化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5567-5577.DOI: 10.16085/j.issn.1000-6613.2021-2597
收稿日期:
2021-12-21
修回日期:
2022-02-15
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
张逸
作者简介:
张逸(1986—),男,副教授,硕士生导师,研究方向为稀土金属的分离。E-mail:zhangyi_1208@whu.edu.cn。
基金资助:
ZHANG Yi(), LIU Donghao, DING Yigang
Received:
2021-12-21
Revised:
2022-02-15
Online:
2022-10-20
Published:
2022-10-21
Contact:
ZHANG Yi
摘要:
稀土金属元素是我国重要的战略资源,因其在高精尖产品中的独特作用,稀土金属元素的分离纯化显得格外重要。膜分离技术是一种高效率、低能耗、环境友好的分离手段,在众多领域应用广泛,将其用于稀土金属分离可明显提升分离效率,降低稀土工业对环境的破坏,但目前的研究尚处于起步阶段,将面临较多挑战。本文介绍了膜技术分离稀土金属的三种策略,包括离子印迹膜、聚合物包合膜和液膜,总结了膜材料的制备方法和分离性能,分析比较了膜技术细分类型的特点和利弊。本文还指出离子印迹膜的选择分离性优势巨大,但在吸附容量上仍有提升空间,也是未来几年膜分离技术的研究重点;聚合物包合膜和液膜分离技术,可根据萃取剂类型和用量灵活调整活性位点种类和数量,在膜技术分离稀土金属的工业化应用方面具有较大潜力。
中图分类号:
张逸, 刘东昊, 丁一刚. 膜技术分离稀土金属元素的研究进展[J]. 化工进展, 2022, 41(10): 5567-5577.
ZHANG Yi, LIU Donghao, DING Yigang. Research progress of membrane technology for the separation of rare earth elements[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5567-5577.
膜骨架 | 载体 | 稀土金属 | 主要研究结果 | 文献 |
---|---|---|---|---|
PVDF | P227 | Lu | 载体质量分数40%、稀土浓度1mmol·L-1时,萃取率91% | [ |
PVDF | P227 | Lu/Sm/La | pH=1.5时,对Lu、Sm、La回收率为82%、40%、4% | [ |
EVOH | Cyanex272 | Lu | 处理能力较大,但载体质量分数25%时分离选择性3.78 | [ |
PAN | Calix8 | La | 静电纺丝法制备,吸附容量达155.10mg·g-1 | [ |
PVC | P204 | La/Gd/Y | 载体质量分数45%、pH=1.5时,萃取率接近100% | [ |
CTA | D2EHAF | Sc | 可选择性分离混合液中Sc,重复用5次萃取率基本不变 | [ |
CA | CMPO | Ce | 稀土浓度200mg·L-1时,萃取率大于90% | [ |
CA | TODGA | Ce | 稀土浓度200mg·L-1时,扩散系数为6.65×10-12m2·s-1 | [ |
PVDF | [A336][P507] | Lu/Yb | 载体质量分数37.5%时,对Yb的选择性高于Lu | [ |
PVDF | [A336][P227] | Y | 载体质量分数37.5%、稀土浓度1.1mmol·L-1时,可重复用8次 | [ |
PVDF | Cyphos 104 | Lu/Yb | 载体质量分数25%、稀土浓度20mmol·L-1时,分离选择性1.37 | [ |
表1 聚合物包合膜的成分和研究结果
膜骨架 | 载体 | 稀土金属 | 主要研究结果 | 文献 |
---|---|---|---|---|
PVDF | P227 | Lu | 载体质量分数40%、稀土浓度1mmol·L-1时,萃取率91% | [ |
PVDF | P227 | Lu/Sm/La | pH=1.5时,对Lu、Sm、La回收率为82%、40%、4% | [ |
EVOH | Cyanex272 | Lu | 处理能力较大,但载体质量分数25%时分离选择性3.78 | [ |
PAN | Calix8 | La | 静电纺丝法制备,吸附容量达155.10mg·g-1 | [ |
PVC | P204 | La/Gd/Y | 载体质量分数45%、pH=1.5时,萃取率接近100% | [ |
CTA | D2EHAF | Sc | 可选择性分离混合液中Sc,重复用5次萃取率基本不变 | [ |
CA | CMPO | Ce | 稀土浓度200mg·L-1时,萃取率大于90% | [ |
CA | TODGA | Ce | 稀土浓度200mg·L-1时,扩散系数为6.65×10-12m2·s-1 | [ |
PVDF | [A336][P507] | Lu/Yb | 载体质量分数37.5%时,对Yb的选择性高于Lu | [ |
PVDF | [A336][P227] | Y | 载体质量分数37.5%、稀土浓度1.1mmol·L-1时,可重复用8次 | [ |
PVDF | Cyphos 104 | Lu/Yb | 载体质量分数25%、稀土浓度20mmol·L-1时,分离选择性1.37 | [ |
类型 | 载体 | 稀土金属 | 主要研究结果 | 文献 |
---|---|---|---|---|
ELM | 苯胺 | RE | 表面活性剂T154、有机相磺化煤油时,可从磷矿浸取液中萃取出93%的混合RE | [ |
ELM | Cyanex272 | Dy | 表面活性剂Span80/85、有机相煤油时,萃取率99.6% | [ |
EPLM | P507 | Y/La/Sm/Al | 金属总浓度1.22g·L-1、电压4.5~5kV时,回收率分别为97.7%、90.3%、19.7、95.1% | [ |
EPLM | PMBP | Sc | 稀土浓度10mg·L-1、电压5kV时,萃取率96.9% | [ |
BOLM | N1923 | RE/Al | 稀土浓度116.68mg·L-1、Al浓度27.7mg·L-1时,RE/Al选择性为44.89,稀土回收率为84.4% | [ |
BOLM | P507 | RE | 稀土浓度116.68mg·L-1时,稀土回收率为90%以上 | [ |
FSLM | D2EHPA | Eu | PVDF为膜骨架、稀土浓度0.1mmol·L-1时,萃取率94.2% | [ |
FSLM | TODGA | RE | PVDF为膜骨架、稀土浓度72.4mg·L-1时,可从含有Ca/Mg/Fe/RE的磷矿模拟废液中萃取出96.3%的RE | [ |
HFSLM | PC-88A | Nd | 4mol·L-1硝酸时,萃取率95%,反萃率87% | [ |
HFSLM | D2EHPA | Nd/Pr/Dy | 2mol·L-1硝酸时,萃取率分别58.62%、85.59%、98.46% | [ |
HFLM | TODGA | Nd | 稀土浓度1g·L-1、3.5mol·L-1硝酸时,萃取率接近100% | [ |
HFLM | PC-88A | Dy | 0.3mol·L-1硝酸时,通过二级萃取可从含有20%Dy的FeNdB磁铁中回收高纯度Dy(>97%) | [ |
表2 液膜的成分和主要研究结果
类型 | 载体 | 稀土金属 | 主要研究结果 | 文献 |
---|---|---|---|---|
ELM | 苯胺 | RE | 表面活性剂T154、有机相磺化煤油时,可从磷矿浸取液中萃取出93%的混合RE | [ |
ELM | Cyanex272 | Dy | 表面活性剂Span80/85、有机相煤油时,萃取率99.6% | [ |
EPLM | P507 | Y/La/Sm/Al | 金属总浓度1.22g·L-1、电压4.5~5kV时,回收率分别为97.7%、90.3%、19.7、95.1% | [ |
EPLM | PMBP | Sc | 稀土浓度10mg·L-1、电压5kV时,萃取率96.9% | [ |
BOLM | N1923 | RE/Al | 稀土浓度116.68mg·L-1、Al浓度27.7mg·L-1时,RE/Al选择性为44.89,稀土回收率为84.4% | [ |
BOLM | P507 | RE | 稀土浓度116.68mg·L-1时,稀土回收率为90%以上 | [ |
FSLM | D2EHPA | Eu | PVDF为膜骨架、稀土浓度0.1mmol·L-1时,萃取率94.2% | [ |
FSLM | TODGA | RE | PVDF为膜骨架、稀土浓度72.4mg·L-1时,可从含有Ca/Mg/Fe/RE的磷矿模拟废液中萃取出96.3%的RE | [ |
HFSLM | PC-88A | Nd | 4mol·L-1硝酸时,萃取率95%,反萃率87% | [ |
HFSLM | D2EHPA | Nd/Pr/Dy | 2mol·L-1硝酸时,萃取率分别58.62%、85.59%、98.46% | [ |
HFLM | TODGA | Nd | 稀土浓度1g·L-1、3.5mol·L-1硝酸时,萃取率接近100% | [ |
HFLM | PC-88A | Dy | 0.3mol·L-1硝酸时,通过二级萃取可从含有20%Dy的FeNdB磁铁中回收高纯度Dy(>97%) | [ |
1 | WU Shengxi, WANG Liangshi, ZHAO Longsheng, et al. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes—A critical review[J]. Chemical Engineering Journal, 2018, 335: 774-800. |
2 | LIU Tianchi, CHEN Ji. Extraction and separation of heavy rare earth elements: a review[J]. Separation and Purification Technology, 2021, 276: 119263. |
3 | LI Deqian. Development course of separating rare earths with acid phosphorus extractants: a critical review[J]. Journal of Rare Earths, 2019, 37(5): 468-486. |
4 | CEN Peng, BIAN Xue, LIU Zhannian, et al. Extraction of rare earths from bastnaesite concentrates: a critical review and perspective for the future[J]. Minerals Engineering, 2021, 171: 107081. |
5 | KEGL T, KOŠAK A, LOBNIK A, et al. Adsorption of rare earth metals from wastewater by nanomaterials: a review[J]. Journal of Hazardous Materials, 2020, 386: 121632. |
6 | ASADOLLAHZADEH M, TORKAMAN R, TORAB-MOSTAEDI M. Extraction and separation of rare earth elements by adsorption approaches: current status and future trends[J]. Separation & Purification Reviews, 2021, 50(4): 417-444. |
7 | CHEN Li, WU Yilin, DONG Hongjun, et al. An overview on membrane strategies for rare earths extraction and separation[J]. Separation and Purification Technology, 2018, 197: 70-85. |
8 | DOLAK İ, KEÇILI R, HÜR D, et al. Ion-imprinted polymers for selective recognition of neodymium(Ⅲ) in environmental samples[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5328-5335. |
9 | ZHANG Yuzhe, BIAN Tingting, JIANG Rong, et al. Bionic chitosan-carbon imprinted aerogel for high selective recovery of Gd(Ⅲ) from end-of-life rare earth productions[J]. Journal of Hazardous Materials, 2021, 407: 124347. |
10 | ZHENG Xudong, ZHANG Yi, ZHANG Fusheng, et al. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium[J]. Journal of Hazardous Materials, 2018, 353: 496-504. |
11 | ZHENG Xudong, ZHANG Yi, BIAN Tingting, et al. One-step fabrication of imprinted mesoporous cellulose nanocrystals films for selective separation and recovery of Nd(Ⅲ)[J]. Cellulose, 2019, 26(9): 5571-5582. |
12 | LEHMANN M, BRUNNER H, TOVAR G E M. Selective separations and hydrodynamic studies: a new approach using molecularly imprinted nanosphere composite membranes[J]. Desalination, 2002, 149(1/2/3): 315-321. |
13 | SUN Junfen, WU Lishun, LI Yunhua. Removal of lead ions from polyether sulfone/Pb(Ⅱ)-imprinted multi-walled carbon nanotubes mixed matrix membrane[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 219-229. |
14 | CUI Jiuyun, ZHOU Zhiping, XIE Atian, et al. Facile synthesis of degradable CA/CS imprinted membrane by hydrolysis polymerization for effective separation and recovery of Li+ [J]. Carbohydrate Polymers, 2019, 205: 492-499. |
15 | ESMALI F, MANSOURPANAH Y, FARHADI K, et al. Fabrication of a novel and highly selective ion-imprinted PES-based porous adsorber membrane for the removal of mercury(Ⅱ) from water[J]. Separation and Purification Technology, 2020, 250: 117183. |
16 | ZENG Jianxian, ZHANG Zhe, DONG Zhihui, et al. Fabrication and characterization of an ion-imprinted membrane via blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) with polyvinylidene fluoride for selective adsorption of Ru(Ⅲ)[J]. Reactive and Functional Polymers, 2017, 115: 1-9. |
17 | WANG Xiaowei, ZHANG Liang, MA Cailian, et al. Enrichment and separation of silver from waste solutions by metal ion imprinted membrane[J]. Hydrometallurgy, 2009, 100(1/2): 82-86. |
18 | LIU Enli, XU Xuechao, ZHENG Xudong, et al. An ion imprinted macroporous chitosan membrane for efficiently selective adsorption of dysprosium[J]. Separation and Purification Technology, 2017, 189: 288-295. |
19 | LIU Enli, LIN Xue, ZHANG Dan, et al. Preparation of an ion imprinted chitosan-based porous film with an interpenetrating network structure for efficient selective adsorption of Gd(Ⅲ)[J]. New Journal of Chemistry, 2021, 45(2): 725-734. |
20 | ZHENG Xudong, LIU Enli, ZHANG Fusheng, et al. Selective adsorption and separation of gadolinium with three-dimensionally interconnected macroporous imprinted chitosan films[J]. Cellulose, 2017, 24(2): 977-988. |
21 | ZHENG Xudong, ZHANG Yi, BIAN Tingting, et al. Selective extraction of gadolinium using free-standing imprinted mesoporous carboxymethyl chitosan films with high capacity[J]. Cellulose, 2019, 26(2): 1209-1219. |
22 | ZHENG Xudong, ZHANG Fusheng, LIU Enli, et al. Efficient recovery of neodymium in acidic system by free-standing dual-template docking oriented ionic imprinted mesoporous films[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 730-739. |
23 | ZHENG Xudong, ZHANG Yi, BIAN Tingting, et al. Oxidized carbon materials cooperative construct ionic imprinted cellulose nanocrystals films for efficient adsorption of Dy(Ⅲ)[J]. Chemical Engineering Journal, 2020, 381: 122669. |
24 | CUI Keyu, GAO Baihui, TAI Meng, et al. A facile bionic strategy towards Gd (Ⅲ)-imprinted membranes via interlaced stacking of one-dimensional/two-dimensional nanocomposite materials[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 652-659. |
25 | LU Jian, WU Yilin, LIN Xinyu, et al. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions[J]. Journal of Hazardous Materials, 2018, 353: 244-253. |
26 | WU Yilin, LIN Rongxin, MA Faguang, et al. Three-dimensional macroporous wood-based selective separation membranes decorated with well-designed Nd(Ⅲ)-imprinted domains: a high-efficiency recovery system for rare earth element[J]. Journal of Colloid and Interface Science, 2021, 587: 703-714. |
27 | HUANG Siyan, CHEN Ji, CHEN Li, et al. A polymer inclusion membrane functionalized by di(2-ethylhexyl) phosphinic acid with hierarchically ordered porous structure for Lutetium(Ⅲ) transport[J]. Journal of Membrane Science, 2020, 593: 117458. |
28 | HUANG Siyan, CHEN Ji, ZOU Dan. A preliminary study of polymer inclusion membrane for lutetium(Ⅲ) separation and membrane regeneration[J]. Journal of Rare Earths, 2021, 39(10): 1256-1263. |
29 | CHEN Li, DONG Huan, PAN Weiguo, et al. Poly (vinyl alcohol-co-ethylene) (EVOH) modified polymer inclusion membrane in heavy rare earths separation with advanced hydrophilicity and separation property[J]. Chemical Engineering Journal, 2021, 426: 131305. |
30 | HONG Guishan, WANG Min, LI Xiong, et al. Micro-nano structure nanofibrous p-sulfonatocalix[8]arene complex membranes for highly efficient and selective adsorption of lanthanum(Ⅲ) ions in aqueous solution[J]. RSC Advances, 2015, 5(27): 21178-21188. |
31 | CROFT C F, ALMEIDA M I G S, CATTRALL R W, et al. Separation of lanthanum(Ⅲ), gadolinium(Ⅲ) and ytterbium(Ⅲ) from sulfuric acid solutions by using a polymer inclusion membrane[J]. Journal of Membrane Science, 2018, 545: 259-265. |
32 | YOSHIDA W, BABA Y, KUBOTA F, et al. Selective transport of scandium(Ⅲ) across polymer inclusion membranes with improved stability which contain an amic acid carrier[J]. Journal of Membrane Science, 2019, 572: 291-299. |
33 | HIRATANI K, KUSUMOCAHYO S P, KAMETA N, et al. Synthesis of noncyclic carriers for cerium ion transport through polymer inclusion membrane[J]. Chemistry Letters, 2005, 34(12): 1636-1637. |
34 | KUSUMOCAHYO S P, SUMARU K, IWATSUBO T, et al. Quantitative analysis of transport process of cerium(Ⅲ) ion through polymer inclusion membrane containing N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA) as carrier[J]. Journal of Membrane Science, 2006, 280(1/2): 73-81. |
35 | CHEN Li, CHEN Ji. Asymmetric membrane containing ionic liquid [A336][P507] for the preconcentration and separation of heavy rare earth lutetium[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2644-2650. |
36 | CHEN Li, CHEN Ji, LI Hailian, et al. Applying basic research on a dialkylphosphoric acid based task-specific ionic liquid for the solvent extraction and membrane separation of yttrium[J]. Separation and Purification Technology, 2018, 207: 179-186. |
37 | WANG Yitan, CHEN Li, YAN Yongsheng, et al. Separation of adjacent heavy rare earth Lutetium (Ⅲ) and Ytterbium(Ⅲ) by task-specific ionic liquid Cyphos IL 104 embedded polymer inclusion membrane[J]. Journal of Membrane Science, 2020, 610: 118263. |
38 | CHEN Qianlin, MA Xin, ZHANG Xin, et al. Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium[J]. Journal of Rare Earths, 2018, 36(11): 1190-1197. |
39 | RAJI M, ABOLGHASEMI H, SAFDARI J, et al. Pertraction of dysprosium from nitrate medium by emulsion liquid membrane containing mixed surfactant system[J]. Chemical Engineering and Processing—Process Intensification, 2017, 120: 184-194. |
40 | YANG X J, GU Z M, FANE A G. Multicomponent separations by a combined extraction/electrostatic pseudo-liquid membrane: (Ⅰ): Separation of Al, La, Sm, and Y[J]. Hydrometallurgy, 1998, 49(3): 275-288. |
41 | YANG Xiaojin, GU Zhongmao, WANG Dexi. Extraction and separation of scandium from rare earths by electrostatic pseudo liquid membrane[J]. Journal of Membrane Science, 1995, 106(1/2): 131-145. |
42 | LIU Jie, HUANG Kun, WU Xiaohong, et al. Enrichment of low concentration rare earths from leach solutions of ion-adsorption ores by bubbling organic liquid membrane extraction using N1923[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8070-8078. |
43 | LIU Jie, HUANG Kun, WU Xiaohong, et al. Extraction of rare earths using bubbling organic liquid membrane with un-saponified P507[J]. Hydrometallurgy, 2018, 175: 340-347. |
44 | PEI Liang, WANG Liming, YU Guoqiang. Separation of Eu(Ⅲ) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution[J]. Journal of Rare Earths, 2011, 29(1): 7-14. |
45 | XU Dongdong, SHAH Z, SUN Guoxin, et al. Recovery of rare earths from phosphate ores through supported liquid membrane using N,N,N',N'-tetraoctyl diglycol amide[J]. Minerals Engineering, 2019, 139: 105861. |
46 | WANNACHOD T, LEEPIPATPIBOON N, PANCHAROEN U, et al. Separation and mass transport of Nd(Ⅲ) from mixed rare earths via hollow fiber supported liquid membrane: experiment and modeling[J]. Chemical Engineering Journal, 2014, 248: 158-167. |
47 | NI’AM A C, WANG Y F, CHEN S W, et al. Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane[J]. Chemical Engineering and Processing—Process Intensification, 2020, 148: 107831. |
48 | PATIL C B, ANSARI S A, MOHAPATRA P K, et al. Non-dispersive solvent extraction and stripping of neodymium(Ⅲ) using a hollow fiber contactor with TODGA as the extractant[J]. Separation Science and Technology, 2011, 46(5): 765-773. |
49 | YADAV K K, ANITHA M, SINGH D K, et al. NdFeB magnet recycling: dysprosium recovery by non-dispersive solvent extraction employing hollow fibre membrane contactor[J]. Separation and Purification Technology, 2018, 194: 265-271. |
50 | ZHANG Lichang, CHEN Qianlin, KANG Chao, et al. Rare earth extraction from wet process phosphoric acid by emulsion liquid membrane[J]. Journal of Rare Earths, 2016, 34(7): 717-723. |
51 | RAJI M, ABOLGHASEMI H, SAFDARI J, et al. Response surface optimization of dysprosium extraction using an emulsion liquid membrane integrated with multi-walled carbon nanotubes[J]. Chemical Engineering & Technology, 2018, 41(9): 1857-1870. |
52 | DAVOODI-NASAB P, RAHBAR-KELISHAMI A, SAFDARI J, et al. Selective separation and enrichment of neodymium and gadolinium by emulsion liquid membrane using a novel extractant CYANEX® 572[J]. Minerals Engineering, 2018, 117: 63-73. |
53 | ANITHA M, AMBARE D N, SINGH D K, et al. Extraction of neodymium from nitric acid feed solutions using an emulsion liquid membrane containing TOPO and DNPPA as the carrier extractants[J]. Chemical Engineering Research and Design, 2015, 98: 89-95. |
54 | 秦庆伟, 赵恒勤, 赖延清, 等. Cyanex272作载体的乳状液膜提取稀土的研究[J]. 矿冶工程, 2002, 22(3): 74-78. |
QIN Qingwei, ZHAO Hengqin, LAI Yanqing, et al. Extraction of rare earth metals by liquid surfactant membranes containing Cyanex272 as a carrier[J]. Mining and Metallurgical Engineering, 2002, 22(3): 74-78. | |
55 | LIU Jie, WU Xiaohong, HUANG Kun, et al. Instability behavior of bubble supported organic liquid membrane in extraction of low-concentration rare earths from in situ leaching solutions of ion-adsorption ores[J]. Minerals Engineering, 2020, 159: 106645. |
56 | PEI Liang, WANG Liming. Study on supported combined liquid membrane containing HEH(EH)P and HNO3 for trivalent gadolinium transfer[J]. Chinese Chemical Letters, 2011, 22(9): 1095-1098. |
57 | PEI Liang, YAO Binghua, WANG Liming, et al. Tb(Ⅲ) transport in dispersion supported liquid membrane system with D2EHPA as carrier in kerosene[J]. Chemical Research in Chinese Universities, 2011, 27(1): 132-139. |
58 | KIM D, POWELL L, DELMAU L H, et al. A supported liquid membrane system for the selective recovery of rare earth elements from neodymium-based permanent magnets[J]. Separation Science and Technology, 2016, 51(10): 1716-1726. |
59 | SMITH R C, TAGGART R K, HOWER J C, et al. Selective recovery of rare earth elements from coal fly ash leachates using liquid membrane processes[J]. Environmental Science & Technology, 2019, 53(8): 4490-4499. |
60 | MOHAMMAD TEHRANI B, RAHBAR-KELISHAMI A. A novel mass transfer coefficient correlation for improved rare earth metals extraction via supported nanoliquids membrane[J]. Chemical Engineering and Processing—Process Intensification, 2019, 143: 107625. |
61 | PAVÓN S, FORTUNY A, COLL M T, et al. Improved rare earth elements recovery from fluorescent lamp wastes applying supported liquid membranes to the leaching solutions[J]. Separation and Purification Technology, 2019, 224: 332-339. |
62 | PAVÓN S, FORTUNY A, COLL M T, et al. Permeability dependencies on the carrier concentration and membrane viscosity for Y(Ⅲ) and Eu(Ⅲ) transport by using liquid membranes[J]. Separation and Purification Technology, 2020, 239: 116573. |
63 | WANNACHOD T, LEEPIPATPIBOON N, PANCHAROEN U, et al. Mass transfer and selective separation of neodymium ions via a hollow fiber supported liquid membrane using PC88A as extractant[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 535-541. |
64 | WANNACHOD T, MOHDEE V, SUREN S, et al. The separation of Nd(Ⅲ) from mixed rare earth via hollow fiber supported liquid membrane and mass transfer analysis[J]. Journal of Industrial and Engineering Chemistry, 2015, 26: 214-217. |
65 | KUBOTA F, KAKOI T, GOTO M, et al. Permeation behavior of rare earth metals with a calix[4]arenecarboxyl derivative in a hollow-fiber membrane[J]. Journal of Membrane Science, 2000, 165(2): 149-158. |
66 | PEI Liang, WANG Liming, GUO Wei, et al. Stripping dispersion hollow fiber liquid membrane containing PC-88A as carrier and HCl for transport behavior of trivalent dysprosium[J]. Journal of Membrane Science, 2011, 378(1/2): 520-530. |
67 | HUA Weikang, ZHANG Tonghui, WANG Min, et al. Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium(Ⅲ) and Europium(Ⅲ) ions and their photoluminescence performances[J]. Chemical Engineering Journal, 2019, 370: 729-741. |
68 | TURSI A, MASTROPIETRO T F, BRUNO R, et al. Synthesis and enhanced capture properties of a new bioMOF@SWCNT-BP: recovery of the endangered rare-earth elements from aqueous systems[J]. Advanced Materials Interfaces, 2021, 8(16): 2100730. |
69 | XIONG Xiaohong, TAO Yuan, YU Zhiwu, et al. Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate[J]. Chemical Engineering Journal, 2020, 384: 123240. |
[1] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[2] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[3] | 潘思睿, 邓文义, 苏亚欣. 电路探针测量污泥液膜厚度方法验证及应用[J]. 化工进展, 2023, 42(10): 5538-5547. |
[4] | 朱晓, 朱军勇, 张亚涛. 金属有机骨架/聚酰胺薄层纳米复合膜的研究进展[J]. 化工进展, 2022, 41(8): 4314-4326. |
[5] | 池成龙, 贾爱忠, 孙道来, 赵新强, 王延吉. 表面离子印迹聚合物金属离子吸附材料研究进展[J]. 化工进展, 2022, 41(7): 3758-3769. |
[6] | 王志, 原野, 生梦龙, 李庆华. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
[7] | 高逸飞, 易群, 齐凯, 高丽丽, 李雪莲. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
[8] | 齐亚兵, 罗橙, 张思敬. 含酚废水液膜脱酚技术研究进展[J]. 化工进展, 2021, 40(S2): 348-355. |
[9] | 李志录, 王敏, 赵有璟, 彭正军, 白露. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
[10] | 林少华, 武海霞, 高莉苹, 俞乙平. 改性碳纳米管及其复合材料在废水处理中的应用现状及展望[J]. 化工进展, 2021, 40(6): 3466-3479. |
[11] | 郭超然, 黄勇, 朱文娟, 陈丽媛, 王灵芝, 张悦, 徐楚天, 李大鹏. 城市污水有机物回收——捕获技术研究进展[J]. 化工进展, 2021, 40(3): 1619-1633. |
[12] | 蔡的, 李树峰, 司志豪, 秦培勇, 谭天伟. 生物丁醇分离技术的研究进展及发展趋势[J]. 化工进展, 2021, 40(3): 1161-1177. |
[13] | 李春利, 程永辉, 李浩. 精馏-吸附-膜分离耦合工艺制备高纯度酒精流程模拟[J]. 化工进展, 2021, 40(3): 1354-1361. |
[14] | 赵宁, 贾慧君, 郭立强, 刘雨航, 方立德. 环状流液滴夹带率测量方法及分析[J]. 化工进展, 2021, 40(12): 6469-6478. |
[15] | 邓燕芳, 刘桉如, 罗明辉, 范杰平. 分子印迹膜分离技术进展[J]. 化工进展, 2020, 39(6): 2166-2176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |