化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1539-1555.DOI: 10.16085/j.issn.1000-6613.2021-2003
高帷韬(), 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚(), 毛宗强
收稿日期:
2021-09-23
修回日期:
2021-12-07
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
王诚
作者简介:
高帷韬(1996—),男,博士研究生,研究方向为燃料电池。E-mail:基金资助:
GAO Weitao(), LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng(), MAO Zongqiang
Received:
2021-09-23
Revised:
2021-12-07
Online:
2022-03-23
Published:
2022-03-28
Contact:
WANG Cheng
摘要:
质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)因具有效率高、功率密度大、排放产物仅为水、低温启动性好等多方面优点,被公认为下一代车用动力的发展方向之一。然而,目前PEMFC在耐久性和成本方面距离商业化的要求还存在一定差距。为攻克上述两大难题,需要燃料电池全产业链的共同努力和进步。本文回顾了近年来质子交换膜燃料电池从催化剂、膜电极组件、电堆到燃料电池发动机全产业链的研究进展和成果,梳理出单原子催化剂、非贵金属催化剂、特殊形貌催化剂、有序化催化层、高温质子交换膜、膜电极层间界面优化、一体化双极板-扩散层、氢气系统循环等研究热点。文章指出,催化层低铂/非铂化、质子交换膜超薄化、膜电极组件梯度化/有序化、燃料电池运行高温化、自增湿化是未来的发展趋势,迫切需要进一步的创新与突破。
中图分类号:
高帷韬, 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚, 毛宗强. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
1 | 王墨林, 王贺武, 欧阳明高, 等. 燃料电池汽车及氢能基础设施在美国的最新进展[J]. 汽车安全与节能学报, 2013, 4(2): 178-184. |
WANG Molin, WANG Hewu, OUYANG Minggao, et al. Latest developments of fuel cell vehicles and hydrogen supply infrastructures in American[J]. Journal of Automotive Safety and Energy, 2013, 4(2): 178-184. | |
2 | XU L F, MUELLER C D, LI J Q, et al. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles[J]. Applied Energy, 2015, 157: 664-674. |
3 | 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(Z1): 310-320. |
WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27(Z1): 310-320. | |
4 | CHEN H C, PEI P C, SONG M C. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. |
5 | 刘锋, 王诚, 张剑波, 等. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771. |
LIU Feng, WANG Cheng, ZHANG Jianbo, et al. Ordered membrane electrode assembly of proton exchange membrane fuel cell[J]. Progress in Chemistry, 2014, 26(11): 1763-1771. | |
6 | 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. |
WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. | |
7 | BENJAMIN T, BORUP R, GARLAND N,et al. Fuel cell technical team roadmap[R]. US Department of Energy, Fuel Cell Technologies Office, 2017. |
8 | YOSHIDA T, KOJIMA K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society[J]. Interface Magazine, 2015, 24(2): 45-49. |
9 | 蒋尚峰, 衣宝廉. 有序化膜电极研究进展[J]. 电化学, 2016, 22(3): 213-218. |
JIANG Shangfeng, YI Baolian. Progress of order-structured membrane electrode assembly[J]. Journal of Electrochemistry, 2016, 22(3): 213-218. | |
10 | SUN Y Y, CUI L R, GONG J, et al. Design of a catalytic layer with hierarchical proton transport structure: the role of nafion nanofiber[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2955-2963. |
11 | HU Z Y, LI J Q, XU L F, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles[J]. Energy Conversion and Management, 2016, 129: 108-121. |
12 | 宋显珠, 郑明月, 肖劲松, 等. 氢燃料电池关键材料发展现状及研究进展[J]. 材料导报, 2020, 34(S2): 1001-1005, 1016. |
SONG Xianzhu, ZHENG Mingyue, XIAO Jinsong, et al. Research progress on development status and trend of key materials of hydrogen fuel cells[J]. Materials Reports, 2020, 34(S2): 1001-1005, 1016. | |
13 | IOROI T, SIROMA Z, YAMAZAKI S I, et al. Electrocatalysts for PEM fuel cells[J]. Advanced Energy Materials, 2019, 9(23): 1801284. |
14 | LIN R, CAI X, ZENG H, et al. Stability of high-performance Pt-based catalysts for oxygen reduction reactions[J]. Advanced Materials, 2018, 30(17): 1705332. |
15 | STACY J, REGMI Y N, LEONARD B, et al. The recent progress and future of oxygen reduction reaction catalysis: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 401-414. |
16 | WANG X X, SWIHART M T, WU G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019, 2(7): 578-589. |
17 | ZHANG B W, YANG H L, WANG Y X, et al. A comprehensive review on controlling surface composition of Pt-based bimetallic electrocatalysts[J]. Advanced Energy Materials, 2018, 8(20): 1703597. |
18 | LIU M L, ZHAO Z P, DUAN X F, et al. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Advanced Materials, 2019, 31(6): 1802234. |
19 | KONGKANAND A, MATHIAS M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1127-1137. |
20 | ZHAO Z P, HOSSAIN M D, XU C C, et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells[J]. Matter, 2020, 3(5): 1774-1790. |
21 | MA R G, LIN G X, ZHOU Y, et al. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts[J]. NPJ Computational Materials, 2019, 5: 78. |
22 | WANG Y M, ZOU L L, HUANG Q H, et al. 3D carbon aerogel-supported PtNi intermetallic nanoparticles with high metal loading as a durable oxygen reduction electrocatalyst[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26695-26703. |
23 | KIM Y, LEE D, KWON Y, et al. Enhanced electrochemical oxygen reduction reaction performance with Pt nanocluster catalysts supported on microporous graphene-like 3D carbon[J]. Journal of Electroanalytical Chemistry, 2019, 838: 89-93. |
24 | BARIM S B, BOZBAG S E, YU H B, et al. Mesoporous carbon aerogel supported PtCu bimetallic nanoparticles via supercritical deposition and their dealloying and electrocatalytic behaviour[J]. Catalysis Today, 2018, 310: 166-175. |
25 | ROSADO G, VERDE Y, VALENZUELA-MUÑIZ A M, et al. Catalytic activity of Pt-Ni nanoparticles supported on multi-walled carbon nanotubes for the oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23260-23271. |
26 | WU D Z, SHEN X C, ZHOU L Q, et al. A vacuum impregnation method for synthesizing octahedral Pt2CuNi nanoparticles on mesoporous carbon support and the oxygen reduction reaction electrocatalytic properties[J]. Journal of Colloid and Interface Science, 2020, 564: 245-253. |
27 | ZHAO Y G, LIU J J, WU Y J, et al. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction[J]. Journal of Power Sources, 2017, 360: 528-537. |
28 | WU Z X, SONG M, WANG J, et al. Recent progress in nitrogen-doped metal-free electrocatalysts for oxygen reduction reaction[J]. Catalysts, 2018, 8(5): 196. |
29 | LI J C, HOU P X, LIU C. Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction[J]. Small, 2017, 13(45): 1702002. |
30 | ZHANG H J, YAO S, GENG J, et al. Oxygen reduction reaction with efficient, metal-free nitrogen, fluoride-codoped carbon electrocatalysts derived from melamine hydrogen fluoride salt[J]. Journal of Colloid and Interface Science, 2019, 535: 436-443. |
31 | LYU Q, SI W Y, HE J J, et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction[J]. Nature Communications, 2018, 9: 3376. |
32 | CAZETTA A L, SPESSATO L, BEDIN K C, et al. Metal-free ovalbumin-derived N-S-co-doped nanoporous carbon materials as efficient electrocatalysts for oxygen reduction reaction[J]. Applied Surface Science, 2019, 467/468: 75-83. |
33 | 竹涛, 韩一伟, 刘帅, 等 .单原子位点催化剂及其电催化应用研究进展[J].化工进展, 2022,41(2):666-618. |
ZHU Tao, HAN Yiwei, LIU Shuai, et al. Progress in electrocatalysis by single-atom site catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 666-618. | |
34 | LIN Y C, LIU P Y, VELASCO E, et al. Fabricating single-atom catalysts from chelating metal in open frameworks[J]. Advanced Materials, 2019, 31(18): 1808193. |
35 | JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
36 | 文颖. 非铂氧还原催化剂的制备及其性能研究[D]. 南宁: 广西大学, 2020. |
WEN Ying. Preparation and performance of low-/non-platinum catalyst for oxygen reduction reaction[D]. Nanning: Guangxi University, 2020. | |
37 | ZHANG Y P, HU Y Y, LI S Z, et al. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9284-9289. |
38 | WANG H L, LIANG Y Y, LI Y G, et al. Co1- x S-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction[J]. Angewandte Chemie International Edition, 2011, 50(46): 10969-10972. |
39 | FENG Y J, HE T, ALONSO-VANTE N. In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles[J]. Chemistry of Materials, 2008, 20(1): 26-28. |
40 | LIU J, SUN X J, SONG P, et al. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron[J]. Advanced Materials, 2013, 25(47): 6879-6883. |
41 | CHONG L, WEN J, KUBAL J, et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks[J]. Science, 2018, 362(6420): 1276-1281. |
42 | 魏子栋. 质子交换膜燃料电池催化剂性能增强方法研究进展[J]. 化工进展, 2016, 35(9): 2629-2639. |
WEI Zidong. Advances of the catalytic performance enhancement for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2629-2639. | |
43 | TAO L, HUANG B L, JIN F D, et al. Atomic PdAu interlayer sandwiched into Pd/Pt core/shell nanowires achieves superstable oxygen reduction catalysis[J]. ACS Nano, 2020, 14(9): 11570-11578. |
44 | LUO M C, SUN Y J, ZHANG X, et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis[J]. Advanced Materials, 2018, 30(10): 1705515. |
45 | QIN Y C, ZHANG W L, GUO K, et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis[J]. Advanced Functional Materials, 2020, 30(11): 1910107. |
46 | KONG F, REN Z, NOROUZI BANIS M, et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering[J]. ACS Catalysis, 2020, 10(7): 4205-4214. |
47 | TAO L, YU D, ZHOU J S, et al. Ultrathin wall (1nm) and superlong Pt nanotubes with enhanced oxygen reduction reaction performance[J]. Small, 2018, 14(22): 1704503. |
48 | BU L Z, GUO S J, ZHANG X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis[J]. Nature Communications, 2016, 7: 11850. |
49 | CHEN S, NIU Z, XIE C, et al. Effects of catalyst processing on the activity and stability of Pt-Ni nanoframe electrocatalysts[J]. ACS Nano, 2018, 12(8): 8697-8705. |
50 | TIAN X, ZHAO X, SU Y Q, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856. |
51 | ESCORIHUELA J, NARDUCCI R, COMPAÑ V, et al. Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications[J]. Advanced Materials Interfaces, 2019, 6(2): 1801146. |
52 | BLIZNAKOV S T, VUKMIROVIC M B, YANG L, et al. Pt monolayer on electrodeposited Pd nanostructures: advanced cathode catalysts for PEM fuel cells[J]. Journal of the Electrochemical Society, 2012, 159(9): F501-F506. |
53 | CHEN C, KANG Y, HUO Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
54 | CHEN M, ZHAO C, SUN F M, et al. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system[J]. eTransportation, 2020, 5: 100075. |
55 | ABDEL-BASET T, BENJAMIN T, BORUP R,et al. Fuel cell technical team roadmap[R]. US Department of Energy, Fuel Cell Technologies Office, 2013. |
56 | LEE M, UCHIDA M, YANO H, et al. New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions[J]. Electrochimica Acta, 2010, 55(28): 8504-8512. |
57 | CHEN G Y, WANG C, LEI Y J, et al. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29960-29965. |
58 | QIU Y L, ZHANG H M, ZHONG H X, et al. A novel cathode structure with double catalyst layers and low Pt loading for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5836-5844. |
59 | TIAN Z Q, LIM S H, POH C K, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214. |
60 | ZHANG C K, YU H M, LI Y K, et al. Highly stable ternary tin-palladium-platinum catalysts supported on hydrogenated TiO2 nanotube arrays for fuel cells[J]. Nanoscale, 2013, 5(15): 6834. |
61 | XIA Z X, WANG S L, JIANG L H, et al. Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix[J]. Scientific Reports, 2015, 5: 16100. |
62 | PAN C F, WU H, WANG C, et al. Nanowire-based high-performance “micro fuel cells”: one nanowire, one fuel cell[J]. Advanced Materials, 2008, 20(9): 1644-1648. |
63 | ZENG Y C, SHAO Z G, ZHANG H J, et al. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells[J]. Nano Energy, 2017, 34: 344-355. |
64 | KRAYTSBERG A, EIN-ELI Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy & Fuels, 2014, 28(12): 7303-7330. |
65 | DURANTE V A, DELANEY W E. Highly stable fuel cell membranes and methods of making them: US20090155662[P]. 2009-06-18. |
66 | YOON K R, LEE K A, JO S, et al. Mussel-inspired polydopamine-treated reinforced composite membranes with self-supported CeO x radical scavengers for highly stable PEM fuel cells[J]. Advanced Functional Materials, 2019, 29(3): 1806929. |
67 | 翟云峰, 张华民, 叶威, 等. 磷酸流失对H3PO4/PBI高温PEMFC性能的影响[J]. 电池, 2008, 38(1): 3-7. |
ZHAI Yunfeng, ZHANG Huamin, YE Wei, et al. Influences of H3PO4 leaching on the performance of H3PO4/PBI high temperature PEMFC[J]. Battery Bimonthly, 2008, 38(1): 3-7. | |
68 | 李金晟, 葛君杰, 刘长鹏, 等. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903. |
LI Jinsheng, GE Junjie, LIU Changpeng, et al. Review on high temperature proton exchange membranes for fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903. | |
69 | 吴魁, 解东来. 高温质子交换膜研究进展[J]. 化工进展, 2012, 31(10): 2202-2206, 2220. |
WU Kui, XIE Donglai. Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2202-2206, 2220. | |
70 | PARK C H, LEE S Y, HWANG D S, et al. Nanocrack-regulated self-humidifying membranes[J]. Nature, 2016, 532(7600): 480-483. |
71 | OZDEN A, SHAHGALDI S, LI X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74: 50-102. |
72 | JIAO K, LI X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. |
73 | YUN W. Porous-media flow fields for polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(10): B1134. |
74 | TANAKA S, BRADFIELD W W, LEGRAND C, et al. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 330: 273-284. |
75 | LEE J, HINEBAUGH J, BAZYLAK A. Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs[J]. Journal of Power Sources, 2013, 227: 123-130. |
76 | AMAMIYA I, TANAKA S. Current topics proposed by PEFC manufacturers, etc. -current status and topics of fuel cells for FCV[EB/OL]. . |
77 | SUN R L, XIA Z X, YANG C R, et al. Experimental measurement of proton conductivity and electronic conductivity of membrane electrode assembly for proton exchange membrane fuel cells[J]. Progress in Natural Science: Materials International, 2020, 30(6): 912-917. |
78 | BREITWIESER M, KLINGELE M, VIERRATH S, et al. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches[J]. Advanced Energy Materials, 2018, 8(4): 1701257. |
79 | KOH J K, JEON Y, CHO Y I, et al. A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J]. Journal of Materials Chemistry A, 2014, 2(23): 8652-8659. |
80 | KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(21): 11239-11245. |
81 | KONGKANAND A, SUBRAMANIAN N P, YU Y C, et al. Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst[J]. ACS Catalysis, 2016, 6(3): 1578-1583. |
82 | JAMES B. Cost projections of PEM fuel cell systems for automobiles and medium-duty vehicles[C]//Fuel Cell Technologies Office Webinar, 2018. |
83 | ZHAO J, LI X G. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques[J]. Energy Conversion and Management, 2019, 199: 112022. |
84 | LI Y B, ZHOU Z F, LIU X L, et al. Modeling of PEM fuel cell with thin MEA under low humidity operating condition[J]. Applied Energy, 2019, 242: 1513-1527. |
85 | HANIF S, SHI X, IQBAL N, et al. ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell[J]. Applied Catalysis B: Environmental, 2019, 258: 117947. |
86 | BORUP R, WEBER A. FC-PAD: fuel cell performance and durability consortium[R]. Office of Scientific and Technical Information (OSTI), 2018. |
87 | BARZEGARI M M, GHADIMI M, MOMENIFAR M. Investigation of contact pressure distribution on gas diffusion layer of fuel cell with pneumatic endplate[J]. Applied Energy, 2020, 263: 114663. |
88 | SONG Y X, ZHANG C Z, LING C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29832-29847. |
89 | ZHANG X, YANG X L, GAO W T, et al. An experimental research on the net output power and current density distribution of PEM fuel cells with trapezoid baffled flow fields[J]. International Journal of Energy Research, 2021, 45(15): 21464-21475. |
90 | MOJICA F, RAHMAN M A, MORA J M, et al. Experimental study of three channel designs with model comparison in a PEM fuel cell[J]. Fuel Cells, 2020, 20(5): 547-557. |
91 | ZHANG H T, LI X G, LIU X Z, et al. Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management[J]. Applied Energy, 2019, 241: 483-490. |
92 | CHEN R X, QIN Y Z, DU Q, et al. Effects of clamping force on the operating behavior of PEM fuel cell[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. |
93 | ZHOU Z H, QIU D K, ZHAI S, et al. Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model[J]. Applied Energy, 2020, 277: 115532. |
94 | ZHANG G B, XIE B, BAO Z M, et al. Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field[J]. International Journal of Energy Research, 2018, 42(15): 4697-4709. |
95 | 李建秋, 方川, 徐梁飞. 燃料电池汽车研究现状及发展[J]. 汽车安全与节能学报, 2014, 5(1): 17-29. |
LI Jianqiu, FANG Chuan, XU Liangfei. Current status and trends of the research and development for fuel cell vehicles[J]. Journal of Automotive Safety and Energy, 2014, 5(1): 17-29. | |
96 | GAO W T, HU Z Y, HUANG H Y, et al. All-condition economy evaluation method for fuel cell systems: system efficiency contour map[J]. eTransportation, 2021, 9: 100127. |
97 | HASEGAWA T, IMANISHI H, NADA M, et al. Development of the fuel cell system in the mirai FCV[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. |
98 | TERANISHI K, KAWATA K, TSUSHIMA S, et al. Degradation mechanism of PEMFC under open circuit operation[J]. Electrochemical and Solid-State Letters, 2006, 9(10): A475. |
99 | INABA M, KINUMOTO T, KIRIAKE M, et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2006, 51(26): 5746-5753. |
100 | CURTIN D E, LOUSENBERG R D, HENRY T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of Power Sources, 2004, 131(1/2): 41-48. |
101 | YU W, XU S C, NI H S. Air compressors for fuel cell vehicles: an systematic review[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 115-122. |
102 | LLAMAS X, ERIKSSON L. Control-oriented compressor model with adiabatic efficiency extrapolation[J]. SAE International Journal of Engines, 2017, 10(4): 1903-1916. |
103 | 张奥, 杨军, 吴桐, 等. 燃料电池车载氢气供给系统概述[J]. 船电技术, 2019, 39(9): 53-56. |
ZHANG Ao, YANG Jun, WU Tong, et al. Application of hydrogen supply system for fuel cell vehicles[J]. Marine Electric & Electronic Engineering, 2019, 39(9): 53-56. | |
104 | CHEN J X, SIEGEL J B, STEFANOPOULOU A G, et al. Optimization of purge cycle for dead-ended anode fuel cell operation[J]. International Journal of Hydrogen Energy, 2013, 38(12): 5092-5105. |
105 | 马秋玉, 王宇鹏, 都京, 等. 燃料电池发动机氢气循环设计方案综述[J]. 汽车文摘, 2019(4): 11-14. |
MA Qiuyu, WANG Yupeng, DU Jing, et al. Research on the hydrogen circulation system of fuel cell[J]. Automotive Digest, 2019(4): 11-14. | |
106 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[6] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |