1 |
AZIMI-FOULADI A, HASSANZADEH-TABRIZI S A, SAFFAR-TELURI A. Sol-gel synthesis and characterization of TiO2-CdO-Ag nanocomposite with superior photocatalytic efficiency[J]. Ceramics International, 2018, 44(4): 4292-4297.
|
2 |
AN Z, GAO J, WANG L, et al. Novel microreactors of polyacrylamide (PAM) CdS microgels for admirable photocatalytic H2 production under visible light[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1514-1524.
|
3 |
董庆华.半导体光催化[J]. 影像科学与光化学, 1993, 11(2): 76-81.
|
|
DONG Q H. Semiconductor photocatalysis[J]. Imaging Science and Photochemistry, 1993, 11(2): 76-81.
|
4 |
WANG W, ZHANG L, AN T, et al. Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species[J]. Applied Catalysis B: Environmental, 2011, 108: 108-116.
|
5 |
AUGUGLIARO V, BELLARDITA M, LODDO V, et al. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 224-245.
|
6 |
GNANAM S, RAJENDRAN V. Facile sol-gel preparation of Cd-doped cerium oxide (CeO2) nanoparticles and their photocatalytic activities[J]. Journal of Alloys and Compounds, 2018, 735: 1854-1862.
|
7 |
翟英娇, 李金华, 陈新影, 等. 镉掺杂氧化锌纳米花的制备及其光催化活性[J]. 中国光学, 2014, 7(1): 124-130.
|
|
ZHAI Y J, LI J H, CHEN X Y, et al. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity [J]. Chinese Optics, 2014, 7(1): 124-130.
|
8 |
JABEEN U, SHAH S M, KHAN S U. Photo catalytic degradation of alizarin red S using ZnS and cadmium doped ZnS nanoparticles under unfiltered sunlight[J]. Surfaces and Interfaces, 2017, 6: 40-49.
|
9 |
郑秀君, 李锦州, 李刚, 等. 尖晶石型(Zn1-xCdx)2SnO4粉体的制备与光催化性能[J]. 分子催化, 2008, 22(1): 65-69.
|
|
ZHENG X J, LI J Z, LI G, et al. Preparation and photocatalytic performance of spinel type (Zn1-xCdx)2SnO4 powders[J]. Journal of Molecular Catalysis (China), 2008, 22(1):65-69.
|
10 |
ZHAO X X, QIN Z B, LI Y H, et al. New Cd(II) and Zn(II) coordination polymers showing luminescent sensing for Fe(III) and photocatalytic degrading methylene blue[J]. Polyhedron, 2018, 153: 197-204.
|
11 |
CAI S L, LU L, WU W P, et al. A new mixed ligand based Cd(II) 2D coordination polymer with functional sites: photoluminescence and photocatalytic properties[J]. Inorganica Chimica Acta, 2019, 484:291-296.
|
12 |
YI X H, WANG F X, DU X D, et al. Highly efficient photocatalytic Cr(VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs[J]. Polyhedron, 2018, 152: 216-224.
|
13 |
BHARTI D B, BHARTI A V. Photocatalytic degradation of alizarin red dye under visible light using ZnO & CdO nanomaterial[J]. Optik, 2018, 160: 371-379.
|
14 |
KUMAR P S, SELVAKUMAR M, BABU S G, et al. CdO nanospheres: facile synthesis and bandgap modification for the superior photocatalytic activity[J]. Materials Letters, 2015, 151: 45-48.
|
15 |
RANE Y N, SHENDE D A, RAGHUWANSHI M G, et al. Visible-light assisted CdO nanowires photocatalyst for toxic dye degradation studies[J]. Optik, 2019, 179: 535-544.
|
16 |
SARAVANAKUMAR K, MUTHURAJ V, JEYARAJ M. The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants[J]. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2017, 188:291.
|
17 |
MAHENDIRAN M, MATHEN J J, RACIK M, et al. Investigation of structural, optical and electrical properties of transition metal oxide semiconductor CdO-ZnO nanocomposite and its effective role in the removal of water contaminants[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 322-334.
|
18 |
REDDY C V, BABU B, SHIM J. Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite[J]. Journal of Physics and Chemistry of Solids, 2018, 112: 20-28.
|
19 |
MARGAN P, HAGHIGHI M. Sono-coprecipitation synthesis and physicochemical characterization of CdO-ZnO nanophotocatalyst for removal of acid orange 7 from wastewater[J]. Ultrasonics Sonochemistry, 2018, 40: 323-332.
|
20 |
SARAVANAKUMAR K, MUTHUPOONGODI S, MUTHURAJ V. A novel n-CeO2/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation[J]. Journal of Rare Earths, 2019, 37: 853-860.
|
21 |
DHATSHANAMURTHI P, SUBASH B, SHANTHI M. Investigation on UV-A light photocatalytic degradation of an azo dye in the presence of CdO/TiO2 coupled semiconductor[J]. Materials Science in Semiconductor Processing, 2015, 35: 22-29.
|
22 |
RAKIBUDDIN M, ANANTHAKRISHNAN R. Fabrication of graphene aerosol hybridized coordination polymer derived CdO/SnO2 heteronanostructure with improved visible light photocatalytic performance[J]. Solar Energy Materials and Solar Cells, 2017, 162: 62-71.
|
23 |
ZEID E F A, IBRAHEM I A, ALI A M, et al. The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite[J]. Results in Physics, 2019, 12: 562-570.
|
24 |
BALAMURUGAN S, BALU A R, SRIVIND J, et al. CdO-Al2O3-A composite material with enhanced photocatalytic activity against the degradation of MY dye[J]. Vacuum, 2019, 159: 9-16.
|
25 |
KAVAKEBI M, JAMALI-SHEINI F. Ultrasonic synthesis of Zn-doped CdO nanostructures and their optoelectronic properties[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(11): 2255-2264.
|
26 |
MAHMOUD M S, AHMED E, FARGHALI A A, et al. Influence of Mn, Cu, and Cd-doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 100-109.
|
27 |
SAHA M, GHOSH S, DE S K. Nanoscale kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr(Ⅵ) reduction[J]. Catalysis Today, 2018. DOI. org/10.1016/j.cattod.2018.11.027.
|
28 |
AGOPCAN B, AKYUZ D, KARACA F, et al. A new sulfur source for the preparation of efficient Cd(1-x)ZnxS photocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8206-8220.
|
29 |
GHOLIPOUR M R, NGUYEN C C, BELAND F, et al. Hollow microspheres consisting of uniform ZnxCd1-xS nanoparticles with noble-metal-free co-catalysts for hydrogen evolution with high quantum efficiency under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358: 1-9.
|
30 |
ZUBAIR M, SVENUM I H, RØNNING M, et al. Facile synthesis approach for core-shell TiO2-CdS nanoparticles for enhanced photocatalytic H2 generation from water[J]. Catalysis Today, 2019, 328: 15-20.
|
31 |
WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Catalysis B: Environmental, 2019, 243: 19-26.
|
32 |
QIAN X, ZHANG J, GUO Z, et al. Facile ultrasound-driven formation and deposition of few-layered MoS2 nanosheets on CdS for highly enhanced photocatalytic hydrogen evolution[J]. Applied Surface Science, 2019, 481: 795-801.
|
33 |
YE L Q, MA Z Y, DENG Y, et al. Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy[J]. Applied Catalysis B: Environmental, 2019. DOI: https://doi.org/10.1016/j.apcatb.2019.117897.
DOI
|
34 |
ZHANG Y, JIN Z, YUAN H, et al. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018, 462: 213-225.
|
35 |
LI Q, SHI T, LI X, et al. Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2018, 229: 8-14.
|
36 |
LOU Z, ZHU M, YANG X, et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3-x for efficient hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 10-15.
|
37 |
许迪, 高爱梅, 邓文礼. 簇形和花形CdS纳米结构的自组装及光催化性能[J]. 物理化学学报, 2016, 24(7): 1219-1224.
|
|
XU D, GAO A M, DENG W L. Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures[J]. Acta physico-Chimica Sinica, 2016, 24(7):1219-1224.
|
38 |
BILLAKANTI S, KRISHNAMURTHI M. Facile preparation of surfactant or support material free CdS nanoparticles with enhanced photocatalytic activity[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1250-1256.
|
39 |
WANG S, LI J, ZHOU X, et al. Facile preparation of 2D sandwich-like CdS nanoparticles/nitrogen-doped reduced graphene oxide hybrid nanosheets with enhanced photoelectrochemical properties[J]. Journal of Materials Chemistry A, 2014, 2(46): 19815-19821.
|
40 |
YANG W, LIU Y, HU Y, et al. Microwave-assisted synthesis of porous CdO-CdS core-shell nanoboxes with enhanced visible-light-driven photocatalytic reduction of Cr(VI)[J]. Journal of Materials Chemistry, 2012, 22(28): 13895-13898.
|
41 |
ZHANG N, YANG M Q, TANG Z R, et al. CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation[J]. Journal of Catalysis, 2013, 303(Complete): 60-69.
|
42 |
LIU S, ZHANG N, TANG Z R, et al. Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6378-6385.
|
43 |
WU Y, YE X, ZHANG S, et al. Photocatalytic synthesis of Schiff base compounds in the coupled system of aromatic alcohols and nitrobenzene using CdXZn1-XS photocatalysts[J]. Journal of Catalysis, 2018, 359: 151-160.
|
44 |
ZHANG L, NIU C G, LIANG C, et al. One-step in situ synthesis of CdS/SnO2 heterostructure with excellent photocatalytic performance for Cr(Ⅵ) reduction and tetracycline degradation[J]. Chemical Engineering Journal, 2018, 352: 863-875.
|
45 |
杜欢, 王晟, 刘恋恋, 等. 复合半导体光催化剂 p-CoO/n-CdS的制备, 表征及光催化性能[J]. 物理化学学报, 2010, 26(10): 2726-2732.
|
|
DU H, WANG S, LIU L L, et al. Preparation, characterization and photocatalytic property of p-CoO/n-CdS compound semiconductor photocatalyst[J]. Acta physico-Chimica Sinica, 2010, 26(10): 2726-2732.
|
46 |
SONG Y, LI N, CHEN D, et al. 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 238: 255-262.
|
47 |
LI G, WANG B, ZHANG J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline[J]. Applied Surface Science, 2019, 478: 1056-1064.
|
48 |
HU J, YU C, ZHAI C, et al. 2D/1D heterostructure of g-C3N4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol[J]. Catalysis Today, 2018, 315: 36-45.
|
49 |
CHEN P, CHEN L, ZENG Y, et al. Three-dimension hierarchical heterostructure of CdWO4 microrods decorated with Bi2WO6 nanoplates for high-selectivity photocatalytic benzene hydroxylation to phenol[J]. Applied Catalysis B: Environmental, 2018, 234: 311-317.
|
50 |
彭炜东. 农田土壤镉污染现状与修复技术[J]. 云南化工, 2019(3):88-89.
|
|
PENG W D. Present situation and remediation tcchnology of cadmium pollution in farmland soil and remediation technology[J]. Yunnan Chemical technology, 2019(3):88-89.
|