化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1634-1642.DOI: 10.16085/j.issn.1000-6613.2020-0836
孙浩1(), 何雪英2, 胡一超1, 刘哲艺1, 张瑛洁1()
收稿日期:
2020-05-15
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
张瑛洁
作者简介:
孙浩(1996—),男,硕士研究生,研究方向为海洋科学。E-mail:基金资助:
SUN Hao1(), HE Xueying2, HU Yichao1, LIU Zheyi1, ZHANG Yingjie1()
Received:
2020-05-15
Online:
2021-03-05
Published:
2021-03-17
Contact:
ZHANG Yingjie
摘要:
近年来,饮用水源水中铁、锰、氨氮复合污染的问题越来越普遍。地表水中铁、锰伴生氨氮超标的现象呈现季节性,且多发生在水库水体中,对人们的日常饮用水安全造成威胁。本文首先分析了复合污染产生的原因、危害,简单介绍了常用的处理方法及局限性,阐述了铁锰活性氧化膜接触催化氧化法的由来、氧化膜的作用机理、成熟滤料的制备过程、对污染物的去除特性及催化活性恢复等内容。重点分析了目前已有的两种反应机理,分别是活化分子氧的氧自由基理论和氧化物表面活性锰的氧化理论。最后,指出了接触催化氧化法形成与作用机理的研究仍需深入,对下一步的探索进行了展望,提出了络合催化加速滤膜成熟的设想,并认为该方法在未来具有较大的发展潜力和广阔的应用前景。
中图分类号:
孙浩, 何雪英, 胡一超, 刘哲艺, 张瑛洁. 铁锰氧化膜同步除微污染地表水铁锰氨氮研究进展[J]. 化工进展, 2021, 40(3): 1634-1642.
SUN Hao, HE Xueying, HU Yichao, LIU Zheyi, ZHANG Yingjie. Research progress of iron-manganese oxide film simultaneous removal of iron manganese and ammonia nitrogen from micro-polluted surface water[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1634-1642.
除铁除锰常用方法 | 作用原理 | 优点 | 不足 |
---|---|---|---|
自然氧化法[ | 通过曝气充氧将Fe2+氧化成Fe3+后以Fe(OH)3形式析出;锰的去除还需在曝气的基础上投加碱以提高pH。然后通过沉淀、过滤去除 | 方法简单 | 工艺流程复杂,二价锰需在一定pH范围内才能被氧化沉淀去除,水体pH过高,需进行酸化处理,增加了处理成本和管理难度 |
接触氧化法[ | 二价铁、锰经曝气后被氧化成高价氢氧化物附着在滤料表面形成活性滤膜,能吸附水中铁锰并溶解氧化而形成新的活性物质 | 对铁、锰的去除效果好 | 铁的快速氧化影响锰的氧化过程,设计两级曝气使得流程复杂,运行费用增加;且有效的锰质滤膜难以形成并稳定 |
生物法[ | 锰氧化细菌具有氧化锰的能力。培养锰氧化细菌,利用曝气+生物滤池可以实现铁、锰的同步去除 | 生物法相对于自然氧化和接触氧化,能实现更好的锰去除效果 | 功能微生物的生长繁殖易受环境影响;具体成熟的工艺参数还需进一步确定 |
表1 除铁、锰常用方法及原理特点
除铁除锰常用方法 | 作用原理 | 优点 | 不足 |
---|---|---|---|
自然氧化法[ | 通过曝气充氧将Fe2+氧化成Fe3+后以Fe(OH)3形式析出;锰的去除还需在曝气的基础上投加碱以提高pH。然后通过沉淀、过滤去除 | 方法简单 | 工艺流程复杂,二价锰需在一定pH范围内才能被氧化沉淀去除,水体pH过高,需进行酸化处理,增加了处理成本和管理难度 |
接触氧化法[ | 二价铁、锰经曝气后被氧化成高价氢氧化物附着在滤料表面形成活性滤膜,能吸附水中铁锰并溶解氧化而形成新的活性物质 | 对铁、锰的去除效果好 | 铁的快速氧化影响锰的氧化过程,设计两级曝气使得流程复杂,运行费用增加;且有效的锰质滤膜难以形成并稳定 |
生物法[ | 锰氧化细菌具有氧化锰的能力。培养锰氧化细菌,利用曝气+生物滤池可以实现铁、锰的同步去除 | 生物法相对于自然氧化和接触氧化,能实现更好的锰去除效果 | 功能微生物的生长繁殖易受环境影响;具体成熟的工艺参数还需进一步确定 |
1 | RASHIMI Shadi, MODIN Oskar, MIJAKOVIC Ivan. Technologies for biological removal and recovery of nitrogen from wastewater[J]. Biotechnology Advances, 2020, 43: 107570. |
2 | YANG Wenbo. Relationship between ammonia nitrogen, iron, manganese and high acid salt index in the wastewater of Wengwei coal mine in Majiang County[J]. Chemical Engineering Design Communications, 2019, 49(1): 230. |
3 | ZHAO Rong, HUANG Zejin. Simultaneous removal engineering design and processing effects of ammonia nitrogen, iron and manganese from groundwater[J]. Waterences and Engineering Technology, 2018(6): 23-26. |
4 | ABESSER Corinna, ROBINSON Ruth, ROBINSON Ruth. Mobilisation of iron and manganese from sediments of a Scottish Upland reservoir[J]. Journal of Limnology, 2010, 69(1): 42-53. |
5 | NOORI Roohollah, BERNDTSSON Ronny, FRANKLIN Adamowski Jan, et al. Temporal and depth variation of water quality due to thermal stratification in Karkheh Reservoir, Iran[J]. Journal of Hydrology: Regional Studies, 2018, 19: 279-286. |
6 | ZENG Liqing, YANG Fan, YAN Changzhou, et al. High-resolution characterization of labile phosphorus, iron, and manganese in sediments of different trophic waters in Lake Taihu, China[J]. Water Science & Technology, 2018, 77(2): 286-295. |
7 | Herndon ELIZABETH M, Havig JEFF R, Singer DAVID M, et al. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2018, 231: 50-63. |
8 | NOWLIN Weston H, EVARTS Jennifer L, VANNI Michael J. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir[J]. Freshwater Biology, 2010, 50(2): 301-322. |
9 | GIBLIN Anne. Iron and manganese[J]. Encyclopedia of Inland Waters, 2009, 29(9): 35-44. |
10 | ZHANG Wei, ZHU Jianglong. Iron and manganese pollution in groundwater and its treatment methods[J]. Guangdong Chemical Industry, 2018, 45(18): 163-164, 153. |
11 | GHOSH Gopal Chandra, KHAN Jahed Hassan, CHAKRABORTY Tapos Kumar, et al. Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore, Bangladesh[J]. Entific Reports, 2020, 10(1): 818-825. |
12 | RAHMAN Mahbubur, UNICOMB Leanne, NASER Abu Mohd, et al. Effect of groundwater iron on residual chlorine in water treated with sodium dichloroisocyanurate tablets in rural Bangladesh[J]. American Journal of Tropical Medicine & Hygiene, 2018, 98(4): 977-983. |
13 | YANG Haiyang, YAN Zhongsen, DU Xing, et al. Removal of manganese from groundwater in the ripened sand fifiltration: biological oxidation versus chemical auto-catalytic oxidation[J]. Chemical Engineering Journal, 2020, 382: 123033. |
14 | MARSIDI Nuratiqah, HASAN Abu Hassimi, ABDULLAH Siti Rozaimah Sheikh. A review of biological aerated filters for iron and manganese ions removal in water treatment[J]. Journal of Water Process Engineering, 2018, 23: 1-12. |
15 | 李圭白, 杜星, 余华荣, 等. 关于创新与地下水除铁除锰技术发展的若干思考[J]. 给水排水, 2016, 52(8): 9-16. |
LI Guibai, DU Xing, YU Huarong, et al. Some thoughts on innovation and development of groundwater removal of iron and manganese[J]. Water & Wastewater, 2016, 52(8): 9-16. | |
16 | 张文龙, 刘云鹏, 冯江涛,等. 低浓度氨氮废水深度处理技术[J]. 工业水处理, 2019, 39(4): 13-19. |
ZHANG Wenlong, LIU Yunpeng, FENG Jiangtao, et al. Advanced treatment technology for low-concentration ammonia nitrogen wastewater[J]. Industrial Water Treatment, 2019, 39(4): 13-19. | |
17 | SCHENCK Kathleen M, SIVAGANESAN Mano, RICE Glenn E. Correlations of water quality parameters with mutagenicity of chlorinated drinking water samples[J]. Journal of Toxicology Environment Health, 2009, 72(7): 461-467. |
18 | HASAR Halil, UNSAL Sezahat A, IPEK Ubeyde, et al. Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate[J]. Journal of Hazardous Materials, 2009, 171(1-3): 309-317. |
19 | FIGDORE Bryce A, David STENSEL H, WINKLER Mari-Karoliina H. Bioaugmentation of sidestream nitrifying-denitrifying phosphorus-accumulating granules in a low-SRT activated sludge system at low temperature[J]. Water Research: A Journal of the International Water Association, 2018, 135: 241-250. |
20 | SUN Feng, WANG Zhi. Research progress of high concentrations ammonia nitrogen wastewater treatment technology[J]. China Resources Comprehensive Utilization, 2015, 33(4): 34-37. |
21 | MALKOV Vadim, SADAR Mike. Control of iron and manganese ozone removal by differential turbidity measurements[J]. Ozone Science & Engineering, 2010, 32(4): 286-291. |
22 | ZHAO Yuhua, LI Yanfeng, ZHANG Wenbo, et al. Influence of ammonia nitrogen on treatment of groundwater containing iron and manganese in aeration-contact oxidation filtration process[J]. Applied Mechanics & Materials, 2012, 170/173: 2414-2418. |
23 | 马文婕, 陈天虎, 陈冬,等. δ-MnO2/沸石纳米复合材料同时去除地下水中的铁锰氨氮[J]. 环境科学, 2019, 40(10): 4553-4561. |
MA Wenjie, CHEN Tianhu, CHEN Dong, et al. δ-MnO2/zeolite nanocomposite simultaneously removes iron, manganese and ammonia nitrogen in groundwater[J]. Environmental Science, 2019, 40(10): 4553-4561. | |
24 | YUAN Deyu, YANG Kai, ZHANG Rongyong, et al. Study on potassium permanganate for pretreatment of micro-polluted surface water[J]. China Water & Wastewater, 2005, 21(2): 59-60. |
25 | LI Dong, CAO Ruihua, YANG Hang, et al. Removal of high concentration of iron, manganese and ammonia nitrogen from low temperature groundwater using single bio-filter[J]. Environmental Science, 2017, 38(12): 5097-5105. |
26 | CHENG Qingfeng, HUANG Yang, ZHANG Jie, et al. Performance and microbial community profiles in pilot-scale biofilter for the simultaneous removal of ammonia, iron and manganese at different manganese concentrations[J]. Bioprocess and Biosystems Engineering, 2019, 42(5): 741-752. |
27 | 蔡言安, 李冬, 曾辉平, 等. 生物滤池净化含铁锰高氨氮地下水试验研究[J]. 中国环境科学, 2014, 34(8): 1993-1997. |
CAI Yanan, LI Dong, ZENG Huiping, et al. Biological filter purification, iron and manganese, high ammonia nitrogen, pipeline test[J]. China Environmental Science, 2014, 34(8): 1993-1997. | |
28 | HUANG Yang, LI Dong, ZENG Huiping, et al. Long-term operation and autotrophic nitrogen conversion process analysis in a biofilter that simultaneously removes Fe, Mn and ammonia from low-temperature groundwater[J]. Chemosphere, 2019, 222: 407-414. |
29 | SUBARI Fuzieah, KAMARUZZAMAN Mohd Aidil, SHEIKH ABDULLAH Siti Rozaimah, et al. Simultaneous removal of ammonium and manganese in slow sand biofilter (SSB) by naturally grown bacteria from lake water and its diverse microbial community[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6351-6358. |
30 | GUO Yingning, HUANG Tinglin, WEN Gang, et al. The simultaneous removal of ammonium and manganese from groundwater by iron-manganese co-oxide filter film: the role of chemical catalytic oxidation for ammonium removal [J]. Chemical Engineering Journal, 2017, 308: 322-329. |
31 | 白筱莉, 黄廷林, 张瑞峰,等. 铁锰复合氧化膜同步去除地表水中氨氮和锰[J]. 中国环境科学, 2017, 37(12): 4534-4540. |
BAI Xiaoli, HUANG Tinglin, ZHANG Ruifeng, et al. The iron-manganese composite oxide film simultaneously removes ammonia nitrogen and manganese in surface water[J]. China Environmental Science, 2017, 37(12): 4534-4540. | |
32 | 李圭白, 刘超. 地下水除铁除锰[M]. 北京:中国建筑工业出版社,1989. |
LI Guibai, LIU Chao. Removal of iron and manganese from groundwater[M]. Beijing: China Construction Industry Press, 1989. | |
33 | TAFFAREL Silvio R, RUBIO Jorge. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite[J]. Minerals Engineering, 2010, 23(14): 1131-1138. |
34 | HUANG Tinglin, CAO Xin, ZHANG Qian, et al. Catalytic oxidation of high-concentration ammonia in groundwater by a naturally formed co-oxide filter film[J]. Desalination and Water Treatment, 2014, 52(7-9):1615-1623. |
35 | 曹昕. 铁锰复合氧化物催化氧化去除地下水中氨氮研究[D]. 西安: 西安建筑科技大学, 2015. |
CAO Xin. Catalytic oxidation of iron-manganese composite oxide to remove ammonia nitrogen in groundwater[D]. Xi’an: Xi’an University of Architecture and Technology, 2015. | |
36 | CHENG Ya, HUANG Tinglin, SUN Yuankui, et al. Catalytic oxidation removal of ammonium from groundwater by manganese oxides filter: performance and mechanisms[J]. Chemical Engineering Journal, 2017, 322: 82-89. |
37 | 武俊槟, 黄廷林, 程亚, 等. 催化氧化除铁锰氨氮滤池快速启动的影响因素[J]. 中国环境科学, 2017, 37(3): 1003-1008. |
WU Junbin, HUANG Tinglin, CHENG Ya, et al. Influencing factors of fast start-up of catalytic oxidation iron, manganese, ammonia nitrogen filter[J]. China Environmental Science, 2017, 37(3): 1003-1008. | |
38 | 朱来胜, 黄廷林, 程亚, 等. 地下水中锰对接触氧化滤池快速启动的影响[J]. 中国给水排水, 2017, 33(21): 6-12. |
ZHU Laisheng, HUANG Tinglin, CHENG Ya, et al. The influence of manganese in groundwater on the rapid start-up of contact oxidation filter[J]. China Water & Wastewater, 2017, 33(21): 6-12. | |
39 | 朱来胜. 复合锰氧化物在滤料表面快速成膜条件优化[D]. 西安: 西安建筑科技大学, 2018. |
ZHU Laisheng. Optimization of rapid film formation conditions of composite manganese oxide on the surface of filter media[D]. Xi’an: Xi’an University of Architecture and Technology, 2018. | |
40 | 武俊槟, 黄廷林, 程亚. 同步去除水中铁、锰、氨氮滤池的快速启动与运行控制[J]. 中国给水排水, 2016(15): 20-25. |
WU Junbin, HUANG Tinglin, CHENG Ya. Rapid start-up and operation control of the filter for simultaneous removal of iron, manganese and ammonia nitrogen from water[J]. China Water & Wastewater, 2016(15): 20-25. | |
41 | 张蓓蓓. 铁锰复合氧化物活性滤料对地表水中氨氮的去除研究[D]. 西安: 西安建筑科技大学, 2017. |
ZHANG Beibei. Study on the removal of ammonia nitrogen in surface water by iron-manganese composite oxide active filter[D]. Xi’an: University of Architecture and Technology, 2017. | |
42 | 布浩, 黄廷林, 郭英明, 等. 活性滤膜去除地下水中氨氮的试验研究[J]. 中国环境科学, 2016, 36(4): 87-93. |
BU Hao, HUANG Tinglin, GUO Yingming, et al. Experimental study on the removal of ammonia nitrogen from groundwater by quartz sand surface active membrane[J]. China Environmental Science, 2016, 36(4): 87-93. | |
43 | TIAN Xuan, ZHANG Ruifeng, HUANG Tinglin, et al. The simultaneous removal of ammonium and manganese from surface water by MeOx: side effect of ammonium presence on manganese removal[J]. Journal of Environmental Sciences, 2019, 77(3): 346-353. |
44 | CHENG Ya, XIONG Weiyao, HUANG Tinglin. Catalytic oxidation removal of manganese from groundwater by iron-manganese co-oxide filter films under anaerobic conditions[J]. Science of The Total Environment, 2020, 737:139525. |
45 | ZHANG Ruifeng, HUANG Tinglin, WEN Gang, et al. Using iron-manganese co-oxide filter film to remove ammonium from surface water[J]. International Journal of Environmental Research & Public Health, 2017, 14(7): 1-12. |
46 | 陈永攀. 铁锰氧化物催化氧化去除地表水中氨氮的影响因素研究[D]. 西安: 西安建筑科技大学, 2017. |
CHEN Yongpan. Study on the influence factors of iron-manganese oxide catalytic oxidation to remove ammonia nitrogen in surface water[D]. Xi’an: Xi’an University of Architecture and Technology, 2017. | |
47 | 李海宁, 陈静, 李秋梅, 等. 铁锰复合氧化物包覆海砂的吸附除磷研究[J]. 环境科学学报, 2016, 36(3): 137-143. |
LI Haining, CHEN Jing, LI Qiumei, et al. Study on adsorption phosphorus removal of iron-manganese composite oxide-coated sea sand[J]. Acta Scientiae Circumstantiae, 2016, 36(3): 137-143. | |
48 | CHENG Ya, ZHANG Shasha, HUANG Tinglin, et al. Arsenite removal from groundwater by iron-manganese oxides filter media: behavior and mechanism[J]. Water Environment Research, 2019, 91: 536-545. |
49 | 张瑞峰. 复合锰氧化膜催化氧化去除地表水中氨氮/锰的中试试验研究[D]. 西安: 西安建筑科技大学, 2018. |
ZHANG Ruifeng. Pilot test study on the catalytic oxidation of composite manganese oxide film to remove ammonia nitrogen/manganese in surface water[D]. Xi’an: Xi’an University of Architecture and Technology, 2018. | |
50 | 纪银传, 庄金练, 曾华屹, 等. 梅岭水厂Ⅴ型滤池黑化石英砂滤料解决方案[J]. 城镇供水, 2010(1): 22-25. |
JI Yinchuan, ZHUANG Jinlian, ZENG Huayi, et al. The solutions of blackening quartz sand in Mei-Ling water plant V-filter[J]. Urban Water Supply, 2010(1): 22-25. | |
51 | GUO Yingming, HUANG Tinglin, WEN Gang, et al. Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide[J]. Journal of Environmental Sciences, 2015, 34: 20-27. |
52 | 郭英明, 黄廷林, 文刚, 等. 脱膜剂对石英砂表面活性滤膜脱膜效果比较[J]. 哈尔滨工业大学学报, 2016, 48(8): 91-95. |
GUO Yingming, HUANG Tinglin, WEN Gang, et al. Comparisons of the film peeling from the quartz sands filter using film peeling solvents [J]. Journal of Harbin Institute of Technology, 2016, 48(8): 91-95. | |
53 | ISLAM Md Aminul, MORTON David W, JOHNSON Bruce B, et al. Manganese oxides and their application to metal ion and contaminant removal from wastewater[J]. Journal of Water Process Engineering, 2018, 26: 264-280. |
54 | CHENG Ya, HUANG Tinglin, SHI Xinxin, et al. Removal of ammonium ion from water by Na-rich birnessite: performance and mechanisms[J]. Journal of Environmental ences, 2017, 57(7): 402-410. |
55 | ZHANG Lei, WANG Junli, QIAO Hongxia, et al. Synthesis of manganese oxides for adsorptive removal of ammonia nitrogen from aqueous solutions[J]. Journal of Cleaner Production, 2020, 272: 123005. |
56 | HUANG Tinglin, CAO Xin, WEN Gang, et al. The study on chemical adsorption of dissolved oxygen on naturally formed co-oxides filter film in aqueous solution: combined characterization of XPS and TPD[J]. Water Science & Technology Water Supply, 2015, 15(2): 411-420. |
57 | LI Yefei, ULRICH Aschauer, CHEN Jia, et al. Adsorption and reactions of O2 on anatase TiO2[J].Accounts of Chemical Research, 2014, 47(11): 3361-8. |
58 | HUANG Yu, LIU Yan, WANG Wei, et al. Oxygen vacancy–engineered δ-MnOx/activated carbon for room-temperature catalytic oxidation of formaldehyde[J]. Applied Catalysis B: Environmental, 2020(278): 119294. |
59 | 邵跃宗, 黄廷林, 史昕欣,等. 溶解氧浓度对石英砂滤料表面铁、锰氧化膜同步去除地下水氨氮和锰的影响[J]. 环境工程学报, 2016(11): 6159-6164. |
SHAO Yuezong, HUANG Tinglin, SHI Xinxin, et al. The influence of dissolved oxygen concentration on the simultaneous removal of ammonia nitrogen and manganese from groundwater by iron and manganese oxide film on the surface of quartz sand filter[J]. Environmental Engineering Journal, 2016(11): 6159-6164. | |
60 | 邵跃宗, 黄廷林, 史昕欣, 等. 地下水中二价锰对成熟石英砂滤层去除氨氮的影响[J]. 环境工程学报, 2016(12): 6893-6897. |
SHAO Yuezong, HUANG Tinglin, SHI Xinxin, et al. Effect of divalent manganese in groundwater on the removal of ammonia nitrogen from mature quartz sand filter[J]. Environmental Engineering Journal, 2016(12): 6893-6897. | |
61 | CHENG Ya, HUANG Tinglin, CHENG Lijie. Structural characteristic and ammonium and manganese catalytic activity of two types of filter media in groundwater treatment[J]. Journal of Environmental Sciences, 2018, 72(10): 91-99. |
62 | 汪洋, 黄廷林, 文刚, 等. 地下水中锰对滤料表面氧化膜去除氨氮的影响[J]. 环境工程学报, 2015,9(12): 93-100. |
WANG Yang, HUANG Tinglin, WEN Gang, et al. The effect of manganese in groundwater on the removal of ammonia and nitrogen by oxidation film on the surface of filter media[J]. Environmental Engineering Science, 2015, 9(12): 93-100. | |
63 | WANG Qian, LIAO Xianya, XU Wenqian, et al. Synthesis of birnessite in the presence of phosphate, silicate, or sulfate[J]. Inorganic Chemistry, 2016, 55: 10248-10258. |
64 | ZHONG Shifa, ZHANG Huichun. Mn(Ⅲ)-ligand complexes as a catalyst in ligand-assisted oxidation of substituted phenols by permanganate in aqueous solution[J]. Journal of Hazardous Materials, 2019, 384: 121401. |
65 | CHENG Ya, ZHANG Shasha, HUANG Tinglin, et al. Effects of coagulants on the catalytic properties of iron-manganese co-oxide filter films for ammonium and manganese removal from surface water[J]. Journal of Cleaner Production, 2019, 242: 118494. |
66 | ZHANG Ruifeng, HUANG Tinglin, WEN Gang, et al. Phosphate dosing to sustain the ammonium removal activity of an iron-manganese co-oxide filter film at pilot scale: Effects on chemical catalytic oxidation[J]. Chemical Engineering Journal, 2018, 334: 1186-1194. |
67 | ZHAO Hongbo. Treatment of manganese wastewater from titanium dioxide plant using complex phosphate[J]. Journal of Environmental Sciences, 2000(1): 122-126. |
68 | CHAI Lulu, ZHANG Linjie, WANG Xian, et al. Cube-shaped metal-nitrogen-carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction[J]. Carbon, 2020, 158: 719-727. |
69 | CAO Yuan, JIANG Jin, ZHOU Yang, et al. Does soluble Mn(Ⅲ) oxidant formed in situ account for enhanced transformation of triclosan by Mn(Ⅶ) in the presence of ligands?[J]. Environmental Science & Technology, 2018, 52(8): 4785-4793. |
70 | SANTOS V P, PEREIRA M F R, FIGUEIREDO J L, et al. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2010, 99(1-2): 353-363. |
71 | LIU Huan, LI Xiaoming, PENG Cailing, et al. Activating the lattice oxygen in (Bi0.5Co0.5)2O3 by vacancy modulation for efficient electrochemical water oxidation[J]. Journal of Materials Chemistry A, 2020, 8: 13150-13159. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[3] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[4] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[5] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[6] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[7] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[8] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[9] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[10] | 詹咏, 王慧, 韦婷婷, 朱星宇, 王先恺, 陈思思, 董滨. Mn2+强化臭氧调理对生物处理工艺的污泥原位减量效果[J]. 化工进展, 2023, 42(6): 3253-3260. |
[11] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[12] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[13] | 贺山明, 潘界昌, 徐国钻, 李文君, 梁勇. 粗钨酸钠溶液亚铁盐沉淀法除铬、钒的热力学分析及实验验证[J]. 化工进展, 2023, 42(4): 2171-2179. |
[14] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
[15] | 胡兆岩, 张景新, 何义亮. Fe负载污泥生物炭催化热解聚丙烯及产物特性[J]. 化工进展, 2023, 42(2): 631-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |