化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5578-5587.DOI: 10.16085/j.issn.1000-6613.2021-2532
闻倩敏(), 秦永丽, 郑君健, 韦巧艳, 张媛媛, 蒋永荣()
收稿日期:
2021-12-13
修回日期:
2022-03-08
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
蒋永荣
作者简介:
闻倩敏(1996—),女,硕士研究生,研究方向为污水生物处理及微生物学。E-mail:quesmy@qq.com。
基金资助:
WEN Qianmin(), QIN Yongli, ZHENG Junjian, WEI Qiaoyan, ZHANG Yuanyuan, JIANG Yongrong()
Received:
2021-12-13
Revised:
2022-03-08
Online:
2022-10-20
Published:
2022-10-21
Contact:
JIANG Yongrong
摘要:
硫酸盐还原菌(SRB)法是一种极具潜力的酸性矿山废水(AMD)处理技术,如何将多种重金属分级沉淀并且分相分离出来,是SRB工艺走上工程应用的关键。本文综述了SRB法固定AMD中重金属的国内外研究进展,主要包括SRB法去除AMD中重金属的原理、SRB法分级沉淀AMD中多种重金属的工艺(分离式多级pH控制工艺及厌氧折流板反应器工艺)和SRB法厌氧污泥中金属硫化物的生物矿化(SRB介导的生物矿化成矿、生物矿化成矿影响因素及生物矿化过程微观机理),分析了此方面研究工作存在的问题。最后文章针对SRB法的深入研究及应用进行展望,认为硫酸盐还原体系中硫化物成矿的调控、成矿物相演变与微生物群落演替过程的解析以及矿化固定AMD中重金属成矿机理的探索将是今后重点关注的研究内容。
中图分类号:
闻倩敏, 秦永丽, 郑君健, 韦巧艳, 张媛媛, 蒋永荣. 硫酸盐还原菌法固定酸性矿山废水中重金属的研究进展[J]. 化工进展, 2022, 41(10): 5578-5587.
WEN Qianmin, QIN Yongli, ZHENG Junjian, WEI Qiaoyan, ZHANG Yuanyuan, JIANG Yongrong. Research advances in the fixation of heavy metals in acid mine wastewater by sulfate reducing bacteria[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5578-5587.
硫化物 | 溶度积Ksp/g·L-1 | 起始沉淀pH |
---|---|---|
MnS | 1.4×10-15 | >7 |
FeS | 3.7×10-19 | >6 |
ZnS | 1.2×10-23 | 2~3 |
CuS | 8.5×10-45 | 1 |
HgS | 4.0×10-53 | 1 |
PbS | 3.4×10-28 | 1 |
NiS | 3.0×10-19~10-25 | 5~6 |
CdS | 3.6×10-29 | 1 |
Al2S3 | 2.0×10-7 | — |
表1 酸性矿山废水中主要重金属硫化物的Ksp和沉淀起始的pH条件
硫化物 | 溶度积Ksp/g·L-1 | 起始沉淀pH |
---|---|---|
MnS | 1.4×10-15 | >7 |
FeS | 3.7×10-19 | >6 |
ZnS | 1.2×10-23 | 2~3 |
CuS | 8.5×10-45 | 1 |
HgS | 4.0×10-53 | 1 |
PbS | 3.4×10-28 | 1 |
NiS | 3.0×10-19~10-25 | 5~6 |
CdS | 3.6×10-29 | 1 |
Al2S3 | 2.0×10-7 | — |
反应装置 | 碳源 | COD/SO42- | HRT | pH控制金属分级沉淀 | 文献 |
---|---|---|---|---|---|
三级流化床反应器+硫化物沉淀池 | 乙醇 | 0.67~0.85 | 1d | pH=4.0,Cu2+沉淀率为82%; pH=6.3,Fe2+沉淀率为99% | [ |
硫酸盐还原反应器+铁氧化/沉淀池 | 甘油 | — | 1.96~41.7h | pH=2.3,Zn2+沉淀率为90%; pH=4.0,Fe2+沉淀率为100% | [ |
厌氧上流式反应器+硫化物沉淀池 | 乙醇 | 0.67~0.87 | 1d | pH<2,Cu2+沉淀率为92%; pH=8.0,Fe2+沉淀率为89% | [ |
产硫上流式生物膜反应器+连续流小型生物反应器 | 甘油 | — | 30.3~46.9h | pH=2.2~2.5,Cu2+沉淀率为93%; pH=4.0,Zn2+沉淀率为93% | [ |
两套连续流硫酸盐还原反应器 | 氢气 | — | 35h | pH=2.5,Cu2+沉淀率为95%; pH=3.0,Zn2+沉淀率为95% | [ |
床柱式反应器+连续流生物反应器+机械搅拌沉淀池 | 乙酸钠和氢气 | — | 0.9d | pH=2.8,Cu2+沉淀率为88%; pH=3.5,Zn2+沉淀率为93%; pH=6.0,Ni2+、Fe2+沉淀率为91% | [ |
表2 分离式多级pH控制的工艺应用
反应装置 | 碳源 | COD/SO42- | HRT | pH控制金属分级沉淀 | 文献 |
---|---|---|---|---|---|
三级流化床反应器+硫化物沉淀池 | 乙醇 | 0.67~0.85 | 1d | pH=4.0,Cu2+沉淀率为82%; pH=6.3,Fe2+沉淀率为99% | [ |
硫酸盐还原反应器+铁氧化/沉淀池 | 甘油 | — | 1.96~41.7h | pH=2.3,Zn2+沉淀率为90%; pH=4.0,Fe2+沉淀率为100% | [ |
厌氧上流式反应器+硫化物沉淀池 | 乙醇 | 0.67~0.87 | 1d | pH<2,Cu2+沉淀率为92%; pH=8.0,Fe2+沉淀率为89% | [ |
产硫上流式生物膜反应器+连续流小型生物反应器 | 甘油 | — | 30.3~46.9h | pH=2.2~2.5,Cu2+沉淀率为93%; pH=4.0,Zn2+沉淀率为93% | [ |
两套连续流硫酸盐还原反应器 | 氢气 | — | 35h | pH=2.5,Cu2+沉淀率为95%; pH=3.0,Zn2+沉淀率为95% | [ |
床柱式反应器+连续流生物反应器+机械搅拌沉淀池 | 乙酸钠和氢气 | — | 0.9d | pH=2.8,Cu2+沉淀率为88%; pH=3.5,Zn2+沉淀率为93%; pH=6.0,Ni2+、Fe2+沉淀率为91% | [ |
碳源 | COD/SO | HRT | pH分级 | 重金属去除率 | 文献 |
---|---|---|---|---|---|
乙醇 | 0.67~0.737 | 2d | ①pH=3.0; ②pH=4.5 ③pH=7.0~8.0 | Mn2+(25%~77%); Co2+、Cu2+、Fe2+、Ni2+、Zn2+(99%) | [ |
乳酸盐 | 0.67 | 5d | ①pH=2; ②pH=3.5; ③pH=6 | Mo4+(72%); Ni2+、Co3+(76%); V2+(70%) | [ |
乳酸盐 | 0.67 | 2d | ①pH<2; ②pH=3.3; ③pH=6.0~7.5 | Cu2+(100%); Zn2+(83%~98%) | [ |
乙醇 | 0.67~0.737 | 1~2d | ①pH=2.25~2.5; ②pH=7.2~7.38; ③pH=8.6 | Cu2+(>99%); Zn2+(98%) | [ |
表3 多隔室厌氧折流板反应器在重金属废水中的工艺应用
碳源 | COD/SO | HRT | pH分级 | 重金属去除率 | 文献 |
---|---|---|---|---|---|
乙醇 | 0.67~0.737 | 2d | ①pH=3.0; ②pH=4.5 ③pH=7.0~8.0 | Mn2+(25%~77%); Co2+、Cu2+、Fe2+、Ni2+、Zn2+(99%) | [ |
乳酸盐 | 0.67 | 5d | ①pH=2; ②pH=3.5; ③pH=6 | Mo4+(72%); Ni2+、Co3+(76%); V2+(70%) | [ |
乳酸盐 | 0.67 | 2d | ①pH<2; ②pH=3.3; ③pH=6.0~7.5 | Cu2+(100%); Zn2+(83%~98%) | [ |
乙醇 | 0.67~0.737 | 1~2d | ①pH=2.25~2.5; ②pH=7.2~7.38; ③pH=8.6 | Cu2+(>99%); Zn2+(98%) | [ |
1 | 倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展, 2008, 23(5): 501-508. |
NI Shijun, LI Shan, LI Zeqin, et al. Progress in the research of acid mine drainage impact and remediation[J]. Advances in Earth Science, 2008, 23(5): 501-508. | |
2 | ANAWAR H M. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge[J]. Journal of Environmental Management, 2015, 158: 111-121. |
3 | 江峰, 孙容容, 梁振声, 等. 硫酸盐还原菌处理酸性矿山废水的研究进展[J]. 华南师范大学学报(自然科学版), 2018, 50(2): 1-10. |
JIANG Feng, SUN Rongrong, LIANG Zhensheng, et al. Research progress on the treatment of acid mine drainage by sulfate-reducing bacteria[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(2): 1-10. | |
4 | 王宁宁. 酸性矿山废水的危害及处理技术研究进展[J]. 环境与发展, 2017, 29(7): 99-100. |
WANG Ningning. Research progress on harmfulness and treatment technology of acid mine wastewater[J]. Environment and Development, 2017, 29(7): 99-100. | |
5 | JEAN M. Continuous pilot scale assessment of the alkaline barium calcium desalination process for acid mine drainage treatment[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1295-1302. |
6 | LIAO Jianbo, WEN Zewei, RU Xuan, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: public health implications in Guangdong province, China[J]. Ecotoxicology and Environmental Safety, 2016, 124: 460-469. |
7 | JACOBS J A, LEHR J H, TESTA S M. Acid mine drainage, rock drainage, and acid sulfate soils: causes, assessment, prediction, prevention, and remediation[M]. New York: John Wiley & Sons, Inc., 2014. |
8 | JONG T, PARRY D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research, 2003, 37(14): 3379-3389. |
9 | ŇANCUCHEO I, JOHNSON D B. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria[J]. Microbial Biotechnology, 2012, 5(1): 34-44. |
10 | MOKONE T P, VAN HILLE R P, LEWIS A E. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies[J]. Water Research, 2012, 46(7): 2088-2100. |
11 | KAKSONEN A H, RIEKKOLA-VANHANEN M L, PUHAKKA J A. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater[J]. Water Research, 2003, 37(2): 255-266. |
12 | SAMPAIO G F, DOS SANTOS A M, COSTA P R DA, et al. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source[J]. Water Environment Research: a Research Publication of the Water Environment Federation, 2020, 92(2): 245-254. |
13 | COSTA J M, RODRIGUEZ R P, SANCINETTI G P. Removal sulfate and metals Fe+2, Cu+2, and Zn+2 from acid mine drainage in an anaerobic sequential batch reactor[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1985-1989. |
14 | 任南琪, 王爱杰, 赵阳国. 废水厌氧处理硫酸盐还原菌生态学[M]. 北京: 科学出版社, 2009. |
REN Nanqi, WANG Aijie, ZHAO Yangguo. Ecology of sulfate-reducing bacteria in anaerobic biotreatment processes[M]. Beijing: Science Press, 2009. | |
15 | SCHELLER S, YU Hang, CHADWICK G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction[J]. Science, 2016, 351(6274): 703-707. |
16 | 姬玉欣, 马春, 金仁村, 等. 硫酸盐生物还原中电子供体的选择[J]. 化工进展, 2011, 30(12): 2593-2600. |
JI Yuxin, MA Chun, JIN Rencun, et al. Selection of electron donors for biological sulfate reduction[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2593-2600. | |
17 | SAHINKAYA E, GUNGOR M. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater[J]. Bioresource Technology, 2010, 101(24): 9508-9514. |
18 | DENG Dongyang, WEIDHAAS J L, LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 2016, 305: 200-208. |
19 | 祝传静, 田森林, 黄建洪, 等. 以氢气为电子供体的硫酸盐还原菌处理酸性矿山废水[J]. 化工进展, 2020, 39(2): 747-754. |
ZHU Chuanjing, TIAN Senlin, HUANG Jianhong, et al. Treatment of acid mine wastewater treated by sulfate reducing bacteria with hydrogen as electron donor[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 747-754. | |
20 | 徐师, 张大超, 吴梦, 等. 硫酸盐还原菌在处理酸性矿山废水中的应用[J]. 有色金属科学与工程, 2018, 9(1): 92-97. |
XU Shi, ZHANG Dachao, WU Meng, et al. Application of sulfate-reducing bacteria in treating acid mine wastewater[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 92-97. | |
21 | YUE Zheng-Bo, LI Qing, LI Chuanchuan, et al. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria[J]. Bioresource Technology, 2015, 194: 399-402. |
22 | WEI Xing, FANG Linchuan, CAI Peng, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria[J]. Environmental Pollution, 2011, 159(5): 1369-1374. |
23 | LI Feng, WANG Wei, LI Chengcheng, et al. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01[J]. Journal of Hazardous Materials, 2018, 358: 178-186. |
24 | JIN Song, FALLGREN P H, MORRIS J M, et al. Biological source treatment of acid mine drainage using microbial and substrate amendments: microcosm studies[J]. Mine Water and the Environment, 2008, 27(1): 20-30. |
25 | NANCUCHEO I, BITENCOURT J A P, SAHOO P K, et al. Recent developments for remediating acidic mine waters using sulfidogenic bacteria[J]. BioMed Research International, 2017, 2017: 7256582. |
26 | KAKSONEN A H, PUHAKKA J A. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals[J]. Engineering in Life Sciences, 2007, 7(6): 541-564. |
27 | UCAR D, BEKMEZCI O K, KAKSONEN A H, et al. Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system[J]. Minerals Engineering, 2011, 24(11): 1100-1105. |
28 | HEDRICH S, JOHNSON D B. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors[J]. Environmental Science & Technology, 2014, 48(20): 12206-12212. |
29 | YILDIZ M, YILMAZ T, ARZUM C S, et al. Sulfate reduction in acetate- and ethanol-fed bioreactors: acidic mine drainage treatment and selective metal recovery[J]. Minerals Engineering, 2019, 133: 52-59. |
30 | JAMESON E, ROWE O F, HALLBERG K B, et al. Sulfidogenesis and selective precipitation of metals at low pH mediated by Acidithiobacillus spp. and acidophilic sulfate-reducing bacteria[J]. Hydrometallurgy, 2010, 104(3/4): 488-493. |
31 | FOUCHER S, BATTAGLIA-BRUNET F, IGNATIADIS I, et al. Treatment by sulfate-reducing bacteria of chessy acid-mine drainage and metals recovery[J]. Chemical Engineering Science, 2001, 56(4): 1639-1645. |
32 | LETTINGA G, FIELD J, VAN LIER J, et al. Advanced anaerobic wastewater treatment in the near future[J]. Water Science and Technology, 1997, 35(10): 5-12. |
33 | WANG Jianlong, HUANG Yongheng, ZHAO Xuan. Performance and characteristics of an anaerobic baffled reactor[J]. Bioresource Technology, 2004, 93(2): 205-208. |
34 | 蒋永荣, 胡明成, 李学军, 等. ABR处理硫酸盐有机废水的相分离特性研究[J]. 环境科学, 2010, 31(7): 1544-1553. |
JIANG Yongrong, HU Mingcheng, LI Xuejun, et al. Phase separation characteristics of an anaerobic baffled reactor treating organic wastewater containing sulphate[J]. Environmental Science, 2010, 31(7): 1544-1553. | |
35 | JIANG Yongrong, QIN Yongli, YU Fangming, et al. Is COD/SO 4 2 - ratio responsible for metabolic phase-separation shift in anaerobic baffled reactor treating sulfate-laden wastewater? [J]. International Biodeterioration & Biodegradation, 2018, 126: 37-44. |
36 | JIANG Yongrong, LI Hua, QIN Yongli, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor with sucrose as the carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 99-105. |
37 | SAHINKAYA E, YUCESOY Z. Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 989-997. |
38 | BEKMEZCI O K, UCAR D, KAKSONEN A H, et al. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor[J]. Journal of Hazardous Materials, 2011, 189(3): 670-676. |
39 | CIBATI A, CHENG Ka yu, MORRIS C, et al. Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor[J]. Hydrometallurgy, 2013, 139: 154-161. |
40 | SAHINKAYA E, GUNGOR M, BAYRAKDAR A, et al. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 901-906. |
41 | UÇAR D. Sequential precipitation of heavy metals using sulfide-laden bioreactor effluent in a pH controlled system[J]. Mineral Processing and Extractive Metallurgy Review, 2017, 38(3): 162-167. |
42 | 崔福斋. 生物矿化[M]. 北京: 清华大学出版社, 2007: 325. |
CUI Fuzhai. Biomineralization[M]. Beijing: Tsinghua University Press, 2007: 325. | |
43 | ZHANG Hengzhong, BANFIELD J F. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations[J]. Nano Letters, 2004, 4(4): 713-718. |
44 | LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497): 1744-1747. |
45 | EDWARDS K J, HU Bo, HAMERS R J, et al. A new look at microbial leaching patterns on sulfide minerals[J]. FEMS Microbiology Ecology, 2001, 34(3): 197-206. |
46 | GARCÍA C, MORENO D A, BALLESTER A, et al. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria[J]. Minerals Engineering, 2001, 14(9): 997-1008. |
47 | 刘牡丹, 刘勇, 陈志强, 等. 添加剂对铜镍电镀污泥中重金属矿化的影响[J]. 有色金属科学与工程, 2018, 9(6): 60-64. |
LIU Mudan, LIU Yong, CHEN Zhiqiang, et al. Effect of additives on the mineralization of heavy metals in Cu-Ni electroplating sludge[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 60-64. | |
48 | 刘牡丹, 刘勇, 陈志强, 等. 添加剂对工业重金属污泥矿化过程微观粒度的影响[J]. 有色金属(冶炼部分), 2019(7): 11-16. |
LIU Mudan, LIU Yong, CHEN Zhiqiang, et al. Effect of additives on micro particle size of industrial heavy metal sludge in mineralization process[J]. Nonferrous Metals (Extractive Metallurgy), 2019(7): 11-16. | |
49 | 车遥, 孙振亚, 陈敬中. 现代沉积环境中铁的微生物矿化作用[J]. 高校地质学报, 2000, 6(2): 278-281. |
CHE Yao, SUN Zhenya, CHEN Jingzhong. Microbial mineralizations of iron in modern sedimentation environments[J]. Geological Journal of China Universities, 2000, 6(2): 278-281. | |
50 | YALIKUN Y, XUE C J, DAI Z J, et al. Microbial structures and possible bacterial sulfide fossils in the giant Jinding Zn-Pb deposit, Yunnan, SW-China: insights into the genesis of Zn-Pb sulfide mineralization[J]. Ore Geology Reviews, 2018, 92: 61-72. |
51 | PICARD A, GARTMAN A, CLARKE D R, et al. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite[J]. Geochimica et Cosmochimica Acta, 2018, 220: 367-384. |
52 | LIN Qi, WANG Jiasheng, TALADAY K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. |
53 | LIN Qi, WANG Jiasheng, FU Shaoying, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China Earth Sciences, 2015, 58(12): 2271-2278. |
54 | LIN Qi, WANG Jiasheng, ALGEO T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea[J]. Marine Geology, 2016, 379: 100-108. |
55 | CASTILLO J, PÉREZ-LÓPEZ R, SARMIENTO A M, et al. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum[J]. Science of the Total Environment, 2012, 439: 106-113. |
56 | WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?[J] Microbial Extracellular Polymeric Substances, 1999: 1-19. |
57 | LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563. |
58 | GADD G M. Metals, minerals and microbes: geomicrobiology and bioremediation[J]. Microbiology, 2010, 156(Pt 3): 609-643. |
59 | DO H, CHE Chi, ZHAO Zijun, et al. Extracellular polymeric substance from Rahnella sp. LRP3 converts available Cu into Cu5(PO4)2(OH)4 in soil through biomineralization process[J]. Environmental Pollution, 2020, 260: 114051. |
60 | XING B, GRAHAM N, YU W. Transformation of siderite to goethite by humic acid in the natural environment[J]. Communications Chemistry, 2020, 3: 38. |
61 | 蒋永荣, 罗娜, 黄秀娟, 等. 固定化季铵盐对硫酸盐有机废水厌氧处理颗粒污泥特性的影响[J]. 中国环境科学, 2019, 39(8): 3347-3357. |
JIANG Yongrong, LUO Na, HUANG Xiujuan, et al. Effect of immobilized quaternary ammonium salt on properties of anaerobic granular sludge for treating sulfate organic wastewater[J]. China Environmental Science, 2019, 39(8): 3347-3357. | |
62 | 殷鸿福. 生物地质学[M]. 武汉: 湖北科学技术出版社, 2004: 384. |
YIN Hongfu. Biogeology[M]. Wuhan: Hubei Science & Technology Press, 2004: 384. | |
63 | HOU Qingjie, FANG Di, WANG Dianzhan, et al. Integration of cascaded aeration and neutralization for the treatment of acid mine drainage: insights into the formation of jarosite[J]. Hydrometallurgy, 2021, 206: 105755. |
64 | 张鑫. 硫酸盐还原菌还原分解硫酸盐矿物的机制及环境意义[D]. 合肥: 合肥工业大学, 2015. |
ZHANG Xin. Mechanism and environmental significance of the decomposition of sulfate-reduction bacterium[D]. Hefei: Hefei University of Technology, 2015. | |
65 | 田琳奇. 几种环境因素对脱硫弧菌821生成CdS的影响[D]. 武汉: 华中农业大学, 2017. |
TIAN Linqi. Effects of several environmental factors on the formation of CdS by Desulfovibrio 821[D]. Wuhan: Huazhong Agricultural University, 2017. | |
66 | MULLAUGH K M, LUTHER G W. Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions[J]. Journal of Nanoparticle Research, 2011, 13(1): 393-404. |
67 | 姚琪. 以硫酸盐还原菌为核心的酸性矿山废水处理研究[D]. 昆明: 昆明理工大学, 2018. |
YAO Qi. Treatment of acid mine wastewater with sulfate reducing bacteria as the core[D]. Kunming: Kunming University of Science and Technology, 2018. | |
68 | LIU Deng, FAN Qigao, PAPINEAU D, et al. Precipitation of protodolomite facilitated by sulfate-reducing bacteria: the role of capsule extracellular polymeric substances[J]. Chemical Geology, 2020, 533: 119415. |
69 | 董净, 代群威, 赵玉连, 等. 硫酸盐还原菌的分纯及对Cd2+钝化研究[J]. 环境科学与技术, 2019, 42(5): 34-40. |
DONG Jing, DAI Qunwei, ZHAO Yulian, et al. Isolation of sulfate-reducing bacteria and study on its passivation of Cd2+ [J]. Environmental Science & Technology, 2019, 42(5): 34-40. | |
70 | WARTHMANN R, VASCONCELOS C, SASS H, et al. Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation[J]. Extremophiles, 2005, 9(3): 255-261. |
71 | KONHAUSER K O. Bacterial iron biomineralisation in nature[J]. FEMS Microbiology Reviews, 1997, 20(3/4): 315-326. |
72 | HEYWOOD B R, BAZYLINSKI D A, GARRATT-REED A, et al. Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria[J]. Naturwissenschaften, 1990, 77(11): 536-538. |
73 | LI Qianwei, CSETENYI L, GADD G M. Biomineralization of metal carbonates by Neurospora crassa [J]. Environmental Science & Technology, 2014, 48(24): 14409-14416. |
74 | BENZERARA K, MIOT J, MORIN G, et al. Significance, mechanisms and environmental implications of microbial biomineralization[J]. Comptes Rendus Geoscience, 2011, 343(2/3): 160-167. |
75 | 何准. 基于硫酸盐还原菌生物矿化的尾矿库原位修复技术研究[D]. 合肥: 合肥工业大学, 2009. |
HE Zhun. The study of situ remediation of mine based on sulphate-reducing bacteria biomineralization[D]. Hefei: Hefei University of Technology, 2009. | |
76 | BAUMGARTNER L K, REID R P, DUPRAZ C, et al. Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries[J]. Sedimentary Geology, 2006, 185(3/4): 131-145. |
77 | 缪应祺. 废水生物脱硫机理及技术[M]. 北京: 化学工业出版社, 2004. |
MIAO Yingqi. Mechanism and technology of biological desulfurization of wastewater[M]. Beijing: Chemical Industry Press, 2004. | |
78 | GLAMOCLIJA M, GARREL L, BERTHON J, et al. Biosignatures and bacterial diversity in hydrothermal deposits of solfatara crater, Italy[J]. Geomicrobiology Journal, 2004, 21(8): 529-541. |
79 | DUVERGER A, BERG J S, BUSIGNY V, et al. Mechanisms of pyrite formation promoted by sulfate-reducing bacteria in pure culture[J]. Frontiers in Earth Science, 2020, 8: 588310. |
80 | BERG J S, DUVERGER A, CORDIER L, et al. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium[J]. Scientific Reports, 2020, 10(1): 8264. |
81 | BONTOGNALI T R R, MCKENZIE J A, WARTHMANN R J, et al. Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria[J]. Terra Nova, 2014, 26(1): 72-77. |
82 | KENWARD P A, FOWLE D A, GOLDSTEIN R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J]. AAPG Bulletin, 2013, 97(11): 2113-2125. |
83 | 黄亚蓉. 海洋微生物调控的碳酸盐和硫酸盐的矿化机制研究[D]. 合肥: 中国科学技术大学, 2019. |
HUANG Yarong. Study of mineralization mechanism of carbonates and sulfates mediated by marine microbes[D]. Hefei: University of Science and Technology of China, 2019. | |
84 | ALOISI G, GLOTER A, KRÜGER M, et al. Nucleation of calcium carbonate on bacterial nanoglobules[J]. Geology, 2006, 34(12): 1017. |
85 | BONTOGNALI T R R, VASCONCELOS C, WARTHMANN R J, et al. Microbes produce nanobacteria-like structures, avoiding cell entombment[J]. Geology, 2008, 36(8): 663. |
[1] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[4] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[5] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[6] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[7] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[8] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
[9] | 常占坤, 张弛, 苏冰琴, 张聪政, 王健, 权晓慧. H2S气态基质对污泥生物沥滤处理效能的影响[J]. 化工进展, 2023, 42(5): 2733-2743. |
[10] | 李卫华, 吴寅凯, 孙英杰, 尹俊权, 辛明学, 赵友杰. 垃圾焚烧飞灰重金属毒性浸出评价方法研究进展[J]. 化工进展, 2023, 42(5): 2666-2677. |
[11] | 郭宇晨, 刘庆林, 蒋金洋, 宗永忠, 王金伟, 李臻, 吕树祥. 含铬污泥资源化方法研究进展[J]. 化工进展, 2023, 42(2): 575-584. |
[12] | 王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
[13] | 李晶晶, 赵曜, 徐沣驰, 李康建. 不同径流冲刷作用下多孔炉渣沥青混合料重金属的浸出特性[J]. 化工进展, 2023, 42(10): 5520-5530. |
[14] | 王大为, 毕春梦, 秦永丽, 蒋永荣, 谢华宾, 毛宇昆, 苗雪岩. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. |
[15] | 唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |