化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6385-6394.DOI: 10.16085/j.issn.1000-6613.2022-0383
收稿日期:
2022-03-13
修回日期:
2022-03-22
出版日期:
2022-12-20
发布日期:
2022-12-29
作者简介:
万年坊(1975—),博士,高级工程师,研究方向为氢能源与燃料电池技术。E-mail:wannianfang@163.com。
Received:
2022-03-13
Revised:
2022-03-22
Online:
2022-12-20
Published:
2022-12-29
摘要:
质子交换膜水电解(PEMWE)制氢具有可适用于风能太阳能等可再生能源的间歇性和波动性、能量转换效率高、启动快速、占地小等优点,成为目前绿氢制取重点关注的技术。膜电极作为水电解制氢关键核心部件,对于水电解制氢的性能、效率和寿命至关重要,并随着量产规模的扩大在系统成本中的占比越来越高。发展高性能、低成本和高耐久性的膜电极对于绿氢的低成本大规模制取具有重要意义。本文综述了近年来质子交换膜电解水制氢膜电极中质子交换膜、催化层、多孔传输层等关键材料部件以及膜电极制备技术的研究进展和成果,并进行了简要评述。从膜电极设计和开发的角度系统地梳理了如何提高电解制氢性能、降低水电解制氢膜电极成本等方面的进展。最后,就未来膜电极研发的方向提出了建议。
中图分类号:
万年坊. 质子交换膜水电解制氢膜电极研究进展[J]. 化工进展, 2022, 41(12): 6385-6394.
WAN Nianfang. Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6385-6394.
1 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU Hongmei, SHAO Zhigang, HOU Ming, et al. Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
2 | 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320. |
WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27(2/3): 310-320. | |
3 | SCHALENBACH M, CARMO M, FRITZ D L, et al. Pressurized PEM water electrolysis: efficiency and gas crossover[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921-14933. |
4 | KOCHA Shyam S, DELIANG YANG J, YI Jung S. Characterization of gas crossover and its implications in PEM fuel cells[J]. AIChE Journal, 2006, 52(5): 1916-1925. |
5 | FRANCIA Carlotta, IJERI Vijaykumar S, SPECCHIA Stefania, et al. Estimation of hydrogen crossover through Nafion® membranes in PEMFCs[J]. Journal of Power Sources, 2011, 196(4): 1833-1839. |
6 | BENSMANN B, HANKE-RAUSCHENBACH R, SUNDMACHER K. In-situ measurement of hydrogen crossover in polymer electrolyte membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(1): 49-53. |
7 | NAGAHISA Ryosuke, KURIYA Daiki, MURAMATSU Hidetaka, et al. Measurement system for solubility and self-diffusivity of hydrogen gas dissolved in polymer electrolyte membrane[J]. Journal of the Electrochemical Society, 2014, 161(10): F1070-F1074. |
8 | MARTIN Agate, ABBAS Dunia, TRINKE Patrick, et al. Proving the importance of Pt-interlayer position in PEMWE membranes for the effective reduction of the anodic hydrogen content[J]. Journal of the Electrochemical Society, 2021, 168(9): 094509. |
9 | 余丽红, 潘牧, 田明星, 等. 电解水膜电极及其制备方法、制氢装置: CN113337844A[P]. 2021-09-03. |
YU Lihong, PAN Mu, TIAN Mingxing, et al. Water electrolysis membrane electrode, preparation method thereof and hydrogen production device: CN113337844A[P]. 2021-09-03. | |
10 | 江亚阳, 杨福源, 党健, 等. 膜电极组件与水电解装置: CN113235120A[P]. 2021-08-10. |
JIANG Yayang, YANG Fuyuan, DANG Jian, et al. Membrane electrode assembly and water electrolysis device: CN113235120A[P]. 2021-08-10. | |
11 | MIRSHEKARI Gholamreza, OUIMET Ryan, ZENG Zhiqiao, et al. High-performance and cost-effective membrane electrode assemblies for advanced proton exchange membrane water electrolyzers: long-term durability assessment[J]. International Journal of Hydrogen Energy, 2021, 46(2): 1526-1539. |
12 | GHIELMI A, VACCARONO P, TROGLIA C, et al. Proton exchange membranes based on the short-side-chain perfluorinated ionomer[J]. Journal of Power Sources, 2005, 145(2): 108-115. |
13 | LI Junrui, PAN Mu, TANG Haolin. Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells[J]. RSC Advances, 2014, 4(8): 3944-3965. |
14 | SKULIMOWSKA Anita, DUPONT Marc, ZATON Marta, et al. Proton exchange membrane water electrolysis with short-side-chain Aquivion® membrane and IrO2 anode catalyst[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6307-6316. |
15 | SIRACUSANO S, BAGLIO V, STASSI A, et al. Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis[J]. Journal of Membrane Science, 2014, 466: 1-7. |
16 | BOARETTI Carlo, PASQUINI Luca, SOOD Rakhi, et al. Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications[J]. Journal of Membrane Science, 2018, 545: 66-74. |
17 | SIRACUSANO Stefania, BAGLIO Vincenzo, VAN DIJK Nicholas, et al. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer[J]. Applied Energy, 2017, 192: 477-489. |
18 | WU Xu, SCOTT Keith, PUTHIYAPURA Vinod. Polymer electrolyte membrane water electrolyser with Aquivion® short side chain perfluorosulfonic acid ionomer binder in catalyst layers[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13243-13248. |
19 | GIANCOLA Stefano, Marta ZATOŃ, Álvaro REYES-CARMONA, et al. Composite short side chain PFSA membranes for PEM water electrolysis[J]. Journal of Membrane Science, 2019, 570/571: 69-76. |
20 | Fumatech. PEM Fuel cells—PEM water electrolysis, fumapem® PFSA membrane types[EB/OL]. . |
21 | SUMIKARA K, HAYABA S, NISHIO T, Membrane electrode assembly and water-electrolysis device : WO2020/162511A1[P]. 2020-08-13. |
22 | ALBERT Albert, BARNETT Alejandro O, THOMASSEN Magnus S, et al. Radiation-grafted polymer electrolyte membranes for water electrolysis cells: evaluation of key membrane properties[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22203-22212. |
23 | SHIN Dong Won, GUIVER Michael D, LEE Young Moo. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability[J]. Chemical Reviews, 2017, 117(6): 4759-4805. |
24 | PARK Ji Eun, KIM Junghwan, HAN Jusung, et al. High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer[J]. Journal of Membrane Science, 2021, 620: 118871. |
25 | WEI Guoqiang, XU Li, HUANG Chengde, et al. SPE water electrolysis with SPEEK/PES blend membrane[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7778-7783. |
26 | SIRACUSANO S, BAGLIO V, LUFRANO F, et al. Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane[J]. Journal of Membrane Science, 2013, 448: 209-214. |
27 | CHOI Sungyu, SHIN Sang Hun, LEE Dong Hyun, et al. Enhancing the durability of hydrocarbon-membrane-based polymer electrolyte water electrolysis using a radical scavenger-embedded interlocking interfacial layer[J]. Journal of Materials Chemistry A, 2022, 10(2): 789-798. |
28 | KLOSE Carolin, SAATKAMP Torben, Andreas MÜNCHINGER, et al. Water electrolyzers: all-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency[J]. Advanced Energy Materials, 2020, 10(14): 2070061. |
29 | 米万良, 荣峻峰. 质子交换膜(PEM)水电解制氢技术进展及应用前景[J]. 石油炼制与化工, 2021, 52(10): 78-87. |
MI Wanliang, RONG Junfeng. Progress and application prospects of PEM water electrolysis technology for hydrogen production[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 78-87. | |
30 | SIRACUSANO S, Van DIJK N, PAYNE-JOHNSON E, et al. Nanosized IrO x and IrRuO x electrocatalysts for the O2 evolution reaction in PEM water electrolysers[J]. Applied Catalysis B: Environmental, 2015, 164: 488-495. |
31 | ZHAO Shuai, STOCKS Allison, RASIMICK Brian, et al. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers[J]. Journal of the Electrochemical Society, 2018, 165(2): F82-F89. |
32 | ROLLER Justin M, JOSEFINA ARELLANO-JIMÉNEZ M, JAIN Rishabh, et al. Oxygen evolution during water electrolysis from thin films using bimetallic oxides of Ir-Pt and Ir-Ru[J]. Journal of the Electrochemical Society, 2013, 160(6): F716-F730. |
33 | 孙仁兴, 徐海波, 万年坊, 等. TiN浸渍-热分解法制备IrO x -TiO2粉体催化剂及其表征[J]. 高等学校化学学报, 2007, 28(5): 904-908. |
SUN Renxing, XU Haibo, WAN Nianfang, et al. Syntheses of IrO x -TiO2 nano-powers from TiN via impregnation-thermal decomposition method and its characterization[J]. Chemical Journal of Chinese Universities, 2007, 28(5): 904-908. | |
34 | AYERS Katherine E, RENNER Julie N, DANILOVIC Nemanja, et al. Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers[J]. Catalysis Today, 2016, 262: 121-132. |
35 | 李晨旭, 梅武, 赵宇峰, 等. 核壳结构催化剂及其制备方法和包含该催化剂的膜电极: CN113355695B[P]. 2021-11-09. |
LI Chenxu, MEI Wu, ZHAO Yufeng, et al. Core-shell structure catalyst, preparation method thereof and membrane electrode containing catalyst: CN113355695B[P]. 2021-11-09. | |
36 | 闫常峰, 闵祥萍, 史言, 等. 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法: CN111266110A[P]. 2020-06-12. |
YAN Changfeng, MIN Xiangping, SHI Yan, et al. Anode catalyst for water electrolysis hydrogen production by taking transition metal doped titanium oxide as a carrier and preparation method of anode catalyst: CN111266110A[P]. 2020-06-12. | |
37 | 俞红梅, 姜广, 秦晓平, 等. 一种低铱载量的质子交换膜电解质水电解膜电极的制备方法: CN111118538A[P]. 2020-05-08. |
YU Hongmei, JIANG Guang, QIN Xiaoping, et al. Preparation method of low-iridium-loading membrane electrode for proton exchange membrane electrolyte water electrolysis (PEMWE): CN111118538A[P]. 2020-05-08. | |
38 | SUN Yanyan, POLANI Shlomi, LUO Fang, et al. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells[J]. Nature Communications, 2021, 12(1): 5984. |
39 | REN Xuefeng, WANG Yiran, LIU Anmin, et al. Current progress and performance improvement of Pt/C catalysts for fuel cells[J]. Journal of Materials Chemistry A, 2020, 8(46): 24284-24306. |
40 | ROZAIN Caroline, MAYOUSSE Eric, GUILLET Nicolas, et al. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I-pure IrO2-based anodes[J]. Applied Catalysis B: Environmental, 2016, 182: 153-160. |
41 | ROZAIN Caroline, MAYOUSSE Eric, GUILLET Nicolas, et al. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part Ⅱ—Advanced oxygen electrodes[J]. Applied Catalysis B: Environmental, 2016, 182: 123-131. |
42 | Petr MAZÚR, Jakub POLONSKÝ, PAIDAR Martin, et al. Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12081-12088. |
43 | PUTHIYAPURA Vinod Kumar, PASUPATHI Sivakumar, SU Huaneng, et al. Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1905-1913. |
44 | BERNT Maximilian, GASTEIGER Hubert A. Influence of ionomer content in IrO2/TiO2 Electrodes on PEM water electrolyzer performance[J]. Journal of the Electrochemical Society, 2016, 163(11): F3179-F3189. |
45 | XU Wu, SCOTT Keith. The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance[J]. International Journal of Hydrogen Energy, 2010, 35(21): 12029-12037. |
46 | 姚东梅, 苏华能, 朱新坚, 等. 一种固体电质水电解膜电极及其制备方法: CN110400953B[P]. 2021-01-12. |
YAO Dongmei, SU Huaneng, ZHU Xinjian, et al. A membrane electrode assembly for solid polymer electrolyte water electrolysis and its preparation method: CN110400953B[P]. 2021-01-12. | |
47 | 刘锋, 王诚, 张剑波, 等. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771. |
LIU Feng, WANG Cheng, ZHANG Jianbo, et al. Ordered membrane electrode assembly of proton exchange membrane fuel cell[J]. Progress in Chemistry, 2014, 26(11): 1763-1771. | |
48 | 蒋尚峰, 衣宝廉. 有序化膜电极研究进展[J]. 电化学, 2016, 22(3): 213-218. |
JIANG Shangfeng, YI Baolian. Progress of order-structured membrane electrode assembly[J]. Journal of Electrochemistry, 2016, 22(3): 213-218. | |
49 | 李云飞, 王致鹏, 段磊, 等. 质子交换膜燃料电池有序化膜电极研究进展[J]. 化工进展, 2021, 40(S1): 101-110. |
LI Yunfei, WANG Zhipeng, DUAN Lei, et al. Research progress of ordered membrane electrode assembly for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 101-110. | |
50 | BURCH M J, LEWINSKI K A, BUCKETT M I, et al. A novel work-flow to study Ir electrode thinning and dissolution in proton exchange membrane water electrolyzers[J]. Journal of Power Sources, 2021, 500: 229978. |
51 | LEWINSKI Krzysztof A, VAN DER VLIET Dennis, LUOPA Sean M. NSTF advances for PEM electrolysis—The effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers[J]. ECS Transactions, 2015, 69(17): 893-917. |
52 | STEINBACH A. Advanced manufacturing processes for gigawatt-scale proton exchange membrane water electrolyzers[EB/OL]. (2021-07-11). . |
53 | YOSHINAGA N, NAKANO Y, MEI W. Technology for reduction of precious metals used in anode catalyst of PEM electrolyzers [J]. Toshiba Review, 2018, 73(3):9-12. |
54 | 俞红梅, 姜广, 秦晓平, 等. 一种有序化的PEM水电解膜电极阳极催化层及其制备方法与应用: CN112981449B[P]. 2022-01-11. |
YU Hongmei, JIANG Guang, QIN Xiaoping, et al. An ordered anode catalyst layer of PEM water electrolysis membrane electrode assembly and its preparation method and application: CN112981449B[P]. 2022-01-11. | |
55 | STIBER S, SATA N, MORAWIETZ T, et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components[J]. Energy & Environmental Science, 2022, 15(1): 109-122. |
56 | KANG Zhenye, ALIA Shaun M, YOUNG James L, et al. Effects of various parameters of different porous transport layers in proton exchange membrane water electrolysis[J]. Electrochimica Acta, 2020, 354: 136641. |
57 | QI Zhigang, KAUFMAN Arthur. Improvement of water management by a microporous sublayer for PEM fuel cells[J]. Journal of Power Sources, 2002, 109(1): 38-46. |
58 | PARK Sehkyu, LEE Jong Won, POPOV Branko N. Effect of carbon loading in microporous layer on PEM fuel cell performance[J]. Journal of Power Sources, 2006, 163(1): 357-363. |
59 | LIN Guangyu, VAN NGUYEN Trung. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC[J]. Journal of the Electrochemical Society, 2005, 152(10): A1942. |
60 | LETTENMEIER P, KOLB S, BURGGRAF F, et al. Towards developing a backing layer for proton exchange membrane electrolyzers[J]. Journal of Power Sources, 2016, 311: 153-158. |
61 | KANG Zhenye, YANG Gaoqiang, MO Jingke, et al. Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14618-14628. |
62 | STIBER Svenja, BALZER Harald, WIERHAKE Astrid, et al. Porous transport layers for proton exchange membrane electrolysis under extreme conditions of current density, temperature, and pressure[J]. Advanced Energy Materials, 2021, 11(33): 2170131. |
63 | BERNT M, SCHRAMM C, SCHRÖTER J, et al. Effect of the IrO x conductivity on the anode electrode/porous transport layer interfacial resistance in PEM water electrolyzers[J]. Journal of the Electrochemical Society, 2021, 168(8): 084513. |
64 | LOPATA J, KANG Z, YOUNG J, et al. Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices[J]. Journal of the Electrochemical Society, 2020, 167(6): 064507. |
65 | Melanie BÜHLER, HOLZAPFEL Peter, MCLAUGHLIN David, et al. From catalyst coated membranes to porous transport electrode based configurations in PEM water electrolyzers[J]. Journal of the Electrochemical Society, 2019, 166(14): F1070-F1078. |
66 | JANG J H, CHOE S, Na Y, et al. Iridium oxide electrodeposited porous titanium composite layer of polymer electrolyte membrane water electrolysis apparatus, method for preparing the same, and polymer electrolyte membrane water electrolysis apparatus using the same: US10975476B2[P]. 2021-04-13. |
67 | ZHANG Yangjian, WANG Cheng, WAN Nianfang, et al. Study on a novel manufacturing process of membrane electrode assemblies for solid polymer electrolyte water electrolysis[J]. Electrochemistry Communications, 2007, 9(4): 667-670. |
68 | SONG Shidong, ZHANG Huamin, LIU Bo, et al. An improved catalyst-coated membrane structure for PEM water electrolyzer[J]. Electrochemical and Solid-State Letters, 2007, 10(8): B122. |
69 | HOLZAPFEL Peter, Melanie BÜHLER, VAN PHAM Chuyen, et al. Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis[J]. Electrochemistry Communications, 2020, 110: 106640. |
70 | BREITWIESER Matthias, KLOSE Carolin, HARTMANN Armin, et al. Fuel cells: cerium oxide decorated polymer nanofibers as effective membrane reinforcement for durable, high-performance fuel cells[J]. Advanced Energy Materials, 2017, 7(6): 1602100. |
71 | BREITWIESER Matthias, BAYER Thomas, Andreas BÜCHLER, et al. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer[J]. Journal of Power Sources, 2017, 351: 145-150. |
72 | MAUGER Scott A, NEYERLIN K C, YANG-NEYERLIN Ami C, et al. Gravure coating for roll-to-roll manufacturing of proton-exchange-membrane fuel cell catalyst layers[J]. Journal of the Electrochemical Society, 2018, 165(11): F1012-F1018. |
73 | PARK Janghoon, KANG Zhenye, BENDER Guido, et al. Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers[J]. Journal of Power Sources, 2020, 479: 228819. |
74 | 杜泽学, 慕旭宏. 水电解技术发展及在绿氢生产中的应用[J]. 石油炼制与化工, 2021, 52(2): 102-110. |
DU Zexue, MU Xuhong. Development of water electrolysis technology and its application in green hydrogen production[J]. Petroleum Processing and Petrochemicals, 2021, 52(2): 102-110. |
[1] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[2] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[3] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[4] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[5] | 高帷韬, 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚, 毛宗强. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
[6] | 李政翰, 涂正凯. 质子交换膜燃料电池仿真模型研究进展[J]. 化工进展, 2022, 41(10): 5272-5296. |
[7] | 姬峰, 郑博文, 罗若尹, 杜玮, 邓呈维, 杨声, 刘志强. 高温质子交换膜燃料电池电堆稳定性分析与优化[J]. 化工进展, 2022, 41(10): 5325-5331. |
[8] | 邢以晶, 刘芳, 张雅琳, 李海滨. 质子交换膜燃料电池膜电极制备方法的研究进展[J]. 化工进展, 2021, 40(S1): 281-290. |
[9] | 李云飞, 王致鹏, 段磊, 陈良, 徐守冬, 张鼎, 段东红, 刘世斌. 质子交换膜燃料电池有序化膜电极研究进展[J]. 化工进展, 2021, 40(S1): 101-110. |
[10] | 王敏键, 陈四国, 邵敏华, 魏子栋. 氢燃料电池电催化剂研究进展[J]. 化工进展, 2021, 40(9): 4948-4961. |
[11] | 李金晟, 葛君杰, 刘长鹏, 邢巍. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903. |
[12] | 杨博龙, 韩清, 向中华. 质子交换膜燃料电池膜电极结构与设计研究进展[J]. 化工进展, 2021, 40(9): 4882-4893. |
[13] | 何广利, 窦美玲. 氢气中杂质对车用燃料电池性能影响的研究进展[J]. 化工进展, 2021, 40(9): 4815-4822. |
[14] | 廖珮懿, 杨代军, 明平文, 薛明喆, 李冰, 张存满. 微流道气-液两相流研究及其在PEMFC中的应用进展[J]. 化工进展, 2021, 40(9): 4734-4748. |
[15] | 何泽兴, 史成香, 陈志超, 潘伦, 黄振峰, 张香文, 邹吉军. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |