化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5509-5519.DOI: 10.16085/j.issn.1000-6613.2022-2222
王大为(), 毕春梦, 秦永丽(), 蒋永荣, 谢华宾, 毛宇昆, 苗雪岩
收稿日期:
2022-12-01
修回日期:
2023-02-01
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
秦永丽
作者简介:
王大为(2000—),男,本科生,研究方向为污水生物处理及微生物学。E-mail:1483703243@qq.com。
基金资助:
WANG Dawei(), BI Chunmeng, QIN Yongli(), JIANG Yongrong, XIE Huabin, MAO Yukun, MIAO Xueyan
Received:
2022-12-01
Revised:
2023-02-01
Online:
2023-10-15
Published:
2023-11-11
Contact:
QIN Yongli
摘要:
为了实现硫酸盐生物还原法处理酸性矿山废水(AMD)中镉(Cd)的稳定去除,受自然界硫酸盐还原菌诱导的生物矿化现象启发,以驯化的硫酸盐还原活性污泥为种泥,在上流式厌氧反应器内,通过维持进水浓度比COD/SO
中图分类号:
王大为, 毕春梦, 秦永丽, 蒋永荣, 谢华宾, 毛宇昆, 苗雪岩. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519.
WANG Dawei, BI Chunmeng, QIN Yongli, JIANG Yongrong, XIE Huabin, MAO Yukun, MIAO Xueyan. Sulfate-reducing activated sludge for immobilization of cadmium in acid mine drainage by mineralization[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5509-5519.
阶段 | 运行时间/d | 进水COD浓度/mg·L-1 | 进水SO42-浓度/mg·L-1 | 进水Cd2+浓度/mg·L-1 | 进水pH | HRT/h |
---|---|---|---|---|---|---|
Ⅰ | 1~84 | 3000 | 1500 | 80 | 6.5 ± 0.2 | 72 |
Ⅱ | 85~175 | 3000 | 1500 | 100 | 5.5 ± 0.2 | 72 |
表1 反应器运行操作参数
阶段 | 运行时间/d | 进水COD浓度/mg·L-1 | 进水SO42-浓度/mg·L-1 | 进水Cd2+浓度/mg·L-1 | 进水pH | HRT/h |
---|---|---|---|---|---|---|
Ⅰ | 1~84 | 3000 | 1500 | 80 | 6.5 ± 0.2 | 72 |
Ⅱ | 85~175 | 3000 | 1500 | 100 | 5.5 ± 0.2 | 72 |
1 | 倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展, 2008, 23(5): 501-508. |
NI Shijun, LI Shan, LI Zeqin, et al. Progress in the research of acid mine drainage impact and remediation[J]. Advances in Earth Science, 2008, 23(5): 501-508. | |
2 | 闻倩敏, 秦永丽, 郑君健, 等. 硫酸盐还原菌法固定酸性矿山废水中重金属的研究进展[J]. 化工进展, 2022, 41(10): 5578-5587. |
WEN Qianmin, QIN Yongli, ZHENG Junjian, et al. Research advances in the fixation of heavy metals in acid mine wastewater by sulfate reducing bacteria[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5578-5587. | |
3 | JEAN M. Continuous pilot scale assessment of the alkaline barium calcium desalination process for acid mine drainage treatment[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1295-1302. |
4 | LIAO Jianbo, WEN Zewei, RU Xuan, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China[J]. Ecotoxicology and Environmental Safety, 2016, 124: 460-469. |
5 | JIANG Yongrong, ZHANG Jie, WEN Qianmin, et al. Up-flow anaerobic column reactor for sulfate-rich cadmium-bearing wastewater purification: System performance, removal mechanism and microbial community structure[J]. Biodegradation, 2022, 33(3): 239-253. |
6 | JAYASHREE J, NILOTPALA P, AISHVARYA V, et al. Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24[J]. Journal of Applied Phycology, 2015, 27(6): 2251-2260. |
7 | KURNIAWAN T A, CHAN G Y S, LO W H, et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals[J]. Science of the Total Environment, 2006, 366(2/3): 409-426. |
8 | XU Yanan, CHEN Yinguang. Advances in heavy metal removal by sulfate-reducing bacteria[J]. Water Science and Technology, 2020, 81(9): 1797-1827. |
9 | LI Xin, WU Youe, ZHANG Chang, et al. Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron[J]. Chemical Engineering Journal, 2016, 306: 393-400. |
10 | DEL BUSSO ZAMPIERI B, ELIS W N, DE OLIVEIRA A J F C, et al. Effects of metals on activity and community of sulfate-reducing bacterial enrichments and the discovery of a new heavy metal-resistant SRB from Santos Port sediment (São Paulo, Brazil)[J]. Environmental Science and Pollution Research, 2022, 29(1): 922-935. |
11 | KIM S D, KILBANE J J II, CHA D K. Prevention of acid mine drainage by sulfate reducing bacteria: Organic substrate addition to mine waste piles[J]. Environmental Engineering Science, 1999, 16(2): 139-145. |
12 | SAMPAIO G F, DOS SANTOS A M, COSTA P R DA, et al. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source[J]. Water Environment Research, 2020, 92(2): 245-254. |
13 | ŇANCUCHEO I, JOHNSON D B. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria[J]. Microbial Biotechnology, 2012, 5(1): 34-44. |
14 | ZHANG Hongguo, LI Huosheng, LI Meng, et al. Immobilizing metal-resistant sulfate-reducing bacteria for cadmium removalfrom aqueous solutions[J]. Polish Journal of Environmental Studies, 2018, 27(6): 2851-2859. |
15 | PENG Weihua, LI Xiaomin, LIU Tong, et al. Biostabilization of cadmium contaminated sediments using indigenous sulfate reducing bacteria: Efficiency and process[J]. Chemosphere, 2018, 201: 697-707. |
16 | MOKONE T P, VAN HILLE R P, LEWIS A E. Metal sulphides from wastewater: Assessing the impact of supersaturation control strategies[J]. Water Research, 2012, 46(7): 2088-2100. |
17 | 崔福斋. 生物矿化[M]. 北京: 清华大学出版社, 2007. |
CUI Fuzhai. Biomineralization[M]. Beijing: Tsinghua University Press, 2007. | |
18 | LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497): 1744-1747. |
19 | EDWARDS K J, HU B, HAMERS R J, et al. A new look at microbial leaching patterns on sulfide minerals[J]. FEMS Microbiology Ecology, 2001, 34(3): 197-206. |
20 | ZHANG H Z, BANFIELD J F. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations[J]. Nano Letters, 2004, 4(4): 713-718. |
21 | GARCÍA C, MORENO D A, BALLESTER A, et al. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria[J]. Minerals Engineering, 2001, 14(9): 997-1008. |
22 | 刘牡丹, 刘勇, 陈志强, 等. 添加剂对工业重金属污泥矿化过程微观粒度的影响[J]. 有色金属(冶炼部分), 2019(7): 11-16. |
LIU Mudan, LIU Yong, CHEN Zhiqiang, et al. Effect of additives on micro particle size of industrial heavy metal sludge in mineralization process[J]. Nonferrous Metals (Extractive Metallurgy), 2019(7): 11-16. | |
23 | LIN Q, WANG J S, ALGEO T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea[J]. Marine Geology, 2016, 379: 100-108. |
24 | 郑婉盈, 张色, 吴明林, 等. 耐镉硫酸盐还原活性污泥的驯化及其微生物群落结构分析[J]. 环境污染与防治, 2021, 43(1): 47-51. |
ZHENG Wanying, ZHANG Se, WU Minglin, et al. The domestication of cadmium-resistant sulfate reducing activated sludge and analysis of its microbial community structure[J]. Environmental Pollution & Control, 2021, 43(1): 47-51. | |
25 | JIANG Yongrong, LI Hua, QIN Yongli, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor with sucrose as the carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 99-105. |
26 | 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
State Environmental Protection Administration, Editorial Committee of Water and Wastewater Monitoring and Analysis Methods. Monitoring and analysis methods of water and wastewater [M]. 4th ed. Beijing: China Environmental Science Press, 2002. | |
27 | ALBORÉS A F, CID B P, GÓMEZ E F, et al. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples[J]. Analyst, 2000, 125(7): 1353-1357. |
28 | KUSHKEVYCH I, DORDEVIĆ D, VÍTĚZOVÁ M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7[J].Archives of Microbiology, 2019, 201(3): 389-397. |
29 | ZAGURY G J, KULNIEKS V I, NECULITA C M. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment[J]. Chemosphere, 2006, 64(6): 944-954. |
30 | JOHNSON D B, HALLBERG K B. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system[J]. Science of the Total Environment, 2005, 338(1/2): 81-93. |
31 | ZHANG Mingliang, WANG Haixia. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71. |
32 | GIORDANI A, RODRIGUEZ R P, SANCINETTI G P, et al. Effect of low pH and metal content on microbial community structure in an anaerobic sequencing batch reactor treating acid mine drainage[J]. Minerals Engineering, 2019, 141: 105860. |
33 | TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. |
34 | TAN Wenfeng, LIU Fan, FENG Xionghan, et al. Adsorption and redox reactions of heavy metals on Fe-Mn nodules from Chinese soils[J]. Journal of Colloid and Interface Science, 2005, 284(2): 600-605. |
35 | KUMAR R, RANI M, GUPTA H, et al. Trace metal fractionation in water and sediments of an urban river stretch[J]. Chemical Speciation & Bioavailability, 2014, 26(4): 200-209. |
36 | LI Yu, HUANG Guohe, ZHANG Baiyu, et al. Scavenging of Cd through Fe/Mn oxides within natural surface coatings[J]. Journal of Environmental Sciences, 2006, 18(6): 1199-1203. |
37 | 蒋永荣, 胡明成, 李学军, 等. ABR处理硫酸盐有机废水的相分离特性研究[J]. 环境科学, 2010, 31(7): 1544-1553. |
JIANG Yongrong, HU Mingcheng, LI Xuejun, et al. Phase separation characteristics of an anaerobic baffled reactor treating organic wastewater containing sulphate[J]. Environmental Science, 2010, 31(7): 1544-1553. | |
38 | 董净. 两株土壤菌对Cd、Sr的矿化-活化调控行为研究[D]. 绵阳: 西南科技大学, 2020. |
DONG Jing. Mineralization-activation regulation of Cd and Sr by two strains of soil bacteria[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
39 | 车遥, 孙振亚, 陈敬中. 现代沉积环境中铁的微生物矿化作用[J]. 高校地质学报, 2000, 6(2): 278-281. |
CHE Yao, SUN Zhenya, CHEN Jingzhong. Microbial mineralizations of iron in modern sedimentation environments[J]. Geological Journal of China Universities, 2000, 6(2): 278-281. | |
40 | 刘盛祥. 银山铜铅锌多金属矿田镉、镓、铟、铋工艺矿物学研究[J]. 湖南有色金属, 2000, 16(6): 13-14. |
LIU Shengxiang. Technological mineralogy of cadmium gallium indium bismuth in copper-lead-zinc polymetallic orefield in Yinshan[J]. Hunan Nonferrous Metals, 2000, 16(6): 13-14, 45. | |
41 | CHEN Jinquan, DENG Shengjiong, JIA Wei, et al. Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes[J]. Bioresource Technology, 2021, 331: 125061. |
42 | PENG Weihua, LI Xiaomin, LIN Manli, et al. Microbiological analysis of cadmium-contaminated sediments during biostabilization with indigenous sulfate-reducing bacteria[J]. Journal of Soils and Sediments, 2020, 20(1): 584-593. |
43 | 贾昊凝, 李艳, 黎晏彰, 等. 矿物电子能量协同微生物胞外电子传递与生长代谢[J]. 微生物学报, 2020, 60(9): 2084-2105. |
JIA Haoning, LI Yan, LI Yanzhang, et al. Mineral electronic energy cooperates with microbial extracellular electron transfer and growth metabolism[J]. Acta Microbiologica Sinica, 2020, 60(9): 2084-2105. | |
44 | VANNINI C, MUNZ G, MORI G, et al. Sulphide oxidation to elemental sulphur in a membrane bioreactor: Performance and characterization of the selected microbial sulphur-oxidizing community[J]. Systematic and Applied Microbiology, 2008, 31(6/7/8): 461-473. |
45 | LIU Yuling, Boqing TIE, LI Yuanxinglu, et al. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains[J]. Ecotoxicology and Environmental Safety, 2018, 163: 223-229. |
46 | JOHNSTON C W, WYATT M A, LI Xiang, et al. Gold biomineralization by a metallophore from a gold-associated microbe[J]. Nature Chemical Biology, 2013, 9(4): 241-243. |
47 | UCAR D, BEKMEZCI O K, KAKSONEN A H, et al. Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system[J]. Minerals Engineering, 2011, 24(11): 1100-1105. |
48 | YILDIZ M, YILMAZ T, ARZUM C S, et al. Sulfate reduction in acetate- and ethanol-fed bioreactors: Acidic mine drainage treatment and selective metal recovery[J]. Minerals Engineering, 2019, 133: 52-59. |
49 | GOPI KIRAN M, PAKSHIRAJAN K, DAS G. Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: Mechanism and process optimization[J]. Journal of Environmental Management, 2018, 218: 486-496. |
50 | WU Zheng, FIRMIN K A, CHENG Meiling, et al. Biochar enhanced Cd and Pb immobilization by sulfate-reducing bacterium isolated from acid mine drainage environment[J]. Journal of Cleaner Production, 2022, 366: 132823. |
51 | DI Junzhen, MA Yiming, WANG Mingjia, et al. Dynamic experiments of acid mine drainage with Rhodopseudomonas spheroides activated lignite immobilized sulfate-reducing bacteria particles treatment[J]. Scientific Reports, 2022, 12(1): 1-13. |
52 | LIU D, FAN Q G, PAPINEAU D, et al. Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances[J]. Chemical Geology, 2020, 533: 119415. |
53 | YALIKUN Yaxiaer, XUE Chunji, DAI Zhijie, et al. Microbial structures and possible bacterial sulfide fossils in the giant Jinding Zn-Pb deposit, Yunnan, SW-China: Insights into the genesis of Zn-Pb sulfide mineralization[J]. Ore Geology Reviews, 2018, 92: 61-72. |
54 | PICARD A, GARTMAN A, CLARKE D R, et al. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite[J]. Geochimica et Cosmochimica Acta, 2018, 220: 367-384. |
55 | CASTILLO J, PÉREZ-LÓPEZ R, SARMIENTO A M, et al. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum[J]. Science of the Total Environment, 2012, 439: 106-113. |
[1] | 颜瑞, 孙志超, 张蒙蒙, 刘颖雅, 遇治权, 王伟, 王瑶, 王安杰. 磷化法制备Ni x P y 及其复合材料光解水性能[J]. 化工进展, 2022, 41(5): 2468-2475. |
[2] | 闻倩敏, 秦永丽, 郑君健, 韦巧艳, 张媛媛, 蒋永荣. 硫酸盐还原菌法固定酸性矿山废水中重金属的研究进展[J]. 化工进展, 2022, 41(10): 5578-5587. |
[3] | 张轩, 郑丽君. 光解水制氢单相催化剂研究进展[J]. 化工进展, 2021, 40(S1): 215-222. |
[4] | 顾利坤, 徐洪傲, 李博, 魏永刚. 铜镉渣酸浸液旋流电积提铜对比分析[J]. 化工进展, 2021, 40(5): 2900-2908. |
[5] | 祝传静,田森林,黄建洪,李英杰,胡学伟. 以氢气为电子供体的硫酸盐还原菌处理酸性矿山废水[J]. 化工进展, 2020, 39(2): 747-754. |
[6] | 曹健华,刘凌沁,黄亚继,陶圣年,秦文慧,任海斌. 原料种类和热解温度对生物炭吸附Cd2+的影响[J]. 化工进展, 2019, 38(9): 4183-4190. |
[7] | 高宁,周玉康,沈树宝,陈英文. 含镉化合物在光催化领域应用的研究进展[J]. 化工进展, 2019, 38(12): 5372-5379. |
[8] | 何昱轩, 张黎明, 郭飞飞, 李鹏刚, 彭稳, 刘航, 罗永明. 硅基吸附剂处理含镉废水的研究进展[J]. 化工进展, 2018, 37(02): 724-736. |
[9] | 刘锋, 陈雪怡, 邹海良, 熊美金. 大豆蛋白负载魔芋葡甘聚糖对Cd(Ⅱ)的吸附性能[J]. 化工进展, 2016, 35(08): 2592-2597. |
[10] | 叶林静, 安小英, 姜韵婕, 闫超, 关卫省. ZnO/CdS复合光催化剂的制备及降解四环素类抗生素[J]. 化工进展, 2015, 34(11): 3944-3950. |
[11] | 徐粲然1,卢滇楠2,刘永民1. 生物钝化修复镉污染土壤研究进展[J]. 化工进展, 2014, 33(08): 2174-2179. |
[12] | 庞治娟,周迟骏. 纳米SiO2/SDBS复合强化超滤处理含镉废水的影响因素 [J]. 化工进展, 2009, 28(8): 1468-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |