性能[J]. 化工进展, 2020, 39(7): 2751-2757. |
[7] | 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104. |
[8] | 张琪, 潘丽燕, 徐荣, 周守勇, 钟璟. 氧化石墨烯/磺化聚苯并咪唑高温质子交换膜的制备和表征[J]. 化工进展, 2018, 37(12): 4758-4764. |
[9] | 邢雅南, 苏保卫, 甄宏艳. 耐溶剂纳滤膜的制备与应用研究进展[J]. 化工进展, 2015, 34(11): 3832-3840. |
[10] | 孙志猛1,2,任晓晶2,赵可卉2,张忠国2,赵义平1,陈 莉1,程言君2. 耐污染聚酰胺复合纳滤膜的制备及性能[J]. 化工进展, 2012, 31(05): 1088-1095. |
[11] | 石 磊,包宗宏. 阻燃剂微胶囊化的研究进展 [J]. 化工进展, 2008, 27(7): 1001-. |
[12] | 张景亚,张浩勤,谭翎燕,乔欢欢,刘金盾. 正交实验法优化制备复合荷电镶嵌膜 [J]. 化工进展, 2008, 27(12): 1996-. |
[13] | 杨文川,褚良银,庞雪芹,巨晓洁. 磁性温度感应微囊膜的制备与表征 [J]. 化工进展, 2008, 27(1): 120-. |
[14] | 庄秋虹,张正国,方晓明. 微/纳米胶囊相变材料的制备及应用进展 [J]. 化工进展, 2006, 25(4): 388-. |
[15] | 崔绍波,卢忠远,刘德春,王文忠,肖相齐,宋丽贤. 界面聚合技术及其应用研究进展 [J]. 化工进展, 2006, 25(1): 47-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |