化工进展 ›› 2020, Vol. 39 ›› Issue (5): 1692-1700.DOI: 10.16085/j.issn.1000-6613.2019-1229

• 化工过程与装备 • 上一篇    下一篇

有机膜精确调控传质的新型溶析结晶及过程强化

盛磊(), 脱凌晗, 姜晓滨(), 贺高红   

  1. 大连理工大学化工学院, 精细化工国家重点实验室,辽宁省石化行业高效节能分离技术工程实验室,辽宁 大连 116024
  • 出版日期:2020-05-05 发布日期:2020-05-25
  • 通讯作者: 姜晓滨
  • 作者简介:盛磊(1996—),男,硕士研究生,研究方向为膜结晶过程。E-mail:shenglei@mail.dlut.edu.cn
  • 基金资助:
    国家重大科研仪器研制项目(21527812);国家自然科学基金面上项目(21676043)

Novel antisolvent crystallization and process intensification via the accurate mass transfer control of the organic membrane

Lei SHENG(), Linghan TUO, Xiaobin JIANG(), Gaohong HE   

  1. School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian 116024, Liaoning, China
  • Online:2020-05-05 Published:2020-05-25
  • Contact: Xiaobin JIANG

摘要:

溶析结晶是一种环保、高效的结晶方法,在温敏性、低溶解度物系的晶体生产领域具有不可替代的重要作用。但是,传统溶析结晶过程中溶液过饱和度的时空均一性差,传质调控为微米级尺度,容易爆发成核,是亟待解决的关键问题。本文提出利用聚醚砜(PES)中空纤维膜,为溶析剂与结晶溶液之间的传质提供均匀稳定的界面,实现结晶溶液与溶析剂的精确混合和结晶过程强化,开发了一种新型的溶析结晶传质调控技术。溶析剂在压力差驱动下均匀渗透通过有机膜,在结晶溶液一侧的膜外表面形成溶析剂液膜层,通过表面液膜的不断更新,将传统溶析结晶的毫米级宏观混合转变为亚微米级尺度的微观混合,实现过饱和度的均匀分布。同时,这层液膜的存在,避免了结晶溶液直接接触膜表面,有效地解决了异相成核附着导致膜污染的问题。实验中,对壳程流速做出周期性改变后,渗透通量可即时发生一致的线性响应变化,证实有机膜调控传质过程的精确性和灵敏性。PES膜重复使用多次后,渗透通量仍可以保持稳定。相比传统的滴加式溶析结晶,在相同的溶析剂传质速率下,有机膜调控过程制备的晶体产品,形貌更加规整、粒径分布更集中。因此,在溶析剂精确传质和抗污染方面,有机膜调控的溶析结晶过程均表现出良好的性能,为药物、大分子结晶的高效工业化制备开拓了新的思路。

关键词: 有机膜, 溶析结晶, 传质, 过程强化, 液膜更新

Abstract:

Antisolvent crystallization is an environmentally friendly and highly efficient crystallization method that plays an irreplaceable role in the fields of crystal production of thermosensitive substances and low solubility systems. However, the key problems of the conventional antisolvent crystallization include uncontrollable rapid nucleation and poor time and space uniformity of the supersaturation. In this work, we propose to use polyethersulfone(PES) organic hollow fiber membrane to provide a uniform and stable interface for mass transfer between the antisolvent and the crystallization solution, which can achieve accurate mass transfer mixing and process intensification. Antisolvent is uniformly permeated through the organic membrane under the pressure difference, and an antisolvent liquid film layer can be formed on the outer surface of the membrane. Through the liquid film renewal mechanism, the millimeter-scale macroscopic mixing is transformed into the submicron-scale micromixing, which can realize the uniform distribution of supersaturation. At the same time, the existence of the liquid film can prevent the membrane surface from directly contacting with the crystallization solution, effectively solving the problem of membrane fouling caused by heterogeneous nucleation adhesion. In the experiment, the permeate flux changes immediately and has a highly consistent linear response with the change of flow rate after a periodic change in the shell-side flow rate, confirming the accuracy and sensitivity of organic membrane to precisely control the mass transfer process. The PES hollow fiber membrane can remain stable performance on permeation rate after repeated use for more than 24 times. The crystal product obtained by the organic membrane control process has a more regular morphology and more concentrated particle size distribution than the conventional dropwise addition crystallization under the same antisolvent adding rate. Therefore, the antisolvent crystallization controlled by organic membrane has a stable performance on its precise mass transfer process and antifouling capabilities, which provides a new approach for the efficient industrial preparation of drug and macromolecular crystallization.

Key words: organic membrane, antisolvent crystallization, mass transfer, process intensification, liquid film renewal

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn