化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6395-6407.DOI: 10.16085/j.issn.1000-6613.2022-0404
高逸飞1,2(), 易群3, 齐凯1,2(), 高丽丽1,2(), 李雪莲1,2
收稿日期:
2022-03-16
修回日期:
2022-04-14
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
齐凯,高丽丽
作者简介:
高逸飞(1998—),男,硕士研究生,研究方向为气体分离纯化材料开发与设计。E-mail:1197182162@qq.com。
基金资助:
GAO Yifei1,2(), YI Qun3, QI Kai1,2(), GAO Lili1,2(), LI Xuelian1,2
Received:
2022-03-16
Revised:
2022-04-14
Online:
2022-12-20
Published:
2022-12-29
Contact:
QI Kai, GAO Lili
摘要:
氢气的生产、分离和储存已经成为世界绿色能源经济的重要组成部分。通过膜分离法从工业副产物中提纯氢气,不但操作简便,且显著降低了分离的能耗,是一种有前景的分离技术。金属有机框架(metal-organic frameworks,MOFs)因具有晶态、有序、明确的多孔结构和较大的比表面积,被认为是理想的气体分离膜材料。本文以MOFs基分离膜为研究对象,对比综述了MOFs膜的常规制备技术,总结了水热/溶剂热法、界面合成法、二次生长法和浇铸法的合成机理及应用。简述了在H2/CH4分离方面MOFs膜的设计原理及应用。针对MOFs膜当前存在的柔性、孔径、晶界结构、稳定性等问题,重点介绍了对制备方法与改良和对薄膜的后修饰策略,以期实现对MOFs膜性能的调控。最后,指出了目前该技术存在的难以大规模生产、分离性能不足的缺点,开发低成本的大规模生产方法同时提高薄膜的分离性能将会是未来MOFs膜实现工业应用的关键。
中图分类号:
高逸飞, 易群, 齐凯, 高丽丽, 李雪莲. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407.
GAO Yifei, YI Qun, QI Kai, GAO Lili, LI Xuelian. Research status and application in H2/CH4 separation of MOFs-based membrane[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407.
分离材料 | 孔径/Å | 设计原理 | 制备方法 | 分离条件/℃ | H2/CH4选择性 | H2通量/mol·m-2·s-1·Pa-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Cu2(bza)4(pyz) | 2 | 尺寸差异 | 粉末MOF沉积法 | RT | 19* | 6.88×10-9 | [ |
HKUST-1 | 9 | 极化率 | 晶种法 | RT | 5.9 | 1.0×10-6 | [ |
ZIF-7 | 3 | 尺寸差异 | 晶种法 | 20~200 | 5.9 | 8.0×10-8 | [ |
ZIF-8 | 3.4 | 尺寸差异 | 晶种法 | RT | 31.5 | 2.45×10-8 | [ |
ZIF-8 | 3.4 | 尺寸差异 | 晶种法 | RT | 4.0 | 4.80×10-7 | [ |
ZIF-8 | 3.4 | 尺寸差异 | 溶剂热法 | RT | 11.2 | 6.70×10-8 | [ |
ZIF-9 | 2.4 | 尺寸差异 | 非同源金属诱导 | RT | 7.6*/6.6 | 1.80×10-7 | [ |
ZIF-22 | 3 | 尺寸差异 | 溶剂热法 | 50 | 5.2 | 1.60×10-7 | [ |
ZIF-67 | 3.4 | 尺寸差异 | 非同源金属诱导 | RT | 45.4*/41.8 | 2.30×10-7 | [ |
ZIF-67 | 3.4 | 尺寸差异 | 非同源金属诱导 | RT | 6.6* | 2.48×10-7 | [ |
ZIF-90 | 3.5 | 尺寸差异 | 晶种法 | 25~225 | 15.3 | 2.50×10-7 | [ |
UiO-66 | 6 | 尺寸差异 | 溶剂热法 | RT | 3.9* | 6.11×10-8 | [ |
表1 MOFs膜对H2/CH4的分离性能
分离材料 | 孔径/Å | 设计原理 | 制备方法 | 分离条件/℃ | H2/CH4选择性 | H2通量/mol·m-2·s-1·Pa-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Cu2(bza)4(pyz) | 2 | 尺寸差异 | 粉末MOF沉积法 | RT | 19* | 6.88×10-9 | [ |
HKUST-1 | 9 | 极化率 | 晶种法 | RT | 5.9 | 1.0×10-6 | [ |
ZIF-7 | 3 | 尺寸差异 | 晶种法 | 20~200 | 5.9 | 8.0×10-8 | [ |
ZIF-8 | 3.4 | 尺寸差异 | 晶种法 | RT | 31.5 | 2.45×10-8 | [ |
ZIF-8 | 3.4 | 尺寸差异 | 晶种法 | RT | 4.0 | 4.80×10-7 | [ |
ZIF-8 | 3.4 | 尺寸差异 | 溶剂热法 | RT | 11.2 | 6.70×10-8 | [ |
ZIF-9 | 2.4 | 尺寸差异 | 非同源金属诱导 | RT | 7.6*/6.6 | 1.80×10-7 | [ |
ZIF-22 | 3 | 尺寸差异 | 溶剂热法 | 50 | 5.2 | 1.60×10-7 | [ |
ZIF-67 | 3.4 | 尺寸差异 | 非同源金属诱导 | RT | 45.4*/41.8 | 2.30×10-7 | [ |
ZIF-67 | 3.4 | 尺寸差异 | 非同源金属诱导 | RT | 6.6* | 2.48×10-7 | [ |
ZIF-90 | 3.5 | 尺寸差异 | 晶种法 | 25~225 | 15.3 | 2.50×10-7 | [ |
UiO-66 | 6 | 尺寸差异 | 溶剂热法 | RT | 3.9* | 6.11×10-8 | [ |
1 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
2 | SHEKHAH Osama, CHERNIKOVA Valeriya, BELMABKHOUT Youssef, et al. Metal–organic framework membranes: from fabrication to gas separation[J]. Crystals, 2018, 8(11): 412-467. |
3 | KOROS William J, ZHANG Chen. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
4 | ZHANG G L, Cussler E L. Hollow fibers as structured distillation packing[J]. Journal of Membrane Science, 2003, 215(1/2): 185-193. |
5 | YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal–organic framework[J]. Nature, 1995, 378(6558): 703-706. |
6 | FAIZ Rami, LI Kang. Polymeric membranes for light olefin/paraffin separation[J]. Desalination, 2012, 287: 82-97. |
7 | LI Hailian, EDDAOUDI Mohamed, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
8 | CHUI Stephen S Y, Samuel M F LO, CHARMANT Jonathan P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n [J]. Science, 1999, 283(5405): 1148-1150. |
9 | EDDAOUDI Mohamed, KIM Jaheon, ROSI Nathaniel, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
10 | QIAN Qihui, ASINGER Patrick A, LEE Moon Joo, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
11 | DENNY Michael S, MORETON Jessica C, BENZ Lauren, et al. Metal–organic frameworks for membrane-based separations[J]. Nature Reviews Materials, 2016, 1(12): 16078. |
12 | LI Xin, LIU Yuxin, WANG Jing, et al. Metal-organic frameworks based membranes for liquid separation[J]. Chemical Society Reviews, 2017, 46(23): 7124-7144. |
13 | ZOU Xiaoqin, ZHU Guangshan, ZHANG Feng, et al. Facile fabrication of metal–organic framework films promoted by colloidal seeds on various substrates[J]. CrystEngComm, 2010, 12(2): 352-354. |
14 | HERMES Stephan, Felicitas SCHRÖDER, CHELMOWSKI Rolf, et al. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111)[J]. Journal of the American Chemical Society, 2005, 127(40): 13744-13745. |
15 | CARO Juergen. Are MOF membranes better in gas separation than those made of zeolites?[J]. Current Opinion in Chemical Engineering, 2011, 1(1): 77-83. |
16 | GASCON Jorge, KAPTEIJN Freek, ZORNOZA Beatriz, et al. Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives[J]. Chemistry of Materials, 2012, 24(15): 2829-2844. |
17 | ZHUANG Jinliang, TERFORT Andreas, Christof WÖLL. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: a review[J]. Coordination Chemistry Reviews, 2016, 307: 391-424. |
18 | QIU Shilun, XUE Ming, ZHU Guangshan. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
19 | LIU Yunyang, Zhenfu NG, KHAN Easir A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous and Mesoporous Materials, 2009, 118(1/2/3): 296-301. |
20 | Helge BUX, LIANG Fangyi, LI Yanshuo, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
21 | CAO Fa, ZHANG Chunjuan, XIAO Yuanlong, et al. Helium recovery by a Cu-BTC metal-organic-framework membrane[J]. Industrial & Engineering Chemistry Research, 2012, 51(34): 11274-11278. |
22 | Jiangpu NAN, DONG Xueliang, WANG Wenjin, et al. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support[J]. Langmuir, 2011, 27(8): 4309-4312. |
23 | LIU Yunyang, HU Enping, KHAN Easir A, et al. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture[J]. Journal of Membrane Science, 2010, 353(1/2): 36-40. |
24 | KANG Zixi, XUE Ming, FAN Lili, et al. “Single nickel source” in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties[J]. Chemical Communications, 2013, 49(90): 10569-10571. |
25 | LI Yanshuo, LIANG Fangyi, Helge BUX, et al. Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity[J]. Angewandte Chemie International Edition, 2010, 49(3): 548-551. |
26 | VENNA Surendar R, CARREON Moises A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2010, 132(1): 76-78. |
27 | Helge BUX, FELDHOFF Armin, CRAVILLON Janosch, et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation[J]. Chemistry of Materials, 2011, 23(8): 2262-2269. |
28 | MAO Yiyin, CAO Wei, LI Junwei, et al. HKUST-1 membranes anchored on porous substrate by hetero MIL-110 nanorod array seeds[J]. Chemistry, 2013, 19(36): 11883-11886. |
29 | LIU Yi, WANG Nanyi, PAN Jiahong, et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates[J]. Journal of the American Chemical Society, 2014, 136(41): 14353-14356. |
30 | HUANG Aisheng, LIU Qian, WANG Nanyi, et al. Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets[J]. Journal of Materials Chemistry A, 2014, 2(22): 8246-8251. |
31 | HUANG Aisheng, Jürgen CARO. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity[J]. Angewandte Chemie International Edition, 2011, 50(21): 4979-4982. |
32 | HUANG Aisheng, DOU Wei, Jürgen CARO. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
33 | HUANG Aisheng, LIU Qian, WANG Nanyi, et al. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation[J]. Microporous and Mesoporous Materials, 2014, 192: 18-22. |
34 | LAI Zhiping, BONILLA Griselda, DIAZ Isabel, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
35 | FRIEBE Sebastian, GEPPERT Benjamin, STEINBACH Frank, et al. Metal–organic framework UIO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12878-12885. |
36 | BARANKOVA Eva, PRADEEP Neelakanda, PEINEMANN Klaus Viktor. Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate[J]. Chemical Communications, 2013, 49(82): 9419-9421. |
37 | RANJAN Rajiv, TSAPATSIS Michael. Microporous metal organic framework membrane on porous support using the seeded growth method[J]. Chemistry of Materials, 2009, 21(20): 4920-4924. |
38 | LI Yanshuo, Helge BUX, FELDHOFF Armin, et al. Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes[J]. Advanced Materials, 2010, 22(30): 3322-3326. |
39 | HU Yaoxin, DONG Xueliang, Jiangpu NAN, et al. Metal-organic framework membranes fabricated via reactive seeding[J]. Chemical Communications, 2011, 47(2): 737-739. |
40 | Jiangpu NAN, DONG Xueliang, WANG Wenjin, et al. Formation mechanism of metal–organic framework membranes derived from reactive seeding approach[J]. Microporous and Mesoporous Materials, 2012, 155: 90-98. |
41 | KASIK A, DONG X L, LIN Y S. Synthesis and stability of zeolitic imidazolate framework-68 membranes[J]. Microporous and Mesoporous Materials, 2015, 204: 99-105. |
42 | AMELOOT Rob, VERMOORTELE Frederik, VANHOVE Wim, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability[J]. Nature Chemistry, 2011, 3(5): 382-387. |
43 | LI Wanbin, ZHANG Yufan, XU Zehai, et al. Assembly of MOF microcapsules with size-selective permeability on cell walls[J]. Angewandte Chemie International Edition, 2016, 55(3): 955-959. |
44 | HE Ming, YAO Jianfeng, LI Lunxi, et al. Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method[J]. Microporous and Mesoporous Materials, 2013, 179: 10-16. |
45 | HUANG Kang, LI Qianqian, LIU Gongping, et al. A ZIF-71 hollow fiber membrane fabricated by contra-diffusion[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16157-16160. |
46 | KWON Hyuk Taek, JEONG Hae Kwon. In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation[J]. Journal of the American Chemical Society, 2013, 135(29): 10763-10768. |
47 | KWON Hyuk Taek, JEONG Hae Kwon. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth[J]. Chemical Communications, 2013, 49(37): 3854-3856. |
48 | YAO Jianfeng, DONG Dehua, LI Dan, et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate[J]. Chemical Communications, 2011, 47(9): 2559-2561. |
49 | SHEKHAH Osama, WANG Hui, KOWARIK Stefan, et al. Step-by-step route for the synthesis of metal-organic frameworks[J]. Journal of the American Chemical Society, 2007, 129(49): 15118-15119. |
50 | SHEKHAH Osama, WANG Hui, PARADINAS Markos, et al. Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy[J]. Nature Materials, 2009, 8(6): 481-484. |
51 | SHEKHAH Osama, SWAIDAN Raja, BELMABKHOUT Youssef, et al. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study[J]. Chemical Communications, 2014, 50(17): 2089-2092. |
52 | CHERNIKOVA Valeriya, SHEKHAH Osama, EDDAOUDI Mohamed. Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20459-20464. |
53 | HURRLE Silvana, FRIEBE Sebastian, WOHLGEMUTH Jonas, et al. Sprayable, large-area metal-organic framework films and membranes of varying thickness[J]. Chemistry - A European Journal, 2017, 23(10): 2294-2298. |
54 | YEHIA H, PISKLAK T J, FERRARIS J P, et al. Methane facilitated transport using copper(Ⅱ) biphenyl dicarboxylatetriethylenediamine/poly(3-acetoxyethylthiophene) mixed matrix membranes[J]. Polymeric Preprints, 2004, 45: 35-36. |
55 | YANG Tingxu, XIAO Youchang, CHUNG Tai Shung. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification[J]. Energy & Environmental Science, 2011, 4(10): 4171-4180. |
56 | SEOANE Beatriz, Carlos TÉLLEZ, CORONAS Joaquín, et al. NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation[J]. Separation and Purification Technology, 2013, 111: 72-81. |
57 | BASU Subhankar, MAES Michael, Angels CANO-ODENA, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks[J]. Journal of Membrane Science, 2009, 344(1-2): 190-198. |
58 | ZORNOZA Beatriz, Alberto MARTINEZ-JOARISTI, Pablo SERRA-CRESPO, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chemical Communications, 2011, 47(33): 9522-9524. |
59 | Tae-Hyun BAE, LEE Jong Suk, QIU Wulin, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angewandte Chemie International Edition, 2010, 49(51): 9863-9866. |
60 | LIN Rijia, GE Lei, HOU Lei, et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5609-5618. |
61 | Omid Ghaffari NIK, CHEN Xiao yuan, KALIAGUINE Serge. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2012, 413-414: 48-61. |
62 | REN Huiqing, JIN Jiaying, HU Jun, et al. Affinity between metal–organic frameworks and polyimides in asymmetric mixed matrix membranes for gas separations[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10156-10164. |
63 | TAKAMIZAWA Satoshi, TAKASAKI Yuichi, MIYAKE Ryosuke. Single-crystal membrane for anisotropic and efficient gas permeation[J]. Journal of the American Chemical Society, 2010, 132(9): 2862-2863. |
64 | GUO Hailing, ZHU Guangshan, HEWITT Ian J, et al. “Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2 [J]. Journal of the American Chemical Society, 2009, 131(5): 1646-1647. |
65 | MA Yingnan, SUN Yuxiu, YIN Jian, et al. A MOF membrane with ultrathin ZIF-8 layer bonded on ZIF-8 in-situ embedded PSf substrate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 273-283. |
66 | ZHANG Hangliao, WANG Xiaobin, WEI Luyang, et al. A simple seed-embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 222-231. |
67 | 年佩. Co基ZIF膜的设计制备及其渗透性能研究[D]. 大连: 大连理工大学, 2019. |
NIAN Pei. Preparation and permeation performance of Co-based ZIF membranes[D]. Dalian: Dalian University of Technology, 2019. | |
68 | HUANG Aisheng, Helge BUX, STEINBACH Frank, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angewandte Chemie International Edition, 2010, 49(29): 4958-4961. |
69 | ZHOU Sheng, WEI Yanying, HOU Jiamin, et al. Self-sacrificial template strategy coupled with smart in situ seeding for highly oriented metal-organic framework layers: from films to membranes[J]. Chemistry of Materials, 2017, 29(17): 7103-7107. |
70 | GHALEI Behnam, WAKIMOTO Kazuki, WU Chih Yi, et al. Rational tuning of zirconium metal-organic framework membranes for hydrogen purification[J]. Angewandte Chemie International Edition, 2019, 58(52): 19034-19040. |
71 | NABAVI Mohammad Sadegh, MOHAMMADI Toraj, KAZEMIMOGHADAM Mansoor. Hydrothermal synthesis of hydroxy sodalite zeolite membrane: separation of H2/CH4 [J]. Ceramics International, 2014, 40(4): 5889-5896. |
72 | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
73 | WANG Zhifang, ZHANG Sainan, CHEN Yao, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708-735. |
74 | ROWSELL Jesse L C, SPENCER Elinor C, ECKERT Juergen, et al. Gas adsorption sites in a large-pore metal-organic framework[J]. Science, 2005, 309(5739): 1350-1354. |
75 | HOU Qianqian, ZHOU Sheng, WEI Yanying, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020, 142(21): 9582-9586. |
76 | ZHOU Sheng, WEI Yanying, LI Libo, et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393. |
77 | GUO Yi, PENG Xinsheng. Mass transport through metal organic framework membranes[J]. Science China Materials, 2019, 62(1): 25-42. |
78 | BABU Deepu, HE Guangwei, VILLALOBOS Luis Francisco, et al. Crystal engineering of metal-organic framework thin films for gas separations[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 49-69. |
79 | BAN Yujie, LI Zhengjie, LI Yanshuo, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54(51): 15483-15487. |
80 | ZHANG Zhengqing, JIA Xuemeng, SUN Yuxiu, et al. Pore engineering of ZIF-8 with ionic liquids for membrane-based CO2 separation: bearing functional group effect[J]. Green Chemical Engineering, 2021, 2(1): 104-110. |
81 | DOU Haozhen, XU Mi, WANG Baoyu, et al. Microporous framework membranes for precise molecule/ion separations[J]. Chemical Society Reviews, 2021, 50(2): 986-1029. |
82 | WANG Nanyi, MUNDSTOCK Alexander, LIU Yi, et al. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation[J]. Chemical Engineering Science, 2015, 124: 27-36. |
83 | HUANG Aisheng, WANG Nanyi, KONG Chunlong, et al. Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance[J]. Angewandte Chemie International Edition, 2012, 51(42): 10551-10555. |
84 | YE Yingxiang, MA Zhenlin, LIN Ruibiao, et al. Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation[J]. Journal of the American Chemical Society, 2019, 141(9): 4130-4136. |
85 | WANG Yong, JIA Xiaoxia, YANG Huajun, et al. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C2 hydrocarbons and CO2 [J]. Angewandte Chemie International Edition, 2020, 59(43): 19027-19030. |
86 | LI Wanbin, ZHANG Yufan, ZHANG Congyang, et al. Transformation of metal-organic frameworks for molecular sieving membranes[J]. Nature Communications, 2016, 7: 11315. |
87 | BABU Deepu J, HE Guangwei, HAO Jian, et al. Restricting lattice flexibility in polycrystalline metal–organic framework membranes for carbon capture[J]. Advanced Materials, 2019, 31(28): 1900855. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[3] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[4] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[5] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[6] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[7] | 蔡铭威, 王知, 卢小闯, 庄俊伟, 吴嘉豪, 张诗洋, 闵永刚. 聚酰亚胺薄膜在氢气分离中的研究进展[J]. 化工进展, 2023, 42(10): 5232-5248. |
[8] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[9] | 方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962. |
[10] | 朱晓, 朱军勇, 张亚涛. 金属有机骨架/聚酰胺薄层纳米复合膜的研究进展[J]. 化工进展, 2022, 41(8): 4314-4326. |
[11] | 张雨珂, 刘倩, 段媛媛, 赵英杰, 崔阳, 史利娟, 李向远, 李剑川, 范海明, 易群. 基于MOFs材料的低碳烃(C1~C3)分离研究进展[J]. 化工进展, 2022, 41(8): 4288-4302. |
[12] | 祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
[13] | 唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
[14] | 王志, 原野, 生梦龙, 李庆华. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
[15] | 张珂, 屈小虎, 朱元军, 林建英, 赵志换, 樊惠玲. 研磨法制备金属有机框架材料的新进展[J]. 化工进展, 2022, 41(10): 5465-5473. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |