1 | 黄炎,孙海龙,孟子超,等. 溶析结晶在医药领域的研究进展[J]. 化工进展, 2019, 38(5): 2380-2388. | 1 | HUANG Y, SUN H L, MENG Z C, et al. Progress in antisolvent crystallization in pharmaceutical field[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2380-2388. | 2 | 鲍颖,王永莉,王静康. 溶析结晶研究进展[J]. 化学工业与工程, 2004, 12(6): 438-443. | 2 | BAO Y, WANG Y L, WANG J K. Progress in dilution crystallization[J]. Chemical Industry and Engineering, 2004, 12(6): 438-443. | 3 | LU H J, WANG J K, WANG T, et al. Crystallization techniques in wastewater treatment: an overview of applications[J]. Chemosphere, 2017, 173: 474-484. | 4 | 李士雨,李响,齐向娟,等. 乙醇溶析结晶法由棉籽壳制备木糖[J]. 化工学报, 2010, 61(6): 1482-1485. | 4 | LI S Y, LI X, QI X J, et al. Production of d-xylose from cottonseed hull by ethanol solventing-out crystallization[J]. CIESC Journal, 2010, 61 (6): 1482-1485. | 5 | ZIJLEMA T G, GEERTMAN R M, WITKAMP G J, et al. Antisolvent crystallization as an alternative to evaporative crystallization for the production of sodium chloride[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1330-1337. | 6 | DIPROFIO G, STABILE C, CARIDI A, et al. Antisolvent membrane crystallization of pharmaceutical compounds[J]. Journal of Pharmaceutical Sciences, 2009, 98(12): 4902-4913. | 7 | ZARKADAS D M, SIRKAR K K. Antisolvent crystallization in porous hollow fiber devices[J]. Chemical Engineering Science, 2006, 61(15): 5030-5048. | 8 | SUN Q L, NAGY Z K, RIELLY C D. Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: modelling, design, and control[J]. Chemical Engineering and Progressing, 2015, 89: 41-53. | 9 | MACFHIONNGH P, SVOBODA V, MCGINTY J, et al. Crystallization diagram for antisolvent crystallization of lactose: Using design of experiments to investigate continuous mixing-induced supersaturation[J]. Crystal Growth & Design, 2017, 17(5): 2611-2621. | 10 | NOWEE S M, ABBAS A, ROMAGNOLI J A. Antisolvent crystallization: model identification, experimental validation and dynamic simulation[J]. Chemical Engineering Science, 2008, 63(22): 5457-5467. | 11 | DIPROFIO G, CARIDI A, CALIANDRO R, et al. Fine dosage of antisolvent in the crystallization of L-histidine: effect on polymorphism[J]. Crystal Growth & Design, 2010, 10(1): 449-455. | 12 | BARRETT M, O'GRADY D, CASEY E, et al. The role of meso-mixing in anti-solvent crystallization processes[J]. Chemical Engineering Science, 2011, 66(12): 2523-2534. | 13 | CHENG J C, YANG C, JIANG M, et al. Simulation of antisolvent crystallization in impinging jets with coupled multiphase flow-micromixing-PBE[J]. Chemical Engineering Science, 2017, 171: 500-512. | 14 | RIDDER B J, MAJUMER A, NAGY Z K. Parametric, optimization-based study on the feasibility of a multisegment antisolvent crystallizer for in situ fines removal and matching of target size distribution[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2371-2380. | 15 | ALMUTAIRI Z A, GLAWDEL T, REN C L, et al. A Y-channel design for improving zeta potential and surface conductivity measurements using the current monitoring method[J]. Microfluidics and Nanofluidics, 2009, 6(2): 241-251. | 16 | GUO Z, ZHANG M, LI H, et al. Effect of ultrasound on anti-solvent crystallization process[J]. Journal of Crystal Growth, 2005, 273(3/4): 555-563. | 17 | PARK M W, YEO S D. Antisolvent crystallization of roxithromycin and the effect of ultrasound[J]. Separation Science and Technology, 2010, 45(10): 1402-1410. | 18 | MATSUMOTO M, WADA Y, ONOE K. Enhanced production of unstable polymorph by antisolvent crystallization supplying minute-bubbles[C]//DAVID N, JAUBERT J N, PRIVAT R. 39th Edition of the Joint European Days on Equilibrium between Phases. MATEC Web of Conference. Nancy, France, 2013: 01056. | 19 | FALK L, COMMENGE J M. Performance comparison of micromixers[J]. Chemical Engineering Science, 2010, 65(1): 405-411. | 20 | 脱凌晗. 赤藓糖醇膜辅助溶析结晶过程的研究[D]. 大连: 大连理工大学, 2018. | 20 | TUO L H. Study on the erythritol membrane assisted antisolvent crystallization process[D]. Dalian: Dalian University of Technology, 2018 | 21 | 李倩,徐进良,毛文彬,等. 微混合器的研究进展[J]. 化工进展, 2009, 28(6): 922-932. | 21 | LI Q, XU J L, MAO W B, et al. Recent progress in micromixers[J]. Chemical Industry and Engineering Progress, 2009, 28(6): 922-932. | 22 | 姜枫,刘国君,杨志刚,等. 微混合器的研究现状[J]. 微纳电子技术, 2016, 53(3): 166-176. | 22 | JIANG F, LIU G J, YANG Z G, et al. Research status in micro-mixers[J]. Micronanoelectronic Technology, 2016, 53(3): 166-176. | 23 | PANAGIOTOU T, MESITE S V, FISHER R J. Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 1761-1771. | 24 | PANIC S, LOEBBECKE S, TUERCKE T, et al. Experimental approaches to a better understanding of mixing performance of microfluidic devices[J]. Chemical Engineering Journal, 2004, 101(1/2/3): 409-419. | 25 | 欧雪娇, 张春桃, 李雪伟, 等. 膜结晶技术的研究进展[J]. 现代化工, 2016, 36(8): 14-18. | 25 | OU X J, ZHANG C T, LI X W, et al. Avances in membrane crystallization technology[J]. Modern Chemical Industry, 2016, 36(8): 14-18. | 26 | JIANG X B, TUO L H, LU D P, et al. Progress in membrane distillation crystallization: process models, crystallization control and innovative applications[J]. Frontiers of Chemical Science and Engineering, 2017, 11(4): 647-662. | 27 | JIANG X B, LI G N, LU D P, et al. Hybrid control mechanism of crystal morphology modification for ternary solution treatment via membrane assisted crystallization[J]. Crystal Growth & Design, 2018, 18(2): 934-943. | 28 | TUO L H, RUAN X H, XIAO W, et al. A novel hollow fiber membrane-assisted antisolvent crystallization for enhanced mass transfer process control[J]. AIChE Journal, 2019, 65(2): 734-744. | 29 | CHEN D Y, SINGH D, SIRKAR K K, et al. Porous hollow fiber membrane-based continuous technique of polymer coating on submicron and nanoparticles via antisolvent crystallization[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5237-5245. | 30 | CHEN D Y, SINGH D, SIRKAR K K. Continuous synthesis of polymer-coated drug particles by porous hollow fiber membrane-based sntisolvent crystallization[J]. Langmuir, 2015, 31(1): 432-441. | 31 | BACCAR N, KIEFFER R, CHARCOSSET C, et al. Characterization of mixing in a hollow fiber membrane contactor by the iodide–iodate method: Numerical simulations and experiments[J]. Chemical Engineering Journal, 2009, 148(2/3): 517-524. | 32 | WANG B, ARMENANTE P M. Experimental and computational determination of the hydrodynamics of mini vessel dissolution testing systems[J]. International Journal of Pharmaceutics, 2016, 510(1): 336-349. | 33 | CHEN D Y, WANG B, SIRKAR K K. Hydrodynamic modeling of porous hollow fiber anti-solvent crystallizer for continuous production of drug crystals[J]. Journal of Membrane Science, 2018, 556: 185-195. | 34 | ZHOU X Y, ZHU X, WANG B, et al. Continuous production of drug nanocrystals by porous hollow fiber-based anti-solvent crystallization[J]. Journal of Membrane Science, 2018, 564: 682-690. | 35 | FERN J C W, OHSAKI S, WATANO S, et al. Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module[J]. International Journal of Pharmaceutics, 2018, 543(1/2): 139-150. |
|