化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5372-5379.DOI: 10.16085/j.issn.1000-6613.2019-0343
高宁1,2(),周玉康1,2,沈树宝1,2,陈英文1,2(
)
收稿日期:
2019-03-08
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
陈英文
作者简介:
高宁(1994—),男,硕士研究生,研究方向为大气污染处理技术及环保工程材料开发与应用。E-mail:基金资助:
Ning GAO1,2(),Yukang ZHOU1,2,Shubao SHEN1,2,Yingwen CHEN1,2(
)
Received:
2019-03-08
Online:
2019-12-05
Published:
2019-12-05
Contact:
Yingwen CHEN
摘要:
镉是一种位于ⅡB族的过渡金属,与常见的光催化剂中锌元素同族,除了具有锌的部分性质外,还具有其他优异的光学性质,因此具有很广泛的应用前景。本文综述了不同类型的镉化合物在光催化领域的应用,介绍了半导体的光催化原理、含镉的新型催化剂的合成方法以及掺杂量对催化活性的影响,同时也分析了导致催化剂活性改变的原因,并在最后介绍了镉的危害及其处理措施。通过对离子镉、氧化镉、硫化镉以及其他镉化合物的分析研究,发现适量的镉及其化合物的引入会导致整个催化体系结构或性质的改变,并通过协同作用提升催化活性。但目前此类催化剂实现工业化应用还面临着很大的挑战,仍需要在设计简易合成方法、提高催化剂的量子效率及稳定性、催化剂催化机理等方面进行更深入的研究。
中图分类号:
高宁,周玉康,沈树宝,陈英文. 含镉化合物在光催化领域应用的研究进展[J]. 化工进展, 2019, 38(12): 5372-5379.
Ning GAO,Yukang ZHOU,Shubao SHEN,Yingwen CHEN. Research progress in application of cadmium-containing compounds in photocatalysis[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5372-5379.
1 | AZIMI-FOULADI A, HASSANZADEH-TABRIZI S A, SAFFAR-TELURI A. Sol-gel synthesis and characterization of TiO2-CdO-Ag nanocomposite with superior photocatalytic efficiency[J]. Ceramics International, 2018, 44(4): 4292-4297. |
2 | AN Z, GAO J, WANG L, et al. Novel microreactors of polyacrylamide (PAM) CdS microgels for admirable photocatalytic H2 production under visible light[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1514-1524. |
3 | 董庆华.半导体光催化[J]. 影像科学与光化学, 1993, 11(2): 76-81. |
DONG Q H. Semiconductor photocatalysis[J]. Imaging Science and Photochemistry, 1993, 11(2): 76-81. | |
4 | WANG W, ZHANG L, AN T, et al. Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species[J]. Applied Catalysis B: Environmental, 2011, 108: 108-116. |
5 | AUGUGLIARO V, BELLARDITA M, LODDO V, et al. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 224-245. |
6 | GNANAM S, RAJENDRAN V. Facile sol-gel preparation of Cd-doped cerium oxide (CeO2) nanoparticles and their photocatalytic activities[J]. Journal of Alloys and Compounds, 2018, 735: 1854-1862. |
7 | 翟英娇, 李金华, 陈新影, 等. 镉掺杂氧化锌纳米花的制备及其光催化活性[J]. 中国光学, 2014, 7(1): 124-130. |
ZHAI Y J, LI J H, CHEN X Y, et al. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity [J]. Chinese Optics, 2014, 7(1): 124-130. | |
8 | JABEEN U, SHAH S M, KHAN S U. Photo catalytic degradation of alizarin red S using ZnS and cadmium doped ZnS nanoparticles under unfiltered sunlight[J]. Surfaces and Interfaces, 2017, 6: 40-49. |
9 | 郑秀君, 李锦州, 李刚, 等. 尖晶石型(Zn1-xCdx)2SnO4粉体的制备与光催化性能[J]. 分子催化, 2008, 22(1): 65-69. |
ZHENG X J, LI J Z, LI G, et al. Preparation and photocatalytic performance of spinel type (Zn1-xCdx)2SnO4 powders[J]. Journal of Molecular Catalysis (China), 2008, 22(1):65-69. | |
10 | ZHAO X X, QIN Z B, LI Y H, et al. New Cd(II) and Zn(II) coordination polymers showing luminescent sensing for Fe(III) and photocatalytic degrading methylene blue[J]. Polyhedron, 2018, 153: 197-204. |
11 | CAI S L, LU L, WU W P, et al. A new mixed ligand based Cd(II) 2D coordination polymer with functional sites: photoluminescence and photocatalytic properties[J]. Inorganica Chimica Acta, 2019, 484:291-296. |
12 | YI X H, WANG F X, DU X D, et al. Highly efficient photocatalytic Cr(VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs[J]. Polyhedron, 2018, 152: 216-224. |
13 | BHARTI D B, BHARTI A V. Photocatalytic degradation of alizarin red dye under visible light using ZnO & CdO nanomaterial[J]. Optik, 2018, 160: 371-379. |
14 | KUMAR P S, SELVAKUMAR M, BABU S G, et al. CdO nanospheres: facile synthesis and bandgap modification for the superior photocatalytic activity[J]. Materials Letters, 2015, 151: 45-48. |
15 | RANE Y N, SHENDE D A, RAGHUWANSHI M G, et al. Visible-light assisted CdO nanowires photocatalyst for toxic dye degradation studies[J]. Optik, 2019, 179: 535-544. |
16 | SARAVANAKUMAR K, MUTHURAJ V, JEYARAJ M. The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants[J]. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2017, 188:291. |
17 | MAHENDIRAN M, MATHEN J J, RACIK M, et al. Investigation of structural, optical and electrical properties of transition metal oxide semiconductor CdO-ZnO nanocomposite and its effective role in the removal of water contaminants[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 322-334. |
18 | REDDY C V, BABU B, SHIM J. Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite[J]. Journal of Physics and Chemistry of Solids, 2018, 112: 20-28. |
19 | MARGAN P, HAGHIGHI M. Sono-coprecipitation synthesis and physicochemical characterization of CdO-ZnO nanophotocatalyst for removal of acid orange 7 from wastewater[J]. Ultrasonics Sonochemistry, 2018, 40: 323-332. |
20 | SARAVANAKUMAR K, MUTHUPOONGODI S, MUTHURAJ V. A novel n-CeO2/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation[J]. Journal of Rare Earths, 2019, 37: 853-860. |
21 | DHATSHANAMURTHI P, SUBASH B, SHANTHI M. Investigation on UV-A light photocatalytic degradation of an azo dye in the presence of CdO/TiO2 coupled semiconductor[J]. Materials Science in Semiconductor Processing, 2015, 35: 22-29. |
22 | RAKIBUDDIN M, ANANTHAKRISHNAN R. Fabrication of graphene aerosol hybridized coordination polymer derived CdO/SnO2 heteronanostructure with improved visible light photocatalytic performance[J]. Solar Energy Materials and Solar Cells, 2017, 162: 62-71. |
23 | ZEID E F A, IBRAHEM I A, ALI A M, et al. The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite[J]. Results in Physics, 2019, 12: 562-570. |
24 | BALAMURUGAN S, BALU A R, SRIVIND J, et al. CdO-Al2O3-A composite material with enhanced photocatalytic activity against the degradation of MY dye[J]. Vacuum, 2019, 159: 9-16. |
25 | KAVAKEBI M, JAMALI-SHEINI F. Ultrasonic synthesis of Zn-doped CdO nanostructures and their optoelectronic properties[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(11): 2255-2264. |
26 | MAHMOUD M S, AHMED E, FARGHALI A A, et al. Influence of Mn, Cu, and Cd-doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 100-109. |
27 | SAHA M, GHOSH S, DE S K. Nanoscale kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr(Ⅵ) reduction[J]. Catalysis Today, 2018. DOI. org/10.1016/j.cattod.2018.11.027. |
28 | AGOPCAN B, AKYUZ D, KARACA F, et al. A new sulfur source for the preparation of efficient Cd(1-x)ZnxS photocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8206-8220. |
29 | GHOLIPOUR M R, NGUYEN C C, BELAND F, et al. Hollow microspheres consisting of uniform ZnxCd1-xS nanoparticles with noble-metal-free co-catalysts for hydrogen evolution with high quantum efficiency under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358: 1-9. |
30 | ZUBAIR M, SVENUM I H, RØNNING M, et al. Facile synthesis approach for core-shell TiO2-CdS nanoparticles for enhanced photocatalytic H2 generation from water[J]. Catalysis Today, 2019, 328: 15-20. |
31 | WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Catalysis B: Environmental, 2019, 243: 19-26. |
32 | QIAN X, ZHANG J, GUO Z, et al. Facile ultrasound-driven formation and deposition of few-layered MoS2 nanosheets on CdS for highly enhanced photocatalytic hydrogen evolution[J]. Applied Surface Science, 2019, 481: 795-801. |
33 |
YE L Q, MA Z Y, DENG Y, et al. Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy[J]. Applied Catalysis B: Environmental, 2019. DOI: https://doi.org/10.1016/j.apcatb.2019.117897.
DOI |
34 | ZHANG Y, JIN Z, YUAN H, et al. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018, 462: 213-225. |
35 | LI Q, SHI T, LI X, et al. Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2018, 229: 8-14. |
36 | LOU Z, ZHU M, YANG X, et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3-x for efficient hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 10-15. |
37 | 许迪, 高爱梅, 邓文礼. 簇形和花形CdS纳米结构的自组装及光催化性能[J]. 物理化学学报, 2016, 24(7): 1219-1224. |
XU D, GAO A M, DENG W L. Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures[J]. Acta physico-Chimica Sinica, 2016, 24(7):1219-1224. | |
38 | BILLAKANTI S, KRISHNAMURTHI M. Facile preparation of surfactant or support material free CdS nanoparticles with enhanced photocatalytic activity[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1250-1256. |
39 | WANG S, LI J, ZHOU X, et al. Facile preparation of 2D sandwich-like CdS nanoparticles/nitrogen-doped reduced graphene oxide hybrid nanosheets with enhanced photoelectrochemical properties[J]. Journal of Materials Chemistry A, 2014, 2(46): 19815-19821. |
40 | YANG W, LIU Y, HU Y, et al. Microwave-assisted synthesis of porous CdO-CdS core-shell nanoboxes with enhanced visible-light-driven photocatalytic reduction of Cr(VI)[J]. Journal of Materials Chemistry, 2012, 22(28): 13895-13898. |
41 | ZHANG N, YANG M Q, TANG Z R, et al. CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation[J]. Journal of Catalysis, 2013, 303(Complete): 60-69. |
42 | LIU S, ZHANG N, TANG Z R, et al. Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6378-6385. |
43 | WU Y, YE X, ZHANG S, et al. Photocatalytic synthesis of Schiff base compounds in the coupled system of aromatic alcohols and nitrobenzene using CdXZn1-XS photocatalysts[J]. Journal of Catalysis, 2018, 359: 151-160. |
44 | ZHANG L, NIU C G, LIANG C, et al. One-step in situ synthesis of CdS/SnO2 heterostructure with excellent photocatalytic performance for Cr(Ⅵ) reduction and tetracycline degradation[J]. Chemical Engineering Journal, 2018, 352: 863-875. |
45 | 杜欢, 王晟, 刘恋恋, 等. 复合半导体光催化剂 p-CoO/n-CdS的制备, 表征及光催化性能[J]. 物理化学学报, 2010, 26(10): 2726-2732. |
DU H, WANG S, LIU L L, et al. Preparation, characterization and photocatalytic property of p-CoO/n-CdS compound semiconductor photocatalyst[J]. Acta physico-Chimica Sinica, 2010, 26(10): 2726-2732. | |
46 | SONG Y, LI N, CHEN D, et al. 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 238: 255-262. |
47 | LI G, WANG B, ZHANG J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline[J]. Applied Surface Science, 2019, 478: 1056-1064. |
48 | HU J, YU C, ZHAI C, et al. 2D/1D heterostructure of g-C3N4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol[J]. Catalysis Today, 2018, 315: 36-45. |
49 | CHEN P, CHEN L, ZENG Y, et al. Three-dimension hierarchical heterostructure of CdWO4 microrods decorated with Bi2WO6 nanoplates for high-selectivity photocatalytic benzene hydroxylation to phenol[J]. Applied Catalysis B: Environmental, 2018, 234: 311-317. |
50 | 彭炜东. 农田土壤镉污染现状与修复技术[J]. 云南化工, 2019(3):88-89. |
PENG W D. Present situation and remediation tcchnology of cadmium pollution in farmland soil and remediation technology[J]. Yunnan Chemical technology, 2019(3):88-89. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[14] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 717
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |