化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5360-5371.DOI: 10.16085/j.issn.1000-6613.2019-0122
收稿日期:
2019-01-18
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
金保昇
作者简介:
董新新(1991—),男,博士研究生,研究方向为工业催化。E-mail:基金资助:
Received:
2019-01-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Baosheng JIN
摘要:
生物质燃气在达到居民使用标准前必须进行提质,变换-甲烷化工艺单元可同时降低CO含量和提高燃气热值,因此研发适合生物质燃气的变换-甲烷化双功能催化剂显得尤为重要。在已广泛研究的单功能水气变换和甲烷化催化剂基础上,近年来国内外对变换-甲烷化双功能催化剂也开展了诸多探究。本文从催化剂组成、制备方法和反应机理三方面对变换-甲烷化双功能催化剂进行了综述,详细介绍了适用于该种催化剂的活性组分、助剂与载体,比较分析了浸渍法、共沉淀法等传统制备方法与火焰喷雾燃烧法、等离子体分解法等新颖制备方法,并对变换-甲烷化双功能催化剂进行了总结和展望,指出未来制备催化剂时助剂可根据具体要求选择性添加,廉价的矿石可替代成为有竞争力的催化剂载体,变换-甲烷指出化机理可借助多种材料表征以及理论计算而获悉。
中图分类号:
董新新,金保昇. 生物质燃气变换-甲烷化双功能催化剂研究进展[J]. 化工进展, 2019, 38(12): 5360-5371.
Xinxin DONG,Baosheng JIN. Research progress of bifunctional catalysts for methanation coupling with water gas shift of biogas[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5360-5371.
催化剂 | CO转化率 (C摩尔分数)/ % | 选择性(C摩尔分数)/% | |
---|---|---|---|
CH4 | CO2 | ||
NiO/γ-Al2O3 | 6.4 | 82.1 | 9.1 |
Fe2O3-NiO/γ-Al2O3 | 4.8 | 69.0 | 18.1 |
CuO-NiO/γ-Al2O3 | 7.2 | 82.2 | 14.5 |
Co3O4-NiO/γ-Al2O3 | 7.8 | 83.2 | 12.3 |
表1 MOx-NiO/γ-Al2O3变换-甲烷化催化活性
催化剂 | CO转化率 (C摩尔分数)/ % | 选择性(C摩尔分数)/% | |
---|---|---|---|
CH4 | CO2 | ||
NiO/γ-Al2O3 | 6.4 | 82.1 | 9.1 |
Fe2O3-NiO/γ-Al2O3 | 4.8 | 69.0 | 18.1 |
CuO-NiO/γ-Al2O3 | 7.2 | 82.2 | 14.5 |
Co3O4-NiO/γ-Al2O3 | 7.8 | 83.2 | 12.3 |
序号 | 基元反应 |
---|---|
1 | H2+2* |
2 | CO+* |
3 | CO*+* |
4 | C*+H* |
5 | CH*+H* |
6 | CH2*+H* |
7 | CH3*+H* |
8 | H2O+* |
9 | CO*+O* |
10 | CO2* |
表2 变换-甲烷化基元反应
序号 | 基元反应 |
---|---|
1 | H2+2* |
2 | CO+* |
3 | CO*+* |
4 | C*+H* |
5 | CH*+H* |
6 | CH2*+H* |
7 | CH3*+H* |
8 | H2O+* |
9 | CO*+O* |
10 | CO2* |
常数 | 参数A | 参数B |
---|---|---|
k1/mol·Pa0.5·kgcat-1·s-1 | 3.711e17 | 240100 |
k2/mol·Pa0.5·kgcat-1·s-1 | 5.431 | 67130 |
Keq1/Pa2 | 1.198e23 | 223064 |
Keq2 | 1.767e-2 | 36581 |
KCH4/Pa-1 | 6.65e-9 | -38280 |
KCO/Pa-1 | 8.23e-10 | -70650 |
KH2/Pa-1 | 6.12e-14 | -82900 |
KH2O | 1.17e5 | 88680 |
表3 变换-甲烷化动力学公式参数
常数 | 参数A | 参数B |
---|---|---|
k1/mol·Pa0.5·kgcat-1·s-1 | 3.711e17 | 240100 |
k2/mol·Pa0.5·kgcat-1·s-1 | 5.431 | 67130 |
Keq1/Pa2 | 1.198e23 | 223064 |
Keq2 | 1.767e-2 | 36581 |
KCH4/Pa-1 | 6.65e-9 | -38280 |
KCO/Pa-1 | 8.23e-10 | -70650 |
KH2/Pa-1 | 6.12e-14 | -82900 |
KH2O | 1.17e5 | 88680 |
1 | ULLAH KHAN I, HAFIZ DZARFA OTHMAN M, HASHIM H, et al. Biogas as a renewable energy fuel—A review of biogas upgrading, utilisation and storage[J]. Energy Conversion and Management, 2017, 150: 277-294. |
2 | 孙秀丽. 生物质燃气在城镇化中的低碳应用[J]. 能源与节能, 2015(12): 70-72. |
SUN Xiuli. On the low-carbon energy application of biomass gas in urbanization[J]. Energy and Energy Conservation, 2015(12): 70-72. | |
3 | XIAO Y, XU S, SONG Y, et al. Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system[J]. Fuel Processing Technology, 2017, 165: 54-61. |
4 | WU Y, WEN C, CHEN X, et al. Catalytic pyrolysis and gasification of waste textile under carbon dioxide atmosphere with composite Zn-Fe catalyst[J]. Fuel Processing Technology, 2017, 166: 115-123. |
5 | PINTO F, GOMINHO J, ANDRE R N, et al. Improvement of gasification performance of Eucalyptusglobulus stumps with torrefaction and densification pre-treatments[J]. Fuel, 2017, 206: 289-299. |
6 | MARTIN-SANCHEZ N, SANCHEZ-MONTERO M J, IZQUIERDO C, et al. Improving the production of hydrogen from the gasification of carbonaceous solids using supercritical water until 1000bar[J]. Fuel, 2017, 208: 558-565. |
7 | SHAHBAZ M, YUSUP S, INAYAT A, et al. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash[J]. Bioresource Technology, 2017, 241: 284-295. |
8 | HOSSEINIPOUR S, MEHRPOOYA M. Comparison of the biogas upgrading methods as a transportation fuel[J]. Renewable Energy, 2019, 130: 641-655. |
9 | 汤爱君, 马海龙, 董玉平. 提高生物质热解气化燃气热值的甲烷化技术[J]. 可再生能源, 2003(6): 15-17. |
TANG Aijun, MA Hailong, DONG Yuping. The method of raise biomass gas’s caloric value-the methanation technology[J]. Renewable Energy, 2003(6): 15-17. | |
10 | MANABE R, NAKATSUBO H, GONDO A, et al. Electrocatalytic synthesis of ammonia by surface proton hopping[J]. Chemical Science, 2017, 8(8): 5434-5439. |
11 | SAADATJOU N, JAFARI A, SAHEBDELFAR S. Ruthenium nanocatalysts for ammonia synthesis: a review[J]. Chemical Engineering Communications, 2014, 202(4): 420-448. |
12 | DASIREDDY V D B C, VALAND J, LILOZAR B. PROX reaction of CO in H2/H2O/CO2 water-gas shift (WGS) feedstocks over Cu-Mn/Al2O3 and Cu-Ni/Al2O3 catalysts for fuel cell applications[J]. Renewable Energy, 2018, 116: 75-87. |
13 | COZZOLINO R, LOMBARDI L, TRIBIOLI L. Use of biogas from biowaste in a solid oxide fuel cell stack: application to an off-grid power plant[J]. Renewable Energy, 2017, 111: 781-791. |
14 | CHEN Z, DUN Q, SHI Y, et al. High quality syngas production from catalytic coal gasification using disposable Ca(OH)2 catalyst[J]. Chemical Engineering Journal, 2017, 316: 842-849. |
15 | YANG S, QIAN Y, LIU Y, et al. Modeling, simulation, and techno-economic analysis of Lurgi gasification and BGL gasification for coal-to-SNG[J]. Chemical Engineering Research and Design, 2017, 117: 355-368. |
16 | BUKUR D B, TODIC B, ELBASHIR N. Role of water-gas-shift reaction in Fischer-Tropsch synthesis on iron catalysts: a review[J]. Catalysis Today, 2016, 275: 66-75. |
17 | GRACIANI J, SANZ J F. Designing a new generation of catalysts: water gas shift reaction example[J]. Catalysis Today, 2015, 240: 214-219. |
18 | JALAMA K. Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: review of kinetics and mechanism[J]. Catalysis Reviews:Science and Engineering, 2017, 59(2): 95-164. |
19 | ROENSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation-from fundamentals to current projects[J]. Fuel, 2016, 166: 276-296. |
20 | 王晶, 姚楠. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517. |
WANG Jing, YAO Nan. Ni-based catalysts for syngas methanation reaction[J]. Progress in Chemistry, 2017, 29(12): 1509-1517. | |
21 | SENANAYAKE S D, EVANS J, AGNOLI S, et al. Water-gas shift and CO methanation reactions over Ni-CeO2 (111) catalysts[J]. Topics in Catalysis, 2011, 54(1): 34-41. |
22 | MA S, TAN Y, HAN Y. Water-gas shift coupling with methanation over MOx modified nanorod-NiO/γ-Al2O3 catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(4): 723-726. |
23 | DONG X, JIN B, SUN Y, et al. Re-promoted Ni-Mn bifunctional catalysts prepared by microwave heating for partial methanation coupling with water gas shift under low H2/CO conditions[J]. Applied Catalysis A: General, 2018, 552: 105-116. |
24 | 董新新, 金保昇, 王妍艳, 等. Ni/γ-Al2O3甲烷化催化剂提高生物质气化燃气低位热值的实验[J]. 东南大学学报:英文版, 2017, 33(4): 448-456. |
DONG Xinxin, JIN Baosheng, WANG Yanyan, et al. Experiments on Ni/γ-Al2O3 catalyst for improving lower heating value of biomass gasification fuel gas via methanation[J]. Journal of Southeast University: English Edition, 2017, 33(4): 448-456. | |
25 | DONG X, SONG M, JIN B, et al. The synergy effect of Ni-M (M = Mo, Fe, Co, Mn or Cr) bicomponent catalysts on partial methanation coupling with water gas shift under low H2/CO conditions[J]. Catalysts, 2017, 7(12): 51. |
26 | DONG X, JIN B, SUN Y, et al. Urban gas production from low H2/CO biogas using Re-promoted Ni catalysts supported on modified manganese sand[J]. Fuel, 2018, 220: 60-71. |
27 | YUAN C, YAO N, WANG X, et al. The SiO2 supported bimetallic Ni-Ru particles: a good sulfur-tolerant catalyst for methanation reaction[J]. Chemical Engineering Journal, 2015, 260: 1-10. |
28 | WANG T, POROSOFF M D, CHEN J G. Effects of oxide supports on the water-gas shift reaction over PtNi bimetallic catalysts: activity and methanation inhibition[J]. Catalysis Today, 2014, 233: 61-69. |
29 | MEI Z, LI Y, FAN M, et al. The effects of bimetallic Co-Ru nanoparticles on Co/RuO2/Al2O3 catalysts for the water gas shift and methanation[J]. International Journal of Hydrogen Energy, 2014, 39(27): 14808-14816. |
30 | GALLETTI C, DJINOVIC P, SPECCHIA S, et al. Influence of the preparation method on the performance of Rh catalysts on CeO2 for WGS reaction[J]. Catalysis Today, 2011, 176(1): 336-339. |
31 | HUO X, WANG Z, HUANG J, et al. Bulk Mo and Co-Mo carbides as catalysts for methanation[J]. Catalysis Communications, 2016, 79: 39-44. |
32 | 卢君颖, 郭禹, 刘其瑞, 等. 甲烷二氧化碳重整制合成气钴基催化剂[J]. 化学进展, 2017, 29(12): 1471-1479. |
LU Junying, GUO Yu, LIU Qirui, et al. Co-based catalysts for carbon dioxide reforming of methane to synthesis gas[J]. Progress in Chemistry, 2017, 29(12): 1471-1479. | |
33 | BARRIENTOS J, GONZALEZ N, BOUTONNET M, et al. Deactivation of Ni/γ-Al2O3 catalysts in CO methanation: effect of Zr, Mg, Ba and Ca oxide promoters[J]. Topics in Catalysis, 2017, 60(17): 1276-1284. |
34 | MESHKANI F, REZAEI M. Mesoporous Ba-promoted chromium free Fe2O3-Al2O3-NiO catalyst with low methanation activity for high temperature water gas shift reaction[J]. Catalysis Communications, 2015, 58: 26-29. |
35 | WATANABE R, WATANABE S, HIRATA N, et al. Effect of promoter addition on water gas shift property over structured-type iron oxide catalyst[J]. Catalysis Letters, 2016, 146(12): 2478-2484. |
36 | LIN C, WANG H, LI Z, et al. Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst[J]. Frontiers of Chemical Science and Engineering, 2013, 7(1): 88-94. |
37 | WANG B, YAO Y, JIANG M, et al. Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation[J]. Journal of Energy Chemistry, 2014, 23(1): 35-42. |
38 | MENG F, LI X, LI M, et al. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor[J]. Chemical Engineering Journal, 2017, 313: 1548-1555. |
39 | MENG F, LI Z, LIU J, et al. Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 250-258. |
40 | GONG D, LI S, GUO S, et al. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Applied Surface Science, 2018, 434: 351-364. |
41 | LIU Y, ZHU L, WANG X, et al. Catalytic methanation of syngas over Ni-based catalysts with different supports[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 602-608. |
42 | LE T A, KIM T W, LEE S H, et al. CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases[J]. Korean Journal of Chemical Engineering, 2017, 34(12): 3085-3091. |
43 | LIN Y, ZHU Y, PAN X, et al. Modulating the methanation activity of Ni by the crystal phase of TiO2[J]. Catalysis Science & Technology, 2017, 7(13): 2813-2818. |
44 | LI S, GONG D, TANG H, et al. Preparation of bimetallic Ni@Ru nanoparticles supported on SiO2 and their catalytic performance for CO methanation[J]. Chemical Engineering Journal, 2018, 334: 2167-2178. |
45 | REN J, LI H, JIN Y, et al. Silica/titania composite-supported Ni catalysts for CO methanation: effects of Ti species on the activity, anti-sintering, and anti-coking properties[J]. Applied Catalysis B: Environmental, 2017, 201: 561-572. |
46 | DING M, TU J, WANG T, et al. Bio-syngas methanation towards synthetic natural gas (SNG) over highly active Al2O3-CeO2 supported Ni catalyst[J]. Fuel Processing Technology, 2015, 134: 480-486. |
47 | IRIARTE-VELASCO U, AYASTUY J L, BOUKHA Z, et al. Transition metals supported on bone-derived hydroxyapatite as potential catalysts for the water-gas shift reaction[J]. Renewable Energy, 2018, 115: 641-648. |
48 | TANG H, LI S, GONG D, et al. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas[J]. Frontiers of Chemical Science and Engineering, 2017, 11(4): 613-623. |
49 | LIU Q, TIAN Y, AI H. Methanation of carbon monoxide on ordered mesoporous NiO-TiO2-Al2O3 composite oxides[J]. RSC Advances, 2016, 6(25): 20971-20978. |
50 | ZHAO B, CHEN Z, YAN X, et al. CO methanation over Ni/SiO2 catalyst prepared by ammonia impregnation and plasma decomposition[J]. Topics in Catalysis, 2017, 60(12): 879-889. |
51 | TEOH W Y, DORONKIN D E, BEH G K, et al. Methanation of carbon monoxide over promoted flame-synthesized cobalt clusters stabilized in zirconia matrix[J]. Journal of Catalysis, 2015, 326: 182-193. |
52 | TAO M, MENG X, LV Y, et al. Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction[J]. Fuel, 2016, 165: 289-297. |
53 | TAO M, XIN Z, MENG X, et al. Impact of double-solvent impregnation on the Ni dispersion of Ni/SBA-15 catalysts and catalytic performance for the syngas methanation reaction[J]. RSC Advances, 2016, 6(42): 35875-35883. |
54 | ZHAO B, CHEN Z, CHEN Y, et al. Syngas methanation over Ni/SiO2 catalyst prepared by ammonia-assisted impregnation[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27073-27083. |
55 | QIN Z, REN J, MIAO M, et al. The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: effect of amorphous NiO formation[J]. Applied Catalysis B: Environmental, 2015, 164: 18-30. |
56 | LIU Q, GU F, ZHONG Z, et al. V-promoted Ni/Al2O3 catalyst for synthetic natural gas (SNG) production: catalyst preparation methodologies[J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1599-1605. |
57 | CHENG C, WU C, SHEN D. Preparation of different nickel-iron/titania-alumina catalysts for hydrogen/carbon monoxide methanation under atmospheric pressure[J]. Energy Technology, 2017, 5(8): 1218-1227. |
58 | MIAO B, MAS S K, WANG X, et al. Catalysis mechanisms of CO2 and CO methanation[J]. Catalysis Science & Technology, 2016, 6(12): 448-458. |
59 | BYRON S R J, LOGANATHAN M, SHANTHA M S. A review of the water gas shift reaction kinetics[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 72. |
60 | XU J G, FROMENT G F. Methane steam reforming, methanation and water-gas shift. 1. Intrinsic kinetics[J]. AIChE Journal,1989, 35(1): 88-96. |
61 | ZHANG J, FATAH N, CAPELA S, et al. Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas[J]. Fuel, 2013, 111: 845-854. |
62 | 沈叶婷, 张海涛, 房鼎业, 等. ZrO2/Al2O3复合载体镍基催化剂CO甲烷化反应本征动力学[J]. 华东理工大学学报(自然科学版), 2016, 42(4): 446-453. |
SHEN Yeting, ZHANG Haitao, FANG Dingye, et al. Intrinsic kinetics of CO methanation over ZrO2/Al2O3 supported Ni-based catalyst[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(4): 446-453. | |
63 | CHEIN R, YU C, WANG C. Numerical simulation on the effect of operating conditions and syngas compositions for synthetic natural gas production via methanation reaction[J]. Fuel, 2016, 185: 394-409. |
64 | ASHOK J, WAI M H, KAWI S. Nickel-based catalysts for high-temperature water gas shift reaction-methane suppression[J]. ChemCatChem, 2018, 10: 3927-3942. |
65 | WANG T, POROSOFF M D, CHEN J G. Effects of oxide supports on the water-gas shift reaction over PtNi bimetallic catalysts: activity and methanation inhibition[J]. Catalysis Today, 2014, 233: 61-69. |
66 | SAW E T, OMEAR U, TAN X R, et al. Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction: methane suppression via enhanced CO adsorption[J]. Journal of Catalysis, 2014, 314: 32-46. |
67 | ZHAO F, LIU Z, XU W, et al. Water-gas shift reaction on Ni-W-Ce catalysts: catalytic activity and structural characterization[J]. Journal of Physical Chemistry C, 2014, 118: 2528-2538. |
68 | ANG M L, OEMAR U, SAW E T, et al. Highly active Ni/xNa/CeO2 catalyst for the water-gas shift reaction: effect of sodium on methane suppression[J]. ACS Catalysis, 2014, 4(9): 3237-3248. |
69 | ANG M L, OEMAR U, KATHIRASER Y, et al. High-temperature water-gas shift reaction over Ni/xK/CeO2 catalysts: suppression of methanation via formation of bridging carbonyls[J]. Journal of Catalysis, 2015, 329: 130-143. |
70 | GUAN H, LIN J, QIAO B, et al. Enhanced performance of Rh-1/TiO2 catalyst without methanation in water-gas shift reaction[J]. AIChE Journal, 2017, 63(6): 2081-2088. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[4] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[5] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[6] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[7] | 李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893. |
[8] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[9] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[12] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[13] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[14] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[15] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |