化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4346-4359.DOI: 10.16085/j.issn.1000-6613.2020-1963
熊鑫坤1(), 宋华1,2, 苑彬彬3,4, 王园园1,2, 张浩瀚1,2, 陈彦广1,2, 苑丹丹1,2()
收稿日期:
2020-09-25
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
苑丹丹
作者简介:
熊鑫坤(1997—),男,硕士研究生,研究方向为多孔液体。E-mail:基金资助:
XIONG Xinkun1(), SONG Hua1,2, YUAN Binbin3,4, WANG Yuanyuan1,2, ZHANG Haohan1,2, CHEN Yanguang1,2, YUAN Dandan1,2()
Received:
2020-09-25
Online:
2021-08-05
Published:
2021-08-12
Contact:
YUAN Dandan
摘要:
多孔液体是一类具有永久孔隙的新兴液体材料,它将多孔材料优异的性能和液体的流动性结合在一起。具有永久空腔的造孔器(pore generator),可以完全由无机砌块单元、有机配体和无机节点的组合单元或有机砌块单元构成。本文根据造孔器的结构综述了使用无机纳米材料、金属有机框架和多孔笼合成多孔液体的最新研究进展。文章指出作为新的研究领域,多孔液体化学正处于起步阶段,虽然面临着诸多挑战,但应用潜力巨大。目前在气体吸附、异构体识别、多孔液体膜的合成等方面都有研究,有望在气体捕捉和分离、催化、膜材料制备等领域得到应用。
中图分类号:
熊鑫坤, 宋华, 苑彬彬, 王园园, 张浩瀚, 陈彦广, 苑丹丹. 多孔液体:合成与应用[J]. 化工进展, 2021, 40(8): 4346-4359.
XIONG Xinkun, SONG Hua, YUAN Binbin, WANG Yuanyuan, ZHANG Haohan, CHEN Yanguang, YUAN Dandan. Porous liquids: synthesis and application[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4346-4359.
图9 阴离子共价笼、15-冠-5和二环己基-18-冠-6及冠醚-ACC有机笼多孔离子液体合成方法与化学结构[84]
null77 | HOSONO N, KITAGAWA S.Modular design of porous soft materials via self-organization of metal-organic cages[J]. Acc. Chem. Res., 2018, 51(10): 2437-2446. |
78 | CRAIG G A, LARPENT P, KUSAKA S, et al. Switchable gate-opening effect in metal-organic polyhedra assemblies through solution processing[J]. Chemical Science, 2018, 9(31): 6463-6469. |
79 | VARDHAN H, YUSUBOV M, VERPOORT F. Self-assembled metal-organic polyhedra: an overview of various applications[J]. Coord. Chem. Rev., 2016, 306: 171-194. |
80 | JUNG M, KIM H, BAEK K, et al. Synthetic ion channel based on metal-organic polyhedra.[J]. Angew. Chem. Int. Ed., 2008, 47(31): 5755-5757. |
81 | DENG Z, YING W, GONG K, et al. Facilitate gas transport through metal-organic polyhedra constructed porous liquid membrane[J]. Small, 2020, 16: 1907016. |
82 | MOW R E, LIPTON A S, SHULDA S, et al. Colloidal three-dimensional covalent organic frameworks and their application as porous liquids[J]. Journal of Materials Chemistry A, 2020, 8: 23455-23462 |
83 | KEARSEY R J, ALSTON BEN M, BRIGGS M E, et al. Accelerated robotic discovery of type II porous liquids[J]. Chemical Science, 2019, 10(41): 9454-9465. |
84 | JIE K, ONISHI N, SCHOTT J A, et al. Transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy[J]. Angew. Chem. Int. Ed., 2020, 59(6): 2268-2272. |
85 | MA L, HAYNES C J E, GROMMET A B, et al. Coordination cages as permanently porous ionic liquids[J]. Nature Chemistry, 2020, 12(3): 270-275. |
86 | FRAUX G, BOUTIN A, FUCHS A H, et al. On the use of the IAST method for gas separation studies in porous materials with gate-opening behavior[J]. Adsorption, 2018, 24(3): 233-241. |
87 | EGLESTON B D, LUZYANIN K V, BRAND M C, et al. Controlling gas selectivity in molecular porous liquids by tuning the cage window size[J]. Angew. Chem. Int. Ed., 2020, 59(19): 7362-7366. |
88 | LIU B, SHEKHAH O, ARSLAN H K, et al. Enantiopure metal-organic framework thin films: oriented SURMOF growth and enantioselective adsorption[J]. Angew. Chem. Int. Ed., 2012, 51(3): 807-810. |
1 | O’REILLY N, GIRI N, JAMES S L. Porous liquids[J]. Chemistry-A European Journal, 2007, 13(11): 3020-3025. |
2 | GIRI N, PÓPOLO M G DEL, MELAUGH G, et al. Liquids with permanent porosity[J]. Nature, 2015, 527(7577): 216-220. |
89 | BAKER R W, LOW B T.Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47: 6999-7013. |
90 | DECHNIK J, GASCON J, DOOANA C J, et al. Mixed-matrix membranes[J]. Angew. Chem. Int. Ed., 2017, 56(32): 9292-9310. |
91 | SEOANE B, CORONAS J, GASCON I, et al. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?[J]. Chem. Soc. Rev., 2015, 44(8): 2421-2454. |
3 | ZHANG J, CHAI S H, QIAO Z A, et al. Porous liquids: a promising class of media for gas separation[J]. Angew. Chem. Int. Ed., 2015, 54(3): 932-936. |
4 | FERMANDES N J, WALLIN T J, VAIA R A, et al. Nanoscale ionic materials[J]. Chem. Mater., 2014, 26(1): 84-96. |
5 | RODRIGUEZ R, HERRERA R, ARCHER L A, et al. Nanoscale ionic materials[J]. Adv. Mater., 2008, 20(22): 4353-4358. |
6 | BOURLINOS A B, HERRERA R, CHALKIAS N, et al. Surface-functionalized nanoparticles with liquid-like behavior[J]. Adv. Mater., 2005, 17(2): 234-237. |
7 | BOURLINOS A B, RAY CHOWDHURY S, HERRERA R, et al. Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures[J]. Adv. Funct. Mater., 2005, 15(8): 1285-1290. |
92 | ADAMS R, CARSON C, WARD J, et al. Metal organic framework mixed matrix membranes for gas separations[J]. Microporous and Mesoporous Materials, 2010, 131(1): 13-20. |
8 | WARREN S C, BANHOLZER M J, SLAUGHTER L S, et al. Generalized route to metal nanoparticles with liquid behavior[J]. J. Am. Chem. Soc., 2006, 128(37): 12074-12075. |
9 | BOURLINOS A B, RAMAN K, HERRERA R, et al. A liquid derivative of 12-tungstophosphoric acid with unusually high conductivity[J]. J. Am. Chem. Soc., 2004, 126(47): 15358-15359. |
10 | BOURLINOS A B, GEORGAKILAS V, TZITZIOS V, et al. Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives[J]. Small, 2006, 2(10): 1188-1191. |
11 | BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties[J]. Small, 2006, 2(4): 513-516. |
12 | 生丽莎, 陈振乾. 静电辅助多孔液体的制备及特性研究[J]. 化工学报, 2019, 70(3): 1163-1170. |
SHENG Lisha, CHEN Zhenqian. Preparation and characterization of electrostatic-assisted porous liquid[J]. CIESC Journal, 2019, 70(3): 1163-1170. | |
13 | SHENG L, CHEN Z, WANG Y. Molecular dynamics simulations of stability and fluidity of porous liquids[J]. Appl. Surf. Sci., 2021, 536: 147951. |
14 | YIN J, ZHANG J, FU W, et al. Theoretical prediction of the SO2 absorption by hollow silica based porous ionic liquids[J]. J. Mol. Graphics Modell., 2021, 103: 107788. |
15 | SCHILLING T, MILLER M A, SCHOOT P VAN DER. Percolation in suspensions of hard nanoparticles: from spheres to needles[J]. EPL (Europhysics Letters), 2015, 111(5): 56004. |
16 | KUMAR R, DHASAIYAN P, NAVEENKUMAR P M, et al. A solvent-free porous liquid comprising hollow nanorod-polymer surfactant conjugates[J]. Nanoscale Advances, 2019, 1(10): 4067-4075. |
17 | FENG S, LI W, SHI Q, et al. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture[J]. Chem. Commun., 2014, 50(3): 329-331. |
18 | LIU J, QIAO S Z, LIU H, et al. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angew. Chem. Int. Ed., 2011, 50(26): 5947-5951. |
19 | LIU R, MAHURIN S M, LI C, et al. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites[J]. Angew. Chem. Int. Ed., 2011, 50(30): 6799-6802. |
20 | LI P, SCHOTT J A, ZHANG J, et al. Electrostatic-assisted liquefaction of porous carbons[J]. Angew. Chem. Int. Ed., 2017, 56(47): 14958-14962. |
21 | MOLINER M, MARTÍNEZ C, CORMA A. Multipore zeolites: synthesis and catalytic applications[J]. Angew. Chem. Int. Ed., 2015, 54(12): 3560-3579. |
22 | BERECIARTUA P J, CANTIN Á, CORMA A, et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene[J]. Science, 2017, 358(6366): 1068-1071. |
23 | LIU L, DÍAZ U, ARENAL R, et al. Correction: corrigendum: generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(12): 1272. |
24 | FENG G, CHENG P, YAN W, et al. Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science, 2016, 351(6278): 1188-1191. |
25 | WANG N, SUN Q, BAI R, et al. In Situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation[J]. J. Am. Chem. Soc., 2016, 138(24): 7484-7487. |
26 | LIU J, WANG N, YU Y, et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes[J]. Science Advances, 2017, 3(5): e1603171. |
27 | SHEN K, QIAN W, WANG N, et al. Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1, 2, 4-trimethylbenzene[J]. Journal of Materials Chemistry A, 2014, 2(46): 19797-19808. |
28 | CUNDY C S, COX P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time[J]. Chem. Rev., 2003, 103(3): 663-702. |
29 | LI P, CHEN H, SCHOTT J A, et al. Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids[J]. Nanoscale, 2019, 11(4): 1515-1519. |
30 | SHAN W, FULVIO P F, KONG L, et al. New class of type Ⅲ porous liquids: a promising platform for rational adjustment of gas sorption behavio[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 32-36. |
31 | YANG J, LI J, WANG W, et al. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864. |
32 | ZHANG S Y, ZHANG X, LI H, et al. Dual-functionalized metal-organic frameworks constructed from hexatopic ligand for selective CO2 adsorption[J]. Inorg. Chem., 2015, 54(5): 2310-2314. |
33 | BANERJEE D, CAIRNS A J, LIU J, et al. Potential of metal-organic frameworks for separation of xenon and krypton[J]. Acc. Chem. Res., 2015, 48(2): 211-219. |
34 | ZHANG M, CHEN Y P, BOSCH M, et al. Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology[J]. Angew. Chem. Int. Ed., 2014, 53(3): 815-818. |
35 | ZHAO X, WANG Y, LI D S, et al. Metal-organic frameworks for separation[J]. Adv. Mater., 2018, 30(37): 1705189. |
36 | LIN R B, XIANG S, XING H, et al. Exploration of porous metal-organic frameworks for gas separation and purification[J]. Coord. Chem. Rev., 2019, 378: 87-103. |
37 | SHI Z L, ZHANG Y B. Renaissance of the methane adsorbents[J]. Isr. J. Chem., 2018, 58(9/10): 985-994. |
38 | LI H, WANG K, SUN Y, et al. Recent advances in gas storage and separation using metal-organic frameworks[J]. Mater. Today, 2018, 21(2): 108-121. |
39 | HASELL T, MIKLITZ M, STEPHENSON A, et al. Porous organic cages for sulfur hexafluoride separation[J]. J. Am. Chem. Soc., 2016, 138(5): 1653-1659. |
40 | ALEZI D, BELMABKHOUT Y, SUYETIN M, et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage[J]. J. Am. Chem. Soc., 2015, 137(41): 13308-13318. |
41 | ABANADES LAZARO I, FORGAN R S. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coord. Chem. Rev., 2019, 380: 230-259. |
42 | HORCAJADA P, SERRE C, VALLET-REGI M, et al. Metal-organic frameworks as efficient materials for drug delivery[J]. Angew. Chem. Int. Ed., 2006, 45(36): 5974-5978. |
43 | ZHU B, XIA D, ZOU R. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts[J]. Coord. Chem. Rev., 2018, 376: 430-448. |
44 | DHAKSHINAMOORTHY A, LI Z, GARCIA H. Catalysis and photocatalysis by metal organic frameworks[J]. Chem. Soc. Rev., 2018, 47(22): 8134-8172. |
45 | ROGGE S M J, BAVYKINA A, HAJEK J, et al. Metal-organic and covalent organic frameworks as single-site catalysts[J]. Chem. Soc. Rev., 2017, 46(11): 3134-3184. |
46 | GASCON J, CORMA A, KAPTEIJN F, et al. Metal organic framework catalysis: quo vadis?[J]. ACS Catalysis, 2014, 4(2): 361-378. |
47 | FANG Y, MA Y, ZHENG M, et al. Metal-organic frameworks for solar energy conversion by photoredox catalysis[J]. Coord. Chem. Rev., 2018, 373: 83-115. |
48 | BON V. Metal-organic frameworks for energy-related applications[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 4: 44-49. |
49 | WALLER P J, GÁNDARA F, YAGHI O M. Chemistry of covalent organic frameworks[J]. Acc. Chem. Res., 2015, 48(12): 3053-3063. |
50 | HAN S S, FURUKAWA H, YAGHI O M, et al. Covalent organic frameworks as exceptional hydrogen storage materials[J]. J. Am. Chem. Soc., 2008, 130(35): 11580-11581. |
51 | FANG Q, WANG J, GU S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015, 137(26): 8352-8355. |
52 | HUGHES B K, BRAUNECKER W A, BOBELA D C, et al. Covalently bound nitroxyl radicals in an organic framework[J]. The Journal of Physical Chemistry Letters, 2016, 7(18): 3660-3665. |
53 | FANG Q, GU S, ZHENG J, et al. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angew. Chem. Int. Ed., 2014, 53(11): 2878-2882. |
54 | CAHIR J, TSANG M Y, LAI B, et al. Type 3 porous liquids based on non-ionic liquid phases-a broad and tailorable platform of selective, fluid gas sorbents[J]. Chemical Science, 2020, 11(8): 2077-2084. |
55 | BENNETT T D, TAN J C, YUE Y, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nature Communications, 2015, 6(1): 8079. |
56 | BENNTETT T D, YUE Y, LI P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J. Am. Chem. Soc., 2016, 138(10): 3484-3492. |
57 | ZHOU C, LONGLEY L, KRAJNC A, et al. Metal-organic framework glasses with permanent accessible porosity[J]. Nat. Commun., 2018, 9(1): 5042. |
58 | QIAO A, BENNETT T D, TAO H, et al. A metal-organic framework with ultrahigh glass-forming ability[J]. Science Advances, 2018, 4(3): 6827. |
59 | WIDMER R N, LAMPRONTI G I, ANZELLINI S, et al. Pressure promoted low-temperature melting of metal-organic frameworks[J]. Nature Materials, 2019, 18(4): 370-376. |
60 | HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies[J]. Angew. Chem. Int. Ed., 2006, 45(10): 1557-1559. |
61 | BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
62 | PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191. |
63 | SINGH S K, SAVOY A W. Ionic liquids synthesis and applications: an overview[J]. J. Mol. Liq., 2020, 297: 112038. |
64 | WELTON T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chem. Rev., 1999, 99(8): 2071-2084. |
65 | ROGERS R D, SEDDON K R. Ionic liquids—solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
66 | FUJIE K, KITAGAWA H. Ionic liquid transported into metal-organic frameworks[J]. Coord. Chem. Rev., 2016, 307: 382-390. |
67 | LIU S, LIU J, HOU X, et al. Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity[J]. Langmuir, 2018, 34(12): 3654-3660. |
68 | COSTA GOMES M, PISON L, ČERVINKA C, et al. Porous ionic liquids or liquid metal-organic frameworks?[J]. Angew. Chem. Int. Ed., 2018, 57(37): 11909-11912. |
69 | KNEBEL A, BAVYKINA A, DATTA S J, et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids[J]. Nature Materials, 2020, 19: 1346-1353. |
70 | HE S, CHEN L, CUI J, et al. General way to construct micro-and mesoporous metal-organic framework-based porous liquids[J]. J. Am. Chem. Soc., 2019, 141(50): 19708-19714. |
71 | HE S, WANG H, ZHANG C, et al. A generalizable method for the construction of MOF@polymer functional composites through surface-initiated atom transfer radical polymerization[J]. Chemical Science, 2019, 10(6): 1816-1822. |
72 | FÉREY G, MELLOT-DRAZNIEKS C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
73 | HUGGINS M L. Some properties of solutions of long-chain compounds[J]. The Journal of Physical Chemistry, 1942, 46(1): 151-158. |
74 | FLORY P J. Thermodynamics of high polymer solutions[J]. The Journal of Chemical Physics, 1942, 10(1): 51-61. |
75 | ZHAO X, AN S, DAI J, et al. Transforming surface-modified metal organic framework powder into room temperature porous liquids via an electrical balance strategy[J]. New J. Chem., 2020, 44(29): 12715-12722. |
76 | CARNÉ-SÁNCHEZ A, CRAIG G A, LARPENT P, et al. Self-assembly of metal-organic polyhedra into supramolecular polymers with intrinsic microporosity[J]. Nature Communications, 2018, 9(1): 2506. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[4] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[5] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[6] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[7] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[8] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[9] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[10] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[11] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[12] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[13] | 周磊, 孙晓岩, 陶少辉, 陈玉石, 项曙光. 基于分离因数法的简捷炼油塔模型开发及应用[J]. 化工进展, 2023, 42(6): 2819-2827. |
[14] | 吴和平, 曹宁, 徐圆圆, 曹云波, 李裕东, 杨强, 卢浩. 氢氟酸与烷基化油快速分离[J]. 化工进展, 2023, 42(6): 2845-2853. |
[15] | 宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 基于入口分散相重排序的旋流强化分离研究进展[J]. 化工进展, 2023, 42(5): 2219-2232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |