化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4254-4267.DOI: 10.16085/j.issn.1000-6613.2021-2040
收稿日期:
2021-09-28
修回日期:
2021-11-25
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
祖梅
作者简介:
祖梅(1984—),女,博士,副研究员,研究方向为仿生功能材料。E-mail:基金资助:
ZU Mei1(), XU Haitao1,2, XIE Wei2, CHENG Haifeng1
Received:
2021-09-28
Revised:
2021-11-25
Online:
2022-08-25
Published:
2022-08-22
Contact:
ZU Mei
摘要:
水蒸气广泛存在于空气和工业气体中,收集利用或去除水蒸气都需要利用高吸水储水的吸附剂。金属有机框架材料(metal-organic frameworks,MOFs)作为一种具有高孔隙率、高比表面积的新型多孔材料,同时具备网状结构和孔径可控调节的特性,被广泛应用于吸附、分离、催化、过滤等多个领域。将MOFs应用于水吸附领域不仅要求MOFs具备较高的水稳定性,还需要具备亲水和吸附-脱附循环能力。本文综述了水稳定性MOFs的基本组成,基于皮尔森软硬酸碱理论的设计原则,水吸附行为的影响因素以及空气集水、气体除湿等应用领域的进展,以饱和吸湿量为参考罗列了13种水吸附MOFs及其衍生物的物理参数。最后总结了水吸附MOFs在合成机理、批量制备和应用领域存在的问题,并对应提出了解决思路,期望为MOFs在水吸附应用的研究方向提供有价值的参考。
中图分类号:
祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267.
ZU Mei, XU Haitao, XIE Wei, CHENG Haifeng. Progress in water stable and water absorption applications of metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4254-4267.
MOFs名称 | 饱和吸附量/g?g-1 | 孔径/? | 配体 | 参考文献 |
---|---|---|---|---|
NU-1500-Cr | 1.02 | 14 | Triptycene | [ |
NU-1500-Fe | — | 14 | Triptycene | [ |
NU-1500-Sc | — | 14 | Triptycene | [ |
Cr-soc-MOF-1 | 1.95 | — | H4TCPT | [ |
MIL-101(Cr) | 1.40 | 29,34 | BDC | [ |
MIL-101(Cr)-NH2 | 1.05 | — | BDC-NH2 | [ |
MIL-101(Cr)-NO2 | 0.45 | — | BDC-NO2 | [ |
MIL-101(Cr)-SO3H | 0.95 | — | BDC-SO3H | [ |
UiO-66(Zr) | 0.36 | 7.4,8.4 | BDC | [ |
UiO-66(Zr)-NH2 | 0.36 | — | BDC-NH2 | [ |
(Mg)MOF-74 | 0.63 | 11.1 | DOT | [ |
(Ni)MOF-74 | 0.51 | — | DOT | [ |
(Co)MOF-74 | 0.49 | — | DOT | [ |
Ni-MOF-74-BPP | 0.81 | 17 | BPP | [ |
Ni-MOF-74-TPP | 0.9 | 23 | TPP | [ |
HV-MOF-1 | 0.59 | — | H2dcbp | [ |
LiCl@MIL-101(Cr) | 0.77 | — | BDC | [ |
(Al)MOF-303 | 1.30 | — | Fumarate | [ |
Ni2Cl2BTDD | 1.07 | 38 | H2BTDD | [ |
Ni2Br2BTDD | 0.76 | 38 | H2BTDD | [ |
Zr-MOF-808 | 0.74 | 18.4 | BTC | [ |
Zr-MOF-801 | 0.46 | 4.8,7.4 | Fumarate | [ |
BIT-66 | 0.55 | 65 | H3BTB | [ |
Y-shp-MOF-5 | 0.45 | 12 | BTEB | [ |
表1 MOFs在298K条件下的水吸附量
MOFs名称 | 饱和吸附量/g?g-1 | 孔径/? | 配体 | 参考文献 |
---|---|---|---|---|
NU-1500-Cr | 1.02 | 14 | Triptycene | [ |
NU-1500-Fe | — | 14 | Triptycene | [ |
NU-1500-Sc | — | 14 | Triptycene | [ |
Cr-soc-MOF-1 | 1.95 | — | H4TCPT | [ |
MIL-101(Cr) | 1.40 | 29,34 | BDC | [ |
MIL-101(Cr)-NH2 | 1.05 | — | BDC-NH2 | [ |
MIL-101(Cr)-NO2 | 0.45 | — | BDC-NO2 | [ |
MIL-101(Cr)-SO3H | 0.95 | — | BDC-SO3H | [ |
UiO-66(Zr) | 0.36 | 7.4,8.4 | BDC | [ |
UiO-66(Zr)-NH2 | 0.36 | — | BDC-NH2 | [ |
(Mg)MOF-74 | 0.63 | 11.1 | DOT | [ |
(Ni)MOF-74 | 0.51 | — | DOT | [ |
(Co)MOF-74 | 0.49 | — | DOT | [ |
Ni-MOF-74-BPP | 0.81 | 17 | BPP | [ |
Ni-MOF-74-TPP | 0.9 | 23 | TPP | [ |
HV-MOF-1 | 0.59 | — | H2dcbp | [ |
LiCl@MIL-101(Cr) | 0.77 | — | BDC | [ |
(Al)MOF-303 | 1.30 | — | Fumarate | [ |
Ni2Cl2BTDD | 1.07 | 38 | H2BTDD | [ |
Ni2Br2BTDD | 0.76 | 38 | H2BTDD | [ |
Zr-MOF-808 | 0.74 | 18.4 | BTC | [ |
Zr-MOF-801 | 0.46 | 4.8,7.4 | Fumarate | [ |
BIT-66 | 0.55 | 65 | H3BTB | [ |
Y-shp-MOF-5 | 0.45 | 12 | BTEB | [ |
1 | ZHOU H C, LONG J R, YAGHI O M. Introduction to metal–organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
2 | FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
3 | HÖNICKE I M, SENKOVSKA I, BON V, et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials[J]. Angewandte Chemie International Edition, 2018, 57(42): 13780-13783. |
4 | ZHOU H C, LONG J R, YAGHI O M, et al. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
5 | LI R, ZHANG W, ZHOU K. Metal–organic-framework-based catalysts for photoreduction of CO2 [J]. Advanced Materials, 2018, 30(35): e1705512. |
6 | LI D D, KASSYMOVA M, CAI X C, et al. Photocatalytic CO2 reduction over metal-organic framework-based materials[J]. Coordination Chemistry Reviews, 2020, 412: 213262. |
7 | 赵朝成, 吴光锐. MOFs复合材料催化降解水中有机污染物的应用研究进展[J]. 化工进展, 2019, 38(4): 1775-1784. |
ZHAO Chaocheng, WU Guangrui. Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1775-1784. | |
8 | LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(Ⅵ) elimination activities of the MOF-derivatives and their composites[J]. Chemical Engineering Journal, 2021, 405: 126648. |
9 | WANG J W, QIU F G, WANG P, et al. Boosted bisphenol A and Cr(Ⅵ) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light[J]. Journal of Cleaner Production, 2021, 279: 123408. |
10 | XUE D X, WANG Q, BAI J F. Amide-functionalized metal-organic frameworks: syntheses, structures and improved gas storage and separation properties[J]. Coordination Chemistry Reviews, 2019, 378: 2-16. |
11 | DING M L, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
12 | CADIAU A, BELMABKHOUT Y, ADIL K, et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration[J]. Science, 2017, 356(6339): 731-735. |
13 | BOYD P G, CHIDAMBARAM A, GARCÍA-DÍEZ E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
14 | DUAN J G, PAN Y C, LIU G P, et al. Metal-organic framework adsorbents and membranes for separation applications[J]. Current Opinion in Chemical Engineering, 2018, 20: 122-131. |
15 | LI L B, LIN R B, KRISHNA R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
16 | HOU J, ZHANG H C, SIMON G P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J]. Advanced Materials, 2020, 32(18): e1902009. |
17 | LIN R B, LI L B, ZHOU H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. |
18 | SILVA P, VILELA S M, TOMÉ J P, et al. Multifunctional metal-organic frameworks: from academia to industrial applications[J]. Chemical Society Reviews, 2015, 44(19): 6774-6803. |
19 | WANG X, ZHANG Y, CHANG Z, et al. Synergistically directed assembly of aromatic stacks based metal-organic frameworks by donor-acceptor and coordination interactions[J]. Chinese Journal of Chemistry, 2019, 37(9): 871-877. |
20 | KIM E J, SIEGELMAN R L, JIANG H Z H, et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks[J]. Science, 2020, 369(6502): 392-396. |
21 | ZHANG J, PEH S B, WANG J, et al. Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe3+ in aqueous solution[J]. Chemical Communications, 2019, 55(32): 4727-4730. |
22 | QIAO W Z, SONG T Q, ZHAO B. [Zn4O] Cluster-based metal-organic frameworks as catalysts for conversion of CO2 [J]. Chinese Journal of Chemistry, 2019, 37(5): 474-478. |
23 | KAYE S S, DAILLY A, YAGHI O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3 (MOF-5)[J]. Journal of the American Chemical Society, 2007, 129(46): 14176-14177. |
24 | CANIVET J, FATEEVA A, GUO Y M, et al. Water adsorption in MOFs: fundamentals and applications[J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. |
25 | WU Y F, LV Z, ZHOU X, et al. Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture[J]. Chemical Engineering Journal, 2019, 355: 815-821. |
26 | WANG C, LIU X, KESER DEMIR N, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45(18): 5107-5134. |
27 | COLOMBO V, GALLI S, CHOI H J, et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites[J]. Chemical Science, 2011, 2(7): 1311. |
28 | XUE D X, CAIRNS A J, BELMABKHOUT Y, et al. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake[J]. Journal of the American Chemical Society, 2013, 135(20): 7660-7667. |
29 | XUE D X, BELMABKHOUT Y, SHEKHAH O, et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction[J]. Journal of the American Chemical Society, 2015, 137(15): 5034-5040. |
30 | LOISEAU T, SERRE C, HUGUENARD C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry—A European Journal, 2004, 10(6): 1373-1382. |
31 | MILEO P G M, CHO K HO, PARK J, et al. Unraveling the water adsorption mechanism in the mesoporous MIL-100(Fe) metal–organic framework[J]. The Journal of Physical Chemistry C, 2019, 123(37): 23014-23025. |
32 | JEREMIAS F, KHUTIA A, HENNINGER S K, et al. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—A promising application[J]. J. Mater. Chem., 2012, 22(20): 10148-10151. |
33 | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
34 | DERIA P, CHUNG Y G, SNURR R Q, et al. Water stabilization of Zr6-based metal-organic frameworks via solvent-assisted ligand incorporation[J]. Chemical Science, 2015, 6(9): 5172-5176. |
35 | DERIA P, GÓMEZ-GUALDRÓN D A, BURY W, et al. Ultraporous, water stable, and breathing zirconium-based metal-organic frameworks with ftw topology[J]. Journal of the American Chemical Society, 2015, 137(40): 13183-13190. |
36 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
37 | KALMUTZKI M J, DIERCKS C S, YAGHI O M. Metal-organic frameworks for water harvesting from air[J]. Advanced Materials, 2018, 30(37): e1704304. |
38 | LI H L, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
39 | LIU T F, FENG D, CHEN Y P, et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area[J]. Journal of the American Chemical Society, 2015, 137(1): 413-419. |
40 | ZHANG M W, CHEN Y P, BOSCH M, et al. Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology[J]. Angewandte Chemie International Edition, 2014, 53(3): 815-818. |
41 | CADIAU A, LEE J S, DAMASCENO BORGES D, et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation[J]. Advanced Materials, 2015, 27(32): 4775-4780. |
42 | MOUCHAHAM G, COOPER L, GUILLOU N, et al. A robust infinite zirconium phenolate building unit to enhance the chemical stability of Zr MOFs[J]. Angewandte Chemie International Edition, 2015, 54(45): 13297-13301. |
43 | 陈小明. 金属-有机框架材料[M]. 北京: 化学工业出版社, 2017. |
CHEN Xiaoming. Metal-organic frameworks[M]. 2nd ed. Beijing: Chemical Industry Press, 2017. | |
44 | ZHANG J P, ZHANG Y B, LIN J B, et al. Metal azolate frameworks: from crystal engineering to functional materials[J]. Chemical Reviews, 2012, 112(2): 1001-1033. |
45 | PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
46 | ASSFOUR B, LEONI S, SEIFERT G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. The Journal of Physical Chemistry C, 2010, 114(31): 13381-13384. |
47 | MENG Y S, SHU L, XIE L H, et al. High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115: 331-338. |
48 | WANG L, WANG K C, AN H T, et al. A hydrolytically stable Cu(Ⅱ)-based metal–organic framework with easily accessible ligands for water harvesting[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49509-49518. |
49 | HE T, HUANG Z H, YUAN S, et al. Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(Ⅱ)-pyrazolate metal-organic framework[J]. Journal of the American Chemical Society, 2020, 142(31): 13491-13499. |
50 | BAI Y, DOU Y, XIE L H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. |
51 | YUAN S, FENG L, WANG K, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): e1704303. |
52 | 李竞草, 吴冬霞, 常丽萍, 等. 疏水性金属-有机骨架材料的研究进展[J]. 化工进展, 2020, 39(1): 224-232. |
LI Jingcao, WU Dongxia, CHANG Liping, et al. Research progress of hydrophobic metal-organic framework materials[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 224-232. | |
53 | TAYLOR J M, VAIDHYANATHAN R, IREMONGER S S, et al. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers[J]. Journal of the American Chemical Society, 2012, 134(35): 14338-14340. |
54 | NIJEM N, CANEPA P, KAIPA U, et al. Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework[J]. Journal of the American Chemical Society, 2013, 135(34): 12615-12626. |
55 | YANG C, KAIPA U, MATHER Q Z, et al. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. Journal of the American Chemical Society, 2011, 133(45): 18094-18097. |
56 | PAN T T, YANG K J, HAN Y. Recent progress of atmospheric water harvesting using metal-organic frameworks[J]. Chemical Research in Chinese Universities, 2020, 36(1): 33-40. |
57 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
58 | BURTCH N C, JASUJA H, WALTON K S. Water stability and adsorption in metal–organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
59 | ROSI N L, KIM J, EDDAOUDI M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J]. Journal of the American Chemical Society, 2005, 127(5): 1504-1518. |
60 | KÜSGENS P, ROSE M, SENKOVSKA I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330. |
61 | DECOSTE J B, PETERSON G W, JASUJA H, et al. Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit[J]. Journal of Materials Chemistry A, 2013, 1(18): 5642. |
62 | TAN K, ZULUAGA S, GONG Q H, et al. Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74[J]. Chemistry of Materials, 2014, 26(23): 6886-6895. |
63 | DECOSTE J B, PETERSON G W, SCHINDLER B J, et al. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66[J]. Journal of Materials Chemistry A, 2013, 1(38): 11922. |
64 | FURUKAWA H, GÁNDARA F, ZHANG Y B, et al. Water adsorption in porous metal–organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
65 | TADDEI M. When defects turn into virtues: the curious case of zirconium-based metal-organic frameworks[J]. Coordination Chemistry Reviews, 2017, 343: 1-24. |
66 | GHOSH P, COLÓN Y J, SNURR R Q. Water adsorption in UiO-66: the importance of defects[J]. Chem Commun, 2014, 50(77): 11329-11331. |
67 | FURUKAWA H, GÁNDARA F, ZHANG Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
68 | BRENNAN J K, BANDOSZ T J, THOMSON K T, et al. Water in porous carbons[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187/188: 539-568. |
69 | COUDERT F X, BOUTIN A, FUCHS A H, et al. Adsorption deformation and structural transitions in metal-organic frameworks: from the unit cell to the crystal[J]. The Journal of Physical Chemistry Letters, 2013, 4(19): 3198-3205. |
70 | GHOSH P, SAHA S K, ROYCHOWDHURY A, et al. Recognition of an explosive and mutagenic water pollutant, 2,4,6-trinitrophenol, by cost-effective luminescent MOFs[J]. European Journal of Inorganic Chemistry, 2015, 2015(17): 2851-2857. |
71 | QIN J S, ZHANG S R, DU D Y, et al. A microporous anionic metal-organic framework for sensing luminescence of lanthanide(Ⅲ) ions and selective absorption of dyes by ionic exchange[J]. Chemistry—A European Journal, 2014, 20(19): 5625-5630. |
72 | CANIVET J, BONNEFOY J, DANIEL C, et al. Structure–property relationships of water adsorption in metal–organic frameworks[J]. New J. Chem., 2014, 38(7): 3102-3111. |
73 | MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323. |
74 | PARK K C, CHHATRE S S, SRINIVASAN S, et al. Optimal design of permeable fiber network structures for fog harvesting[J]. Langmuir, 2013, 29(43): 13269-13277. |
75 | LEE A, MOON M W, LIM H, et al. Water harvest via dewing[J]. Langmuir, 2012, 28(27): 10183-10191. |
76 | KLEMM O, SCHEMENAUER R S, LUMMERICH A, et al. Fog as a fresh-water resource: overview and perspectives[J]. Ambio, 2012, 41(3): 221-234. |
77 | WILLIAM G E, MOHAMED M H, FATOUH M. Desiccant system for water production from humid air using solar energy[J]. Energy, 2015, 90: 1707-1720. |
78 | 张晋维, 李平, 张馨凝, 等. 水稳定性金属有机框架材料的水吸附性质与应用[J]. 化学学报, 2020, 78(7): 597-612. |
ZHANG Jinwei, LI Ping, ZHANG Xinning, et al. Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta Chimica Sinica, 2020, 78(7): 597-612. | |
79 | HANIKEL N, PRÉVOT M S, FATHIEH F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester[J]. ACS Central Science, 2019, 5(10): 1699-1706. |
80 | FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical water production from desert air[J]. Sci. Adv., 2018, 4(6): eaat3198. |
81 | XU J X, LI T X, CHAO J W, et al. Efficient solar-driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt[J]. Angewandte Chemie International Edition, 2020, 59(13): 5202-5210. |
82 | YILMAZ G, MENG F L, LU W, et al. Autonomous atmospheric water seeping MOF matrix[J]. Science Advances, 2020, 6(42): eabc8605. |
83 | CHEN Z J, LI P H, ZHANG X, et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption[J]. Journal of the American Chemical Society, 2019, 141(7): 2900-2905. |
84 | TOWSIF ABTAB S M, ALEZI D, BHATT P M, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water[J]. Chem, 2018, 4(1): 94-105. |
85 | ZHAO T, JEREMIAS F, BOLDOG I, et al. High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr)[J]. Dalton Transactions, 2015, 44(38): 16791-16801. |
86 | KHUTIA A, RAMMELBERG H U, SCHMIDT T, et al. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application[J]. Chemistry of Materials, 2013, 25(5): 790-798. |
87 | AKIYAMA G, MATSUDA R, SATO H, et al. Effect of functional groups in MIL-101 on water sorption behavior[J]. Microporous and Mesoporous Materials, 2012, 157: 89-93. |
88 | JASUJA H, ZANG J, SHOLL D S, et al. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23526-23532. |
89 | CMARIK G E, KIM M, COHEN S M, et al. Tuning the adsorption properties of UiO-66 via ligand functionalization[J]. Langmuir, 2012, 28(44): 15606-15613. |
90 | ZHENG J, VEMURI R S, ESTEVEZ L, et al. Pore-engineered metal–organic frameworks with excellent adsorption of water and fluorocarbon refrigerant for cooling applications[J]. Journal of the American Chemical Society, 2017, 139(31): 10601-10604. |
91 | WANG C, LUO Y H, HE X T, et al. Porous high-valence metal-organic framework featuring open coordination sites for effective water adsorption[J]. Inorganic Chemistry, 2019, 58(5): 3058-3064. |
92 | XU J X, LI T X, CHAO J W, et al. Efficient solar-driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt[J]. Angewandte Chemie International Edition, 2020, 59(13): 5202-5210. |
93 | RIETH A J, WRIGHT A M, SKORUPSKII G, et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(35): 13858-13866. |
94 | LOGAN M W, LANGEVIN S, XIA Z Y. Reversible atmospheric water harvesting using metal-organic frameworks[J]. Scientific Reports, 2020, 10(1): 1-11. |
95 | MA D, LI P, DUAN X Y, et al. A hydrolytically stable vanadium(Ⅳ) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control[J]. Angewandte Chemie International Edition, 2020, 59(10): 3905-3909. |
96 | ABDULHALIM R G, BHATT P M, BELMABKHOUT Y, et al. A fine-tuned metal-organic framework for autonomous indoor moisture control[J]. Journal of the American Chemical Society, 2017, 139(31): 10715-10722. |
97 | MESGARIAN R, HEYDARINASAB A, RASHIDI A, et al. Adsorption and growth of water clusters on UiO-66 based nanoadsorbents: a systematic and comparative study on dehydration of natural gas[J]. Separation and Purification Technology, 2020, 239: 116512. |
98 | HENNINGER S K, HABIB H A, JANIAK C. MOFs as adsorbents for low temperature heating and cooling applications[J]. Journal of the American Chemical Society, 2009, 131(8): 2776. |
99 | WADE C R, CORRALES-SANCHEZ T, NARAYAN T C, et al. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties[J]. Energy & Environmental Science, 2013, 6(7): 2172-2177. |
100 | DE LANGE M F, VEROUDEN K J F M, VLUGT T J H, et al. Adsorption-driven heat pumps: the potential of metal-organic frameworks[J]. Chemical Reviews, 2015, 115(22): 12205-12250. |
101 | LIU X L, WANG X R, KAPTEIJN F. Water and metal–organic frameworks: from interaction toward utilization[J]. Chemical Reviews, 2020, 120(16): 8303-8377. |
102 | WANG S J, LEE J S, WAHIDUZZAMAN M, et al. A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration[J]. Nature Energy, 2018, 3(11): 985–993. |
103 | YAN J, YU Y, MA C, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J]. Applied Thermal Engineering, 2015, 84: 118-125. |
[1] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[2] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[3] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[4] | 张雨珂, 刘倩, 段媛媛, 赵英杰, 崔阳, 史利娟, 李向远, 李剑川, 范海明, 易群. 基于MOFs材料的低碳烃(C1~C3)分离研究进展[J]. 化工进展, 2022, 41(8): 4288-4302. |
[5] | 唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
[6] | 彭莹, 张晓文, 李密, 张宇, 吴晓燕. 金属有机框架材料吸附分离水中铀的应用[J]. 化工进展, 2019, 38(07): 3227-3242. |
[7] | 邢以晶, 李赏, 朱从懿, 郭伟. 基于选择性吸附实现有机染料分离的一种金属有机框架薄膜材料制备与表征[J]. 化工进展, 2019, 38(02): 1010-1017. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |