化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1619-1633.DOI: 10.16085/j.issn.1000-6613.2020-0878
郭超然1,2(), 黄勇1,2,3(), 朱文娟1,2, 陈丽媛1,2, 王灵芝1,2, 张悦1,2, 徐楚天1,2, 李大鹏1,2,3
收稿日期:
2020-05-21
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
黄勇
作者简介:
郭超然(1994—),男,硕士研究生,研究方向为污水处理与回用技术。E-mail:基金资助:
GUO Chaoran1,2(), HUANG Yong1,2,3(), ZHU Wenjuan1,2, CHEN Liyuan1,2, WANG Lingzhi1,2, ZHANG Yue1,2, XU Chutian1,2, LI Dapeng1,2,3
Received:
2020-05-21
Online:
2021-03-05
Published:
2021-03-17
Contact:
HUANG Yong
摘要:
当今的城市污水处理系统中,有机物去除过程的高额能耗和碳排放问题逐渐被重视。随之,兼具环境意义和经济效益的有机物回收理念日益受到关注。而将污水中的有机物富集或浓缩到易利用的浓度,也即污水碳捕获,是影响其回收技术经济性的关键。大众熟知的水处理工艺,如膜分离、高负荷活性污泥法、絮凝等,凭借着高的有机物保留特性而被重新认识。本文根据这些工艺在捕获过程中有机物的转移方向,将它们归类为“转移聚集”(主要是高负荷活性污泥法、絮凝)和“被动富集”(主要是膜分离)两大类进行讨论。在介绍它们各自捕获机制、捕获率、研究进展的基础上,讨论进一步提升捕获率的途径及其在规模化应用中需要克服的问题。随后本文综述了捕获产物的能源化与产品化途径,并认为根据其性质选择合适的预处理是提升资源化程度的关键。最后围绕碳捕获工艺的成熟度、能耗及运行费用,讨论了生活污水资源化工艺流程的构建。
中图分类号:
郭超然, 黄勇, 朱文娟, 陈丽媛, 王灵芝, 张悦, 徐楚天, 李大鹏. 城市污水有机物回收——捕获技术研究进展[J]. 化工进展, 2021, 40(3): 1619-1633.
GUO Chaoran, HUANG Yong, ZHU Wenjuan, CHEN Liyuan, WANG Lingzhi, ZHANG Yue, XU Chutian, LI Dapeng. Organics recovery from municipal wastewater: research advances in capture technologies[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1619-1633.
工艺类型 | 污泥龄 (SRT)/d | 污泥负荷率(F/M,SLR) /g BOD·(gVSS)-1·d-1 | 溶解氧(DO) /mg·L-1 | 水力停留时间(HRT)/h | 再生时间 | 文献来源 |
---|---|---|---|---|---|---|
/h | ||||||
传统活性污泥法(CAS) | 3~15 | 0.2~0.6 | 2 | 4~12 | — | [ |
高负荷活性污泥法(HRAS) | 0.2~2 | 2~10 | 0.5~1 | 0.5~1 | — | [ |
高负荷“吸附-再生”法(HRCS) | 0.2~1 | 2~10 | 0.5~1 | 0.17~1 | 0.25~0.66 | [ |
表1 传统活性污泥法与生物絮凝工艺运行参数的比较
工艺类型 | 污泥龄 (SRT)/d | 污泥负荷率(F/M,SLR) /g BOD·(gVSS)-1·d-1 | 溶解氧(DO) /mg·L-1 | 水力停留时间(HRT)/h | 再生时间 | 文献来源 |
---|---|---|---|---|---|---|
/h | ||||||
传统活性污泥法(CAS) | 3~15 | 0.2~0.6 | 2 | 4~12 | — | [ |
高负荷活性污泥法(HRAS) | 0.2~2 | 2~10 | 0.5~1 | 0.5~1 | — | [ |
高负荷“吸附-再生”法(HRCS) | 0.2~1 | 2~10 | 0.5~1 | 0.17~1 | 0.25~0.66 | [ |
碳捕获工艺 | 所需介质 | 优点 | 缺点 |
---|---|---|---|
混凝/絮凝 | 无机絮凝剂:铁、铝盐,如Al2(SO4)3、FeCl3 | ①价格低廉,如FeCl3约为1200CNY·t-1[ ②碳捕获效果好,同时对磷去除率高 | ①投加量较高,一般为每升几十毫克Fe或Al ②污泥产量大 ③残余水中的铝元素过高会产生环境风险,导致在动物体内蓄积 |
有机高分子絮凝剂:如聚丙烯酰胺(PAM)、聚二甲基二烯丙基氯化铵(PDADMAC)、聚乙烯亚胺(PEI)等 | ①投加量低,一般为每升几毫克 ②架桥能力强,其形成的絮体大而结实、沉降速度快 | ①单独使用时,有机碳捕获效果一般逊于无机絮凝剂 ②其中残余聚合物单体会产生环境风险。如丙烯酰胺具有中枢神经毒性[ | |
天然高分子絮凝剂:淀粉、壳聚糖、纤维素、瓜尔胶、单宁等天然有机高分子改性后产物 | ①毒性小,且易在自然环境中降解 ②原料来源广泛,可从多种动植物中提取,属于可再生资源 | 天然原料价格仍较高,如淀粉约 5000CNY·t-1、壳聚糖约250000CNY·t-1 [ | |
微生物絮凝剂:一类微生物代谢产物,由糖蛋白、多糖、蛋白质等组成 | ①与污染物亲和性强,絮凝效果好 ②安全无毒,且易在自然环境中降解 | ①提取方法复杂繁琐、产品储存稳定 性差[ ②离规模化生产、应用还有较大差距 | |
载体絮凝:在传统絮凝过程中,引入高密度的不溶解颗粒以促进絮体的增长和沉淀过程的网捕作用,常见载体有细砂、磁种(磁铁矿、钛铁矿等)[ | ①效率高,节约絮凝剂用量 ②利用旋流器、磁鼓可将细砂、磁种这样的重介质回收再使用 | 对池体构型和设备技术要求高,现多为完整的专利技术,如Actiflo工艺和DensaDeg 工艺[ | |
气浮 | 大量、高度分散的微气泡 | ①无需外来补充介质 ②处理效率高、占地面积小、技术及工艺成熟 | ①对溶解性有机碳无捕获效果 ②对胶体和亲水性颗粒需要外加药剂强化捕获效率 ③含氧气泡释放中则会有有机碳损失 |
吸附 | 沸石、各种生物质制备的活性炭及其改性产物 | 对溶解性有机碳捕获能力强 | 吸附效率、沉降性能、能否回收及成本都面临实际考验 |
表2 采用非活性生物介质的碳捕获工艺及其特性
碳捕获工艺 | 所需介质 | 优点 | 缺点 |
---|---|---|---|
混凝/絮凝 | 无机絮凝剂:铁、铝盐,如Al2(SO4)3、FeCl3 | ①价格低廉,如FeCl3约为1200CNY·t-1[ ②碳捕获效果好,同时对磷去除率高 | ①投加量较高,一般为每升几十毫克Fe或Al ②污泥产量大 ③残余水中的铝元素过高会产生环境风险,导致在动物体内蓄积 |
有机高分子絮凝剂:如聚丙烯酰胺(PAM)、聚二甲基二烯丙基氯化铵(PDADMAC)、聚乙烯亚胺(PEI)等 | ①投加量低,一般为每升几毫克 ②架桥能力强,其形成的絮体大而结实、沉降速度快 | ①单独使用时,有机碳捕获效果一般逊于无机絮凝剂 ②其中残余聚合物单体会产生环境风险。如丙烯酰胺具有中枢神经毒性[ | |
天然高分子絮凝剂:淀粉、壳聚糖、纤维素、瓜尔胶、单宁等天然有机高分子改性后产物 | ①毒性小,且易在自然环境中降解 ②原料来源广泛,可从多种动植物中提取,属于可再生资源 | 天然原料价格仍较高,如淀粉约 5000CNY·t-1、壳聚糖约250000CNY·t-1 [ | |
微生物絮凝剂:一类微生物代谢产物,由糖蛋白、多糖、蛋白质等组成 | ①与污染物亲和性强,絮凝效果好 ②安全无毒,且易在自然环境中降解 | ①提取方法复杂繁琐、产品储存稳定 性差[ ②离规模化生产、应用还有较大差距 | |
载体絮凝:在传统絮凝过程中,引入高密度的不溶解颗粒以促进絮体的增长和沉淀过程的网捕作用,常见载体有细砂、磁种(磁铁矿、钛铁矿等)[ | ①效率高,节约絮凝剂用量 ②利用旋流器、磁鼓可将细砂、磁种这样的重介质回收再使用 | 对池体构型和设备技术要求高,现多为完整的专利技术,如Actiflo工艺和DensaDeg 工艺[ | |
气浮 | 大量、高度分散的微气泡 | ①无需外来补充介质 ②处理效率高、占地面积小、技术及工艺成熟 | ①对溶解性有机碳无捕获效果 ②对胶体和亲水性颗粒需要外加药剂强化捕获效率 ③含氧气泡释放中则会有有机碳损失 |
吸附 | 沸石、各种生物质制备的活性炭及其改性产物 | 对溶解性有机碳捕获能力强 | 吸附效率、沉降性能、能否回收及成本都面临实际考验 |
生活污水COD/mg·L-1 | 药剂 | 投加量/mg·L-1 | COD去除率/% | 研究者 | |
---|---|---|---|---|---|
751 | 硫酸铁(FS) | 80 | 85.9 | 王东海等[ | |
303 | 氯化铁(FC) | 25 | 77 | Chen等[ | |
76.3~240.4 | 硫酸铝(AS) | 70 | 79.5 | 黄天寅等[ | |
480±37 | 硫酸铝 | 约10 | 65 | Chakraborty等[ | |
130~200 | 碱式氯化铝(BAC) | 100 | 85 | 张敬东等[ | |
235~426 | 聚合氯化铝(PAC)+阳离子助凝剂 | 100+2 | 78 | 亓化亮等[ | |
522 | 氯化铁+阴离子助凝剂 | 50+10 | 73 | Aiyuk等[ | |
300 | 聚丙烯酰胺(PAM) | 0.1875 | 58.8 | 吴小宁[ | |
481.2 | 阳离子聚丙烯酰胺(CPAM) | 0.5 | 44.8 | 刘海龙等[ | |
540 | 羧甲基瓜尔胶接枝PAM产物 | 9 | 61 | Pal等[ | |
210 | 植物单宁阳离子改性絮凝剂 | 100 | 50 | Beltrán等[ |
表3 絮凝对实际城市/生活污水COD的去除性能
生活污水COD/mg·L-1 | 药剂 | 投加量/mg·L-1 | COD去除率/% | 研究者 | |
---|---|---|---|---|---|
751 | 硫酸铁(FS) | 80 | 85.9 | 王东海等[ | |
303 | 氯化铁(FC) | 25 | 77 | Chen等[ | |
76.3~240.4 | 硫酸铝(AS) | 70 | 79.5 | 黄天寅等[ | |
480±37 | 硫酸铝 | 约10 | 65 | Chakraborty等[ | |
130~200 | 碱式氯化铝(BAC) | 100 | 85 | 张敬东等[ | |
235~426 | 聚合氯化铝(PAC)+阳离子助凝剂 | 100+2 | 78 | 亓化亮等[ | |
522 | 氯化铁+阴离子助凝剂 | 50+10 | 73 | Aiyuk等[ | |
300 | 聚丙烯酰胺(PAM) | 0.1875 | 58.8 | 吴小宁[ | |
481.2 | 阳离子聚丙烯酰胺(CPAM) | 0.5 | 44.8 | 刘海龙等[ | |
540 | 羧甲基瓜尔胶接枝PAM产物 | 9 | 61 | Pal等[ | |
210 | 植物单宁阳离子改性絮凝剂 | 100 | 50 | Beltrán等[ |
膜技术 | 膜组件、材料、孔径 | 进水性质 | 富集程度 | 膜通量 /L·m-2·h-1 | 跨膜压差 (TMP)/104Pa | 清洗方式 | 文献 |
---|---|---|---|---|---|---|---|
微滤 | 中空纤维式,PVDF(聚偏氟乙烯),0.1μm | 城市污水(格栅出水),COD 345.3mg·L-1±157.25mg·L-1,含30mg·L-1 PAC(聚氯化铝) | COD捕获率70%,浓缩液COD 16g·L-1 | 总均值13.3(共295h,含3个周期) | <7 | 当TMP达到7×104Pa时进行物理清洗 | [ |
中空纤维膜,PVDF,0.1μm,二级MF串联 | 城市污水(初沉池进水),COD 240mg·L-1 | COD捕获率75%,二级浓缩液COD 3600~6843mg·L-1 | 恒定膜通量运行,MF1 20.8,MF2 16.7 | UF1<3 UF2 <2 200h | 每隔12h进行30s的化学清洗,药剂为次氯酸钠或柠檬酸 | [ | |
动态膜过滤 | 平板式,3层不锈钢筛网,25μm | 城市污水(格栅出水),COD 305mg·L-1 | COD去除率63%,浓缩液COD 2~2.5g·L-1 | 30~60(共192h,含4个周期) | <4 | 每隔一个周期(48h)进行一次表面气扫反冲洗 | [ |
陶瓷膜过滤 | 平板式,α-Al2O3,0.1μm | 城市污水,COD 233.0mg·L-1±30.0mg·L-1,含FeCl3 20mg Fe·L-1 | COD去除率:90%浓缩液COD约2.1g·L-1 | 恒定膜通量运行,41.7 | <3.5 | 每隔3~5d进行一次化学清洗,药剂为酸碱、次氯酸钠或双氧水 | [ |
正渗透 | 平板式,CTA(三醋酸纤维),0.3~1nm,(HTI生产) | 城市污水(初沉出水),COD 522mg·L-1,驱动液NaCl 0.5~4mol·L-1 | COD去除率96.5%,浓缩液COD 2714~3289mg·L-1 | 受驱动液影响,初始在25到8不等,体积浓缩10倍后维持在5左右 | — | 气水冲洗+化学清洗(1%次氯酸钠浸泡) | [ |
人工配水,TOC 163.4 mg·L-1,驱动液NaCl 0.5~4mol·L-1 | TOC去除率97%,污水体积缩小10倍,TOC富集4.4~5.9倍 | 5.3~6.4(共168h,含7个周期) | — | 化学清洗(1%次氯酸钠浸泡) | [ |
表4 以碳捕获为目的的膜工艺运行特性
膜技术 | 膜组件、材料、孔径 | 进水性质 | 富集程度 | 膜通量 /L·m-2·h-1 | 跨膜压差 (TMP)/104Pa | 清洗方式 | 文献 |
---|---|---|---|---|---|---|---|
微滤 | 中空纤维式,PVDF(聚偏氟乙烯),0.1μm | 城市污水(格栅出水),COD 345.3mg·L-1±157.25mg·L-1,含30mg·L-1 PAC(聚氯化铝) | COD捕获率70%,浓缩液COD 16g·L-1 | 总均值13.3(共295h,含3个周期) | <7 | 当TMP达到7×104Pa时进行物理清洗 | [ |
中空纤维膜,PVDF,0.1μm,二级MF串联 | 城市污水(初沉池进水),COD 240mg·L-1 | COD捕获率75%,二级浓缩液COD 3600~6843mg·L-1 | 恒定膜通量运行,MF1 20.8,MF2 16.7 | UF1<3 UF2 <2 200h | 每隔12h进行30s的化学清洗,药剂为次氯酸钠或柠檬酸 | [ | |
动态膜过滤 | 平板式,3层不锈钢筛网,25μm | 城市污水(格栅出水),COD 305mg·L-1 | COD去除率63%,浓缩液COD 2~2.5g·L-1 | 30~60(共192h,含4个周期) | <4 | 每隔一个周期(48h)进行一次表面气扫反冲洗 | [ |
陶瓷膜过滤 | 平板式,α-Al2O3,0.1μm | 城市污水,COD 233.0mg·L-1±30.0mg·L-1,含FeCl3 20mg Fe·L-1 | COD去除率:90%浓缩液COD约2.1g·L-1 | 恒定膜通量运行,41.7 | <3.5 | 每隔3~5d进行一次化学清洗,药剂为酸碱、次氯酸钠或双氧水 | [ |
正渗透 | 平板式,CTA(三醋酸纤维),0.3~1nm,(HTI生产) | 城市污水(初沉出水),COD 522mg·L-1,驱动液NaCl 0.5~4mol·L-1 | COD去除率96.5%,浓缩液COD 2714~3289mg·L-1 | 受驱动液影响,初始在25到8不等,体积浓缩10倍后维持在5左右 | — | 气水冲洗+化学清洗(1%次氯酸钠浸泡) | [ |
人工配水,TOC 163.4 mg·L-1,驱动液NaCl 0.5~4mol·L-1 | TOC去除率97%,污水体积缩小10倍,TOC富集4.4~5.9倍 | 5.3~6.4(共168h,含7个周期) | — | 化学清洗(1%次氯酸钠浸泡) | [ |
碳捕获工艺 | 污泥龄 | 加药 | TN去除率/% | NH | TP去除率/% | PO | 文献 |
---|---|---|---|---|---|---|---|
HRAS | SRT=0.5d | 无 | 22.3±4.6 | 8.2±2.1 | 15.2±2.1 | 5.1±2.3 | [ |
SRT=2.4d | 无 | 42.6±4.1 | 29.6±3.0 | 28.3±4.7 | 14.7±2.0 | ||
SRT=0.22d | 无 | — | 17±4 | 35±11 | 43±8 | [ | |
SRT=0.22d | 无 | — | 12±4 | 23±5 | 29±9 | ||
SRT=0.9d | 无 | — | 19±4 | — | 13±4 | [ | |
30mg·L-1 FeCl3 | — | — | — | 99 | |||
CEPT | — | 25mg·L-1 FeCl3 | — | 9.1 | 95 | — | [ |
动态膜过滤 | — | 无 | 22.9 | 8.7 | 14.5 | 5.8 | [ |
陶瓷膜过滤 | — | 15mg-Al·L-1 | — | 43.1 | 99.5 | — | [ |
正渗透 | — | 无 | 94.9 | 94.1 | 95.3 | — | [ |
表5 典型碳捕获技术的氮磷去除性能
碳捕获工艺 | 污泥龄 | 加药 | TN去除率/% | NH | TP去除率/% | PO | 文献 |
---|---|---|---|---|---|---|---|
HRAS | SRT=0.5d | 无 | 22.3±4.6 | 8.2±2.1 | 15.2±2.1 | 5.1±2.3 | [ |
SRT=2.4d | 无 | 42.6±4.1 | 29.6±3.0 | 28.3±4.7 | 14.7±2.0 | ||
SRT=0.22d | 无 | — | 17±4 | 35±11 | 43±8 | [ | |
SRT=0.22d | 无 | — | 12±4 | 23±5 | 29±9 | ||
SRT=0.9d | 无 | — | 19±4 | — | 13±4 | [ | |
30mg·L-1 FeCl3 | — | — | — | 99 | |||
CEPT | — | 25mg·L-1 FeCl3 | — | 9.1 | 95 | — | [ |
动态膜过滤 | — | 无 | 22.9 | 8.7 | 14.5 | 5.8 | [ |
陶瓷膜过滤 | — | 15mg-Al·L-1 | — | 43.1 | 99.5 | — | [ |
正渗透 | — | 无 | 94.9 | 94.1 | 95.3 | — | [ |
1 | 曲久辉, 吴乾元, 穆杨, 等. 城市污水再生与循环利用的关键基础科学问题[J]. 中国基础科学, 2017, 19(1): 6-12. |
QU Jiuhui, WU Qianyuan, MU Yang, et al. Critical fundamental scientific problems in reclamation and reuse of municipal wastewater[J]. China Basic Science, 2017, 19(1): 6-12. | |
2 | METCALF, EDDY I. Wastewater engineering: treatment and reuse[M]. New York: McGraw-Hill, 2003. |
3 | MCCARTY P L, Jaeho BAE, KIM Jeonghwan. Domestic wastewater treatment as a net energy producer-can this be achieved[J]. Environmental Science & Technology, 2011, 45(17): 7100-7106. |
4 | BATSTONE D J, HULSEN T, MEHTA C M, et al. Platforms for energy and nutrient recovery from domestic wastewater: a review[J]. Chemosphere, 2015, 140: 2-11. |
5 | 沈耀良. 城市污水处理技术: 过去现在将来[J]. 苏州科技学院学报(工程技术版), 2018, 31(4): 1-13. |
SHEN Yaoliang. Municipal wastewater treatment: past, present and future[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2018, 31(4): 1-13. | |
6 | LI Wenwei, YU Hanqing, RITTMANN B E. Reuse water pollutants[J]. Nature, 2015, 528(7580): 29-31. |
7 | KHIEWWIJIT R, TEMMINK H, RIJNAARTS H, et al. Energy and nutrient recovery for municipal wastewater treatment: how to design a feasible plant layout[J]. Environmental Modelling & Software, 2015, 68: 156-165. |
8 | 郝晓地, 方晓敏, 李季, 等. 污水碳中和运行潜能分析[J]. 中国给水排水, 2018, 34(10): 11-16. |
HAO Xiaodi, FANG Xiaomin, LI Ji, et al. Analysis of potential in carbon-neutral operation of WWTPs[J]. China Water and Wastewater, 2018, 34(10): 11-16. | |
9 | XIONG Jiaqing, YU Shichun, HU Yisong, et al. Applying a dynamic membrane filtration (DMF) process for domestic wastewater preconcentration: organics recovery and bioenergy production potential analysis[J]. The Science of the Total Environment, 2019, 680: 35-43. |
10 | JIN Zhengyu, GONG Hui, TEMMINK H, et al. Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery[J]. Chemical Engineering Journal, 2016, 292: 130-138. |
11 | BOWEN E J, DOLFING J, DAVENPORT R J, et al. Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater[J]. Water Science & Technology, 2014, 69(5): 1004-1013. |
12 | LEVINE A D, TCHOBANOGLOUS G, ASANO T. Characterization of the size distribution of contaminants in wastewater: treatment and reuse implications[J]. Journal of Water Pollution Control Federation, 1985, 57(7): 805-816. |
13 | MEERBURG F A, BOON N, WINCKEL T V, et al. Live fast, die young: optimizing retention times in high-rate contact stabilization for maximal recovery of organics from wastewater[J]. Environmental Science & Technology, 2016, 50(17): 9781-9790. |
14 | RAHMAN A, MEERBURG F A, RAVADAGUNDHI S, et al. Bioflocculation management through high-rate contact-stabilization: a promising technology to recover organic carbon from low-strength wastewater[J]. Water Research, 2016, 104: 485-496. |
15 | FAUST L, TEMMINK H, ZWIJNENBURG A, et al. High loaded MBRs for organic matter recovery from sewage: effect of solids retention time on bioflocculation and on the role of extracellular polymers[J]. Water Research, 2014, 56: 258-266. |
16 | TABOADA-SANTOS A, RIBADULLA E, PAREDES L, et al. Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations[J]. Water Research, 2020, 169: 115285. |
17 | CHAKRABORTY T, GABRIEL M, AMIRI A S, et al. Carbon and phosphorus removal from primary municipal wastewater using recovered aluminum[J]. Environmental Science & Technology, 2017, 51(21): 12302-12309. |
18 | HE Pinjing, XUE Junfeng, SHAO Liming, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7): 1465-1473. |
19 | NIEUWENHUIJZEN A F VAN, GRAAF J H VAN DER, KAMPSCHREUR M J, et al. Particle related fractionation and characterisation of municipal wastewater[J]. Water Science & Technology, 2004, 50(12): 125-132. |
20 | NOGAI T M, RAHMAN A, MILLER M W, et al. Soluble substrate removal determination through intracellular storage in high-rate activated sludge systems using stoichiometric mass balance approach[J]. New Biotechnology, 2019, 52: 84-93. |
21 | RAHMAN A, DE CLIPPELEIR H, THOMAS W, et al. A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater[J]. Chemical Engineering Journal, 2019, 357: 737-749. |
22 | SANCHO I, LOPEZ-PALAU S, AREPACOCHAGA N, et al. New concepts on carbon redirection in wastewater treatment plants: a review[J]. Science of the Total Environment, 2019, 647: 1373-1384. |
23 | LATEEF S K, Bing Zheng SOH, KIMURA K. Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter[J]. Bioresource Technology, 2013, 150: 149-155. |
24 | MAGRAM S F, AZEEM M M A. Evaluation of the performance of dynamic sand filtration under real working conditions[J]. Research Journal of Environmental Sciences, 2008, 2(1): 52-57. |
25 | REMY C, BOULESTREAU M, LESJEAN B. Proof of concept for a new energy-positive wastewater treatment scheme[J]. Water Science & Technology, 2014, 70(10): 1709. |
26 | CAGNETTA C, SAERENS B, MEERBURG F A, et al. High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery[J]. Bioresource Technology, 2019, 291: 121833. |
27 | CHEN Yun, LIN Hui, SHEN Nan, et al. Phosphorus release and recovery from Fe-enhanced primary sedimentation sludge via alkaline fermentation[J]. Bioresource Technology, 2019, 278: 266-271. |
28 | MEERBURG F A, BOON N, WINCKEL T VAN, et al. Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics[J]. Bioresource Technology, 2015, 179: 373-381. |
29 | RAHMAN A, MOSQUERA M, THOMAS W, et al. Impact of aerobic famine and feast condition on extracellular polymeric substance production in high-rate contact stabilization systems[J]. Chemical Engineering Journal, 2017, 328: 74-86. |
30 | DE GRAAFF M S, BRANDTESSA T P H VAN DEN, ROEST K, et al. Full-scale highly-loaded wastewater treatment processes (A-stage) to increase energy production from wastewater: performance and design guidelines[J]. Environmental Engineering Science, 2016, 33: 571-577. |
31 | 邱慎初. 化学强化一级处理(CEPT)技术[J]. 中国给水排水, 2000(1): 26-29. |
QIU Shenchu. Overview of chemically enhanced primary treatment (CEPT)[J]. China Water and Wastewater, 2000(1): 26-29. | |
32 | WEI Hua, GAO Boqiang, REN Jie, et al. Coagulation/flocculation in dewatering of sludge: a review[J]. Water Research, 2018, 143: 608-631. |
33 | WANG Li, LIANG Wenyan, YU Jian, et al. Flocculation of microcystis aeruginosa using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11): 5771-5777. |
34 | 李立欣, 刘婉萌, 马放. 复合型微生物絮凝剂研究进展[J]. 化工学报, 2018, 69(10): 9-17. |
LI Lixin, LIU Wanmeng, MA Fang. Research advances in compound bioflocculant[J]. CIESC Journal, 2018, 69(10): 9-17. | |
35 | MATHIEU L, BENOIT B. Selection of media for the design of ballasted flocculation processes[J]. Water Research, 2018, 147: 25-32. |
36 | DESJARDINS R, DESJARDINS C, KOUDJONOU B. Laboratory study of ballasted flocculation[J]. Water Research, 2002, 36(3): 744-754. |
37 | 卞子敏, 袁林江. 初沉预处理在生活污水处理中的作用试验[J]. 环保科技, 2009(2): 38-40. |
BIAN Zimin, YUAN Linjiang. The experiment on the function of the pretreatment of the sediment tank in the treatment of domestic wastewater[J]. Environmental Technology, 2009(2): 38-40. | |
38 | 王社平, 鞠兴华, 彭党聪. 城市污水处理厂初沉池对污染物去除效果的研究[J]. 中国给水排水, 2006(5): 96-98. |
WANG Sheping, JU Xinhua, PENG Dangcong. Study on removal of pollutants from primary settling tanks of municipal wastewater treatment plant[J]. China Water and Wastewater, 2006(5): 96-98. | |
39 | 王东海, 文湘华. 低浓度生活污水化学强化一级处理的试验研究[J]. 给水排水, 1999(9): 10. |
WANG Donghai, WEN Xianghua. Research on chemical enhanced primary treatment of low concentration domestic wastewater[J]. Water and Wastewater Engineering, 1999 (9): 10. | |
40 | 黄天寅, 夏四清, 吴志平, 等. 上海合流一期污水混凝处理试验研究[J]. 苏州科技学院学报(工程技术版), 2004, 17(2): 6-10. |
HUANG Tianyin, XIA Siqing, WU Zhiping, et al. A study of treatment of Shanghai first-phase combined wastewater by coagulation[J]. Journal of Suzhou University of Science and Technology(Engineering and Technology), 2004, 17(2): 6-10. | |
41 | 张敬东, 徐金兰, 潘玲. 生活污水混凝处理试验研究[J]. 环境科学与技术, 2004(1): 34-35. |
ZHANG Jindong, XU Jinlan, PAN Ling. A study on flocculation of domestic wastewater[J]. Environmental Science Technology, 2004(1): 34-35. | |
42 | 亓化亮, 陈学民. 城镇污水混凝预处理及污泥厌氧消化试验研究[J]. 兰州交通大学学报, 2004(4): 41-44. |
QI Hualiang, CHEN Xuemin. A study on coagulation pretreatment and sludge anaerobic digestion of urban sewage[J]. Journal of Lanzhou Jiaotong University (Natural Sciences), 2004(4): 41-44. | |
43 | AIYUK S, AMOAKO J, RASKIN L, et al. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept[J]. Water Research, 2004, 38(13): 3031-3042. |
44 | 吴小宁. 城市污水混凝强化一级处理的研究[J]. 应用化工, 2005(6): 55-56. |
WU Xiaoning. Research in chemical enhanced primary treatment on municipal wastewater[J]. Applied Chemical Industry, 2005(6): 55-56. | |
45 | 刘海龙, 付晶淼, 郭雪峰. 农村污水阳离子聚丙烯酰胺强化絮凝研究[J]. 水处理技术, 2016(9): 37-40. |
LIU Hailong, FU Jinmiao, GUO Xuefeng. Study on enhanced dlocculation of rural sewage by cationic polyacrylamide[J]. Technology of Water Treatment, 2016(9): 37-40. | |
46 | PAL S, GHORAI S, DASH M K, et al. Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method[J]. Journal of Hazardous Materials, 2011, 192(3): 1580-1588. |
47 | BELTRÁN-HEREDIA J, SÁNCHEZ-MARTÍN J. Municipal wastewater treatment by modified tannin flocculant agent[J]. Desalination, 2009, 249(1): 353-358. |
48 | ZHAO Qingliang, ZHONG Huiyuan, WANG Kun, et al. Removal and transformation of organic matters in domestic wastewater during lab-scale chemically enhanced primary treatment and a trickling filter treatment[J]. Journal of Environmental Sciences, 2013, 25(1): 59-68. |
49 | Theam Yiew OOI, YONG Ee Ling, DIN M F M, et al. Optimization of aluminium recovery from water treatment sludge using response surface methodology[J]. Journal of Environmental Management, 2018, 228: 13-19. |
50 | ZHAO Zhenye, GU Jidong, LI Haibo, et al. Disinfection characteristics of the dissolved organic fractions at several stages of a conventional drinking water treatment plant in Southern China[J]. Journal of Hazardous Materials, 2009, 172: 1093-1099. |
51 | LIU Zhouzhou, WEI Hua, LI Aimin, et al. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant[J]. Water Research, 2017, 118: 160-166. |
52 | GUO Kangying, GAO Baoyu, WANG Wenyu, et al. Evaluation of molecular weight, chain architectures and charge densities of various lignin-based flocculants for dye wastewater treatment[J]. Chemosphere, 2019, 215: 214-226. |
53 | LI Ruihua, GAO Baoyu, SUN Shenglei, et al. Coagulation behavior and floc structure characteristics of cationic lignin-based polymer-polyferric chloride dual-coagulants under different coagulation conditions[J]. RSC Advanced, 2015, 5(121): 100030-100038. |
54 | 潘旭东, 徐海波, 魏文宇. 载体絮凝技术的应用与发展现状[J]. 中国给水排水, 2007, 23(8): 1-4. |
PAN Xudong, XU Haibo, WEI Wenyu. Application and development status of ballasted flocculation technology[J]. China Water and Wastewater, 2007, 23(8): 1-4. | |
55 | LANDON S, DONAHUE C, JEYANAYAGAM S, et al. Rain check: columbus, Ohio, considers ballasted flocculation to treat its wet weather flows[J]. Journal of Water and Environment Technology, 2006, 18(7): 30-35. |
56 | HÖG A, LUDWIG J, BEERY M. The use of integrated flotation and ceramic membrane filtration for surface water treatment with high loads of suspended and dissolved organic matter[J]. Journal of Water Process Engineering, 2015, 6: 126-135. |
57 | WATSON K, FARRE M J, KNIGHT N. Enhanced coagulation with powdered activated carbon or MIEX® secondary treatment: a comparison of disinfection by-product formation and precursor removal[J]. Water Research, 2015, 68: 454-466. |
58 | 董丽华, 刘文君, 蒋仁甫, 等. 给水深度处理活性炭的孔隙结构特征探讨[J]. 给水排水. 2014, 50(1): 91-94. |
DONG Lihua, LIU Wenjun, JIANG Renfu, et al. Study on structure characteristics of activated carbon for advanced treatment water supply[J]. Water and Wastewater Engineering, 2014, 50(1): 91-94. | |
59 | XU Guoren, ZHANG W T, LI Guibai. Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment[J]. Water Research, 2005, 39(20): 5175-5185. |
60 | 任建新. 膜分离技术及其应用[M]. 北京: 化学工业出版社, 2003. |
REN Jianxin. Membrane separation technology and its application[M]. Beijing: Chemical Industry Press, 2003. | |
61 | HUANG Baocheng, GUAN Yanfang, CHEN Wei, et al. Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment[J]. Water Research, 2017, 123: 216-223. |
62 | PRAMANIK B K, SHU Li, JEGATHEESAN V, et al. Effect of the coagulation/persulfate pre-treatment to mitigate organic fouling in the forward osmosis of municipal wastewater treatment[J]. Journal of Environmental Management, 2019, 249: 109394. |
63 | ZHAO Yanxia, LI Pu, LI Ruohong, et al. Direct filtration for the treatment of the coagulated domestic sewage using flat-sheet ceramic membranes[J]. Chemosphere, 2019, 223: 383-390. |
64 | LEI Zhen, YANG Shuming, LI Yuyou, et al. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: a review of achievements, challenges, and perspectives[J]. Bioresource Technology, 2018, 267: 756-768. |
65 | 杨彤, 张和田, 郭冀峰, 等. PVDF膜的亲水改性及其抗污染性能的研究新进展[J]. 应用化工, 2019, 48(1): 180-183. |
YANG Tong, ZHANG Hetian, GUO Jifeng, et al. The research progress of hydrophilic modification and antifouling properties of PVDF membrane[J]. Applied Chemical Industry, 2019, 48(1): 180-183. | |
66 | FAN Bin, HUANG Xia. Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment[J]. Environmental Science & Technology, 2002, 36(23): 5245-5251. |
67 | GAO Yue, FANG Zhou, CHEN Cheng, et al. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment[J]. Bioresource Technology, 2020, 307: 123254. |
68 | LI M, WANG X, PORTER C J, et al. Concentration and recovery of dyes from textile wastewater using a self-standing, support-free forward osmosis membrane[J]. Environmental Science & Technology, 2019, 53(6): 3078-3086. |
69 | 李刚, 李雪梅, 柳越, 等. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 22(5): 812-821. |
LI Gang, LI Xuemei, LIU Yue, et al. Forward osmosis and concentration polarization[J]. Progress in Chemistry, 2010, 22(5): 812-821. | |
70 | VINARDELL S, ASTALS S, MATA-ALVAREZ J, et al. Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production[J]. Bioresource Technology, 2020, 297: 122395. |
71 | ANSARI A J, HAI F I, PRICE W E, et al. Forward osmosis as a platform for resource recovery from municipal wastewater - a critical assessment of the literature[J]. Journal of Membrane Science, 2017, 529: 195-206. |
72 | LI Meng, LI Kun, WANG Lianjun, et al. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: performance and economic evaluation[J]. Water Research, 2020, 172: 115488. |
73 | ZOU Shiqiang, HE Zhen. Electrodialysis recovery of reverse-fluxed fertilizer draw solute during forward osmosis water treatment[J]. Chemical Engineering Journal, 2017, 330: 550-558. |
74 | GAO Yue, FANG Zhou, LIANG Peng, et al. Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior[J]. Bioresource Technology, 2017, 247: 730-735. |
75 | 方舟, 高悦, 梁鹏, 等. 正渗透膜浓缩生活污水效果及膜过程特性[J]. 中国给水排水, 2015, 31(5): 40-44. |
FANG Zhou, GAO Yue, LIANG Peng, et al. Membrane process and performance of forward osmosis for concentrating synthetic sewage[J]. China Water and Wastewater, 2015, 31(5): 40-44. | |
76 | CAGNETTA C, COMA M, VLAEMINCK S E, et al. Production of carboxylates from high rate activated sludge through fermentation[J]. Bioresource Technology, 2016, 217: 165-172. |
77 | LIN Lin, Longhang TAM, XIA Xue, et al. Electro-fermentation of iron-enhanced primary sedimentation sludge in a two-chamber bioreactor for product separation and resource recovery[J]. Water Research, 2019, 157: 145-154. |
78 | LIN Lin, LI Xiaoyan. Effects of pH adjustment on the hydrolysis of Al-enhanced primary sedimentation sludge for volatile fatty acid production[J]. Chemical Engineering Journal, 2018, 346: 50-56. |
79 | CHEN Yaoning, WU Yanxin, WANG Dongbo, et al. Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge[J]. Chemical Engineering Journal, 2018, 334: 1351-1360. |
80 | GE Huoqing, BATSTONE D J, MOUICHE M, et al. Nutrient removal and energy recovery from high-rate activated sludge processes – impact of sludge age[J]. Bioresource Technology, 2017, 254: 1155-1161. |
81 | GE Zheng, ZHANG Fei, GRIMAUD J, et al. Long-term investigation of microbial fuel cells treating primary sludge or digested sludge[J]. Bioresource Technology, 2013, 136: 509-514. |
82 | 邵立明, 李天水, 王天烽, 等. 剩余污泥热水溶性有机物的提取方法优化研究[J]. 环境科学研究, 2014, 27(1): 71-77. |
SHAO Liming, LI Tianshui, WANG Tianfeng, et al. Optimization for extraction of hot water-soluble organic matter from waste activated sludge[J]. Research of Environmental Sciences, 2014, 27(1): 71-77. | |
83 | GARCÍA M, URREA J L, COLLADO S, et al. Protein recovery from solubilized sludge by hydrothermal treatments[J]. Waste Management, 2017, 67: 278-287. |
84 | BORA A P, GUPTA D P, DURBHA K S. Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel[J]. Fuel, 2020, 259: 116262. |
85 | Jongkeun LEE, SOHN Donghwan, Kwanyong LEE, et al. Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant[J]. Chemosphere, 2019, 230: 157-163. |
86 | LIN Yousheng, MA Xiaoqian, PENG Xiaowei, et al. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior[J]. Bioresource Technology, 2017, 243: 539-547. |
87 | BILLER P, JOHANNSEN I, PASSOS J S DOS, et al. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction[J]. Water Research, 2018, 130: 58-68. |
88 | LI Rundong, MA Zhiming, YANG Tianhua, et al. Sub-supercritical liquefaction of municipal wet sewage sludge to produce bio-oil: effect of different organic-water mixed solvents[J]. The Journal of Supercritical Fluids, 2018, 138: 115-123. |
89 | ZHU W, XU Zhirong, LI L, et al. The behavior of phosphorus in sub- and super-critical water gasification of sewage sludge[J]. Chemical Engineering Journal, 2011, 171(1): 90-196. |
90 | AMRULLAH A, MATSUMURA Y. Supercritical water gasification of sewage sludge in continuous reactor[J]. Bioresource Technology, 2018, 249: 276-283. |
91 | KUAN Yong Hao, WU Fang Hsien, CHEN Guan Bang, et al. Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends[J]. Energy, 2020, 201: 117559. |
92 | MEI Zhenfei, CHEN Dezhen, ZHANG Jixuan, et al. Sewage sludge pyrolysis coupled with self-supplied steam reforming for high quality syngas production and the influence of initial moisture content[J]. Waste Management, 2020, 106: 77-87. |
93 | WANG Chenyu, ZHU Wei, GONG Miao, et al. Influence of H2O2 and Ni catalysts on hydrogen production and PAHs inhibition from the supercritical water gasification of dewatered sewage sludge[J]. The Journal of Supercritical Fluids, 2017, 130: 183-188. |
94 | HU Yanjun, XIA Yuanyuan, DI MAIO F, et al. Investigation of polycyclic aromatic hydrocarbons (PAHs) formed in three-phase products from the pyrolysis of various wastewater sewage sludge[J]. Journal of Hazardous Materials, 2020, 389: 122045. |
95 | MANNINA G, PRESTI D, MONTIEL-JARILLO G, et al. Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures[J]. Bioresource Technology, 2019, 282: 361-369. |
96 | XUE Weiqi, ZENG Qian, LIN Sen, et al. Recovery of high-value and scarce resources from biological wastewater treatment: sulfated polysaccharides[J]. Water Research, 2019, 163: 114889. |
97 | MATASSA S, BATSTONE D J, HÜLSEN T, et al. Can direct conversion of used nitrogen to new feed and protein help feed the world[J]. Environmental Science & Technology, 2015, 49(9): 5247-5254. |
98 | CHOI Oh Kyung, Kwanhyoung LEE, PARK Ki Young, et al. Pre-recovery of fatty acid methyl ester (FAME) and anaerobic digestion as a biorefinery route to valorizing waste activated sludge[J]. Renewable Energy, 2017, 108: 548-554. |
99 | ALLOUL A, GANIGUÉ R, SPILLER M, et al. Capture-ferment-upgrade: a three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742. |
100 | BOLZONELLA D, PAVAN P, BATTISTONI P, et al. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process[J]. Process Biochemistry, 2005, 40(3/4): 1453-1460. |
101 | SHAO Liming, WANG Guanzhao, XU Huacheng, et al. Effects of ultrasonic pretreatment on sludge dewaterability and extracellular polymeric substances distribution in mesophilic anaerobic digestion[J]. Journal of Environmental Sciences, 2010, 22(3): 474-480. |
102 | LATID M A, MEHTA C M, BASTONE D J, Influence of low pH on continuous anaerobic digestion of waste activated sludge[J]. Water Research, 2017, 113: 42-49. |
103 | LI Xiang, YUAN Yan, HUANG Yong, et al. Transformation and migration of phosphorus in excess sludge reduction pretreatment by alkaline ferrate oxidation combined with anaerobic digestion[J]. Journal of Environmental Sciences, 2020, 92: 224-234. |
104 | CHEN Huihui, RAO Yue, CAO Leichang, et al. Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields[J]. Chemical Engineering Journal, 2019, 357: 367-375. |
105 | 张胜, 许海凤, 张盼月, 等. 金属铁铝对混凝强化初沉污泥中温厌氧消化的影响[J]. 环境工程学报, 2014, 8(2): 735-739. |
ZHANG Sheng, XU Haifeng, ZHANG Panyue, et al. Effect of iron and aluminium content on anaerobic digestion of primary sludge enhanced by coagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 735-739. | |
106 | SHENG Guoping, XU Juan, LI Weihua, et al. Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge[J]. Chemosphere, 2013. 93(7): 1436-1441. |
107 | DENTEL S K, GOSSETT J M. Effect of chemical coagulation on anaerobic digestibility of organic materials[J]. Water Research, 1982. 16(5): 707-718. |
108 | JU Feng, WANG Yubo, LAU F T K, et al. Anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge and the microbial community structure[J]. Applied Microbiology & Biotechnology, 2016, 100(20): 8975-8982. |
109 | CHU C P, LEE D J, CHANG B, et al. Anaerobic digestion of polyelectrolyte flocculated waste activated sludge[J]. Chemosphere. 2003, 53(7): 757-764. |
110 | LIU Zhouzhou, HUANG Mu, LI Aimin. et al. Flocculation and antimicrobial properties of a cationized starch[J]. Water Research, 2017, 119: 57-66. |
111 | DAI Xiaohu, XU Ying, DONG Bin. Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge[J]. Water Research, 2017, 115: 220-228. |
112 | LIN Lin, LI Ruohong, LI Xiaoyan. Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation[J]. Journal of Cleaner Production, 2018, 172: 3334-3341. |
113 | LIN Lin, LI Xiaoyan. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids[J]. Chemosphere, 2018. 194: 692-700. |
114 | GAO Yue, FANG Zhou, LIANG Peng, et al. Anaerobic digestion performance of concentrated municipal sewage by forward osmosis membrane: focus on the impact of salt and ammonia nitrogen[J]. Bioresource Technology, 2019, 276: 204-210. |
115 | 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J]. 中国给水排水, 2014, 30(22): 1-5. |
HAO Xiaodi, CHEN Huiqin, HU Yuansheng. International pioneer of carbon-neutral operation of wastewater treatment: a case study at strass in Austria[J]. China Water and Wastewater, 2014, 30(22): 1-5. | |
116 | WANG Hongtao, LI Fengting, KELLER A A, et al. Chemically enhanced primary treatment (CEPT) for removal of carbon and nutrients from municipal wastewater treatment plants: a case study of Shanghai[J]. Water Science & Technology, 2009, 60(7): 1803-1809. |
117 | LIN Lin, LI Ruohong, LI Yun, et al. Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation[J]. Process Biochemistry, 2017, 54: 135-139. |
118 | LI Wanxin, ZHANG Xiangru, LI Xiaoyan, et al. Mystery of the high chlorine consumption in disinfecting a chemically enhanced primary saline sewage[J]. Water Research, 2018, 145: 181-189. |
119 | ROLDAN M, BOUZAS A, SECO A, et al. An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses[J]. Water Research, 2020, 175: 115647. |
120 | LIANG Sha, CHEN Haoming, ZENG Xiaohui, et al. A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash[J]. Water Research, 2019, 159: 242-251. |
121 | 徐婷, 李勇, 朱怡嘉, 等. 以膜分离为主的物化法对城市污水中污染因子的去除特性分析[J]. 环境科学, 2019, 40(3): 1353-1359. |
XU Ting, LI Yong, ZHU Yijia, et al. Assessing performance of pollutant removal from municipal wastewater by physical and chemical methods based on membranes[J]. Environmental Science, 2019, 40(3): 1353-1359. | |
122 | 张淮巽, 袁怡, 王旭东, 等. 混合无机盐汲取液在城市污水正渗透浓缩技术中的应用[J]. 环境工程学报, 2020, 14(6): 1111-1118. |
ZHANG Huaixun, YUAN Yi, WANG Xudong, et al. Application of mixing inorganic salt as draw solution in forward osmosis concentration technology[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1111-1118. | |
123 | LI Xiang, YUAN Yan, HUANG Yong, et al. Inhibition of nitrite oxidizing bacterial activity based on low nitrite concentration exposure in an auto-recycling PN-Anammox process under mainstream conditions[J]. Bioresource Technology, 2019, 281: 303-308. |
124 | ZHANG Hao, BI Zhen, PAN Yang, et al. Enhanced phosphorus storage in suspended biofilm by increasing dissolved oxygen[J]. Science of the Total Environment, 2020, 722: 137876. |
[1] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[2] | 钟传蓉, 冯明石, 曾光玉, 黄晶晶, 何希高. 页岩压裂返排液的预处理及絮凝剂的溶液结构[J]. 化工进展, 2022, 41(9): 5109-5114. |
[3] | 张华, 刘光全, 张晓飞, 罗臻. 电脱盐废水稳定性分析及破乳技术[J]. 化工进展, 2022, 41(9): 5047-5054. |
[4] | 朱晓, 朱军勇, 张亚涛. 金属有机骨架/聚酰胺薄层纳米复合膜的研究进展[J]. 化工进展, 2022, 41(8): 4314-4326. |
[5] | 相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408. |
[6] | 王志, 原野, 生梦龙, 李庆华. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
[7] | 高逸飞, 易群, 齐凯, 高丽丽, 李雪莲. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
[8] | 张逸, 刘东昊, 丁一刚. 膜技术分离稀土金属元素的研究进展[J]. 化工进展, 2022, 41(10): 5567-5577. |
[9] | 方静, 安志伟, 朱田震, 姚光源, 何爱珍, 陶蕾, 于德泽, 赵新星, 张丽锋, 秦立娟, 张迪彦, 李春利, 李浩. 压裂返排液中不同铁基电极除硼性能的影响与分析[J]. 化工进展, 2022, 41(1): 461-467. |
[10] | 王一茹, 宋小三, 王三反, 范文江. 太阳能电絮凝技术在水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 373-379. |
[11] | 李志录, 王敏, 赵有璟, 彭正军, 白露. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
[12] | 林少华, 武海霞, 高莉苹, 俞乙平. 改性碳纳米管及其复合材料在废水处理中的应用现状及展望[J]. 化工进展, 2021, 40(6): 3466-3479. |
[13] | 蔡的, 李树峰, 司志豪, 秦培勇, 谭天伟. 生物丁醇分离技术的研究进展及发展趋势[J]. 化工进展, 2021, 40(3): 1161-1177. |
[14] | 李春利, 程永辉, 李浩. 精馏-吸附-膜分离耦合工艺制备高纯度酒精流程模拟[J]. 化工进展, 2021, 40(3): 1354-1361. |
[15] | 张兰河, 袁镇涛, 赵浩杰, 赵君田, 祝艺宁, 陈子成, 贾艳萍, 田书磊. 外加电流对AO工艺缺氧区脱氮效率与污泥絮凝的影响[J]. 化工进展, 2021, 40(11): 6369-6377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |