化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1556-1568.DOI: 10.16085/j.issn.1000-6613.2021-2217
收稿日期:
2021-10-29
修回日期:
2021-12-21
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
王保国
作者简介:
万磊(1996—),男,博士研究生,研究方向为离子分离膜。E-mail:基金资助:
WAN Lei(), XU Zi’ang, WANG Peican, XU Qin, WANG Baoguo()
Received:
2021-10-29
Revised:
2021-12-21
Online:
2022-03-23
Published:
2022-03-28
Contact:
WANG Baoguo
摘要:
碱性离子膜电解水制氢技术具有成本低、环境友好、可使用光伏、风电等波动性电源等优势, 近年来得到广泛关注。作为碱性电解水的核心组件,离子膜对电解槽性能、稳定性及制氢安全起着至关重要的作用。因此,开发具有良好氢氧根传导率、高度耐碱稳定性及优异阻气性的离子膜具有重要意义。本文围绕碱性电解水用离子膜材料开展论述,包含多孔隔膜、溶剂化离子膜和阴离子交换膜三个类别,从氢氧根传导率、耐碱稳定性及电池性能等角度,分析碱性电解水用离子膜的研究进展及所面临的技术难题,从膜结构与膜材料分子设计着手,为研究开发用于碱性电解水的离子膜提供新思路。
中图分类号:
万磊, 徐子昂, 王培灿, 许琴, 王保国. 电解水制氢的耐碱离子膜研究进展[J]. 化工进展, 2022, 41(3): 1556-1568.
WAN Lei, XU Zi’ang, WANG Peican, XU Qin, WANG Baoguo. Progress of alkaline-resistant ion membranes for hydrogen production by water electrolysis[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1556-1568.
1 | ADABI H, SHAKOURI A, HASSAN N UL, et al. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells[J]. Nature Energy, 2021, 6(8): 834-843. |
2 | OZTURK M, DINCER I. A comprehensive review on power-to-gas with hydrogen options for cleaner applications[J]. International Journal of Hydrogen Energy, 2021, 46(62): 31511-31522. |
3 | WAN Lei, XU Ziang, WANG Peican, et al. H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis[J]. Journal of Membrane Science, 2021, 618: 118642. |
4 | VINCENT I, BESSARABOV D. Low cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
5 | CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. |
6 | KLOSE C, SAATKAMP T, MÜNCHINGER A, et al. All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency[J]. Advanced Energy Materials, 2020, 10(14): 1903995. |
7 | LI Changqing, BAEK J B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers[J]. Nano Energy, 2021, 87: 106162. |
8 | MILLER H A, BOUZEK K, HNAT J, et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions[J]. Sustainable Energy & Fuels, 2020, 4(5): 2114-2133. |
9 | KRAGLUND M R, CARMO M, SCHILLER G, et al. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers[J]. Energy & Environmental Science, 2019, 12(11): 3313-3318. |
10 | STAŇO Ľ, STANO M, ĎURINA P. Separators for alkaline water electrolysis prepared by plasma-initiated grafting of acrylic acid on microporous polypropylene membranes[J]. International Journal of Hydrogen Energy, 2020, 45(1): 80-93. |
11 | LU Shanfu, ZHUANG Lin, LU Juntao. Homogeneous blend membrane made from poly(ether sulphone) and poly(vinylpyrrolidone) and its application to water electrolysis[J]. Journal of Membrane Science, 2007, 300(1/2): 205-210. |
12 | DE GROOT M T, VREMAN A W. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm[J]. Electrochimica Acta, 2021, 369: 137684. |
13 | LEE H I, DUNG D T, KIM J, et al. The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer[J]. International Journal of Energy Research, 2020, 44(3): 1875-1885. |
14 | LEE J, LEE C, LEE J, et al. Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer[J]. Polymers, 2020, 12(12): 2821. |
15 | LEE H I, MEHDI M, KIM S K, et al. Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode[J]. Journal of Membrane Science, 2020, 616: 118541. |
16 | AILI D, HANSEN M K, ANDREASEN J W, et al. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis[J]. Journal of Membrane Science, 2015, 493: 589-598. |
17 | CHENG Xia, WANG Jianchuan, LIAO Yunchuan, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782. |
18 | LU Yuan, ARMENTROUT A A, LI Juchuan, et al. A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes[J]. Journal of Materials Chemistry A, 2015, 3(25): 13350-13356. |
19 | LEE J W, LEE J H, LEE C, et al. Cellulose nanocrystals-blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents[J]. Chemical Engineering Journal, 2022, 428: 131149. |
20 | WAN Lei, XU Zi’ang, WANG Baoguo. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis[J]. Chemical Engineering Journal, 2021, 426: 131340. |
21 | 王保国, 万磊. 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法: CN112892246A[P]. 2021-06-04. |
WANG Baoguo, WAN Lei, Preparation method of inorganic nanoparticle composite membrane of polytetrafluoroethylene: CN112892246A[P]. 2021-06-04. | |
22 | ZHAO Yun, YU Hongmei, XING Danmin, et al. Preparation and characterization of PTFE based composite anion exchange membranes for alkaline fuel cells[J]. Journal of Membrane Science, 2012, 421/422: 311-317. |
23 | ZENG L, ZHAO T S. Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis[J]. Nano Energy, 2015, 11: 110-118. |
24 | SUN Pengzhan, MA Renzhi, BAI Xueyin, et al. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity[J]. Science Advances, 2017, 3(4): e1602629. |
25 | ZENG L, ZHAO T S, LI Y S. Synthesis and characterization of crosslinked poly(vinyl alcohol)/layered double hydroxide composite polymer membranes for alkaline direct ethanol fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18425-18432. |
26 | SCHALENBACH M, LUEKE W, STOLTEN D. Hydrogen diffusivity and electrolyte permeability of the zirfon PERL separator for alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2016, 163(14): F1480-F1488. |
27 | AILI D, WRIGHT A G, KRAGLUND M R, et al. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis[J]. Journal of Materials Chemistry A, 2017, 5(10): 5055-5066. |
28 | AILI D, HANSEN M K, RENZAHO R F, et al. Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis[J]. Journal of Membrane Science, 2013, 447: 424-432. |
29 | DIAZ L A, HNÁT J, HEREDIA N, et al. Alkali doped poly (2,5-benzimidazole) membrane for alkaline water electrolysis: Characterization and performance[J]. Journal of Power Sources, 2016, 312: 128-136. |
30 | DIAZ L A, COPPOLA R E, ABUIN G C, et al. Alkali-doped polyvinyl alcohol—Polybenzimidazole membranes for alkaline water electrolysis[J]. Journal of Membrane Science, 2017, 535: 45-55. |
31 | KONOVALOVA A, KIM H, KIM S, et al. Blend membranes of polybenzimidazole and an anion exchange ionomer (FAA3) for alkaline water electrolysis: improved alkaline stability and conductivity[J]. Journal of Membrane Science, 2018, 564: 653-662. |
32 | COPPOLA R E, HERRANZ D, ESCUDERO-CID R, et al. Polybenzimidazole-crosslinked-poly(vinyl benzyl chloride) as anion exchange membrane for alkaline electrolyzers[J]. Renewable Energy, 2020, 157: 71-82. |
33 | AILI D, KRAGLUND M R, TAVACOLI J, et al. Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis[J]. Journal of Membrane Science, 2020, 598: 117674. |
34 | YOU Wei, NOONAN K J T, COATES G W. Alkaline-stable anion exchange membranes: a review of synthetic approaches[J]. Progress in Polymer Science, 2020, 100: 101177. |
35 | ARGES C G, ZHANG Le. Anion exchange membranes’ evolution toward high hydroxide ion conductivity and alkaline resiliency[J]. ACS Applied Energy Materials, 2018, 1(7): 2991-3012. |
36 | LENG Yongjun, CHEN Guang, MENDOZA A J, et al. Solid-state water electrolysis with an alkaline membrane[J]. Journal of the American Chemical Society, 2012, 134(22): 9054-9057. |
37 | CHEN Dongyang, HICKNER M A, WANG Shuanjin, et al. Synthesis and characterization of quaternary ammonium functionalized fluorene-containing cardo polymers for potential anion exchange membrane water electrolyzer applications[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16168-16176. |
38 | CHU Xiaomeng, SHI Yan, LIU Lei, et al. Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis[J]. Journal of Materials Chemistry A, 2019, 7(13): 7717-7727. |
39 | LEE N, DUONG D T, KIM D. Cyclic ammonium grafted poly(arylene ether ketone) hydroxide ion exchange membranes for alkaline water electrolysis with high chemical stability and cell efficiency[J]. Electrochimica Acta, 2018, 271: 150-157. |
40 | ZHANG Ketian, MCDONALD M B, GENINA I E A, et al. A highly conductive and mechanically robust OH- conducting membrane for alkaline water electrolysis[J]. Chemistry of Materials, 2018, 30(18): 6420-6430. |
41 | THAM D D, KIM D. C2 and N3 substituted imidazolium functionalized poly(arylene ether ketone) anion exchange membrane for water electrolysis with improved chemical stability[J]. Journal of Membrane Science, 2019, 581: 139-149. |
42 | XIAO Li, ZHANG Shuai, PAN Jing, et al. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water[J]. Energy & Environmental Science, 2012, 5(7): 7869. |
43 | MOHANTY A D, TIGNOR S E, KRAUSE J A, et al. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications[J]. Macromolecules, 2016, 49(9): 3361-3372. |
44 | ARGES C G, RAMANI V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(7): 2490-2495. |
45 | FARAJ M, BOCCIA M, MILLER H, et al. New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(20): 14992-15002. |
46 | VENGATESAN S, SANTHI S, JEEVANANTHAM S, et al. Quaternized poly(styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers[J]. Journal of Power Sources, 2015, 284: 361-368. |
47 | SU Xiangdong, GAO Li, HU Lei, et al. Novel piperidinium functionalized anionic membrane for alkaline polymer electrolysis with excellent electrochemical properties[J]. Journal of Membrane Science, 2019, 581: 283-292. |
48 | PARK E J, CAPUANO C B, AYERS K E, et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis[J]. Journal of Power Sources, 2018, 375: 367-372. |
49 | MIYANISHI S, YAMAGUCHI T. Highly durable spirobifluorene-based aromatic anion conducting polymer for a solid ionomer of alkaline fuel cells and water electrolysis cells[J]. Journal of Materials Chemistry A, 2019, 7(5): 2219-2224. |
50 | SONI R, MIYANISHI S, KUROKI H, et al. Pure water solid alkaline water electrolyzer using fully aromatic and high-molecular-weight poly(fluorene-alt-tetrafluorophenylene)-trimethyl ammonium anion exchange membranes and ionomers[J]. ACS Applied Energy Materials, 2021, 4(2): 1053-1058. |
51 | XIAO Junwu, OLIVEIRA A M, WANG Lan, et al. Water-fed hydroxide exchange membrane electrolyzer enabled by a fluoride-incorporated nickel-iron oxyhydroxide oxygen evolution electrode[J]. ACS Catalysis, 2021, 11(1): 264-270. |
52 | YAN Xiaoming, YANG Xiong, SU Xiangdong, et al. Twisted ether-free polymer based alkaline membrane for high-performance water electrolysis[J]. Journal of Power Sources, 2020, 480: 228805. |
53 | CHA M S, PARK J E, KIM S, et al. Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices[J]. Energy & Environmental Science, 2020, 13(10): 3633-3645. |
54 | FAN Jiantao, WILLDORF-COHEN S, SCHIBLI E M, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability[J]. Nature Communications, 2019, 10: 2306. |
55 | RAN Jin, WU Liang, HE Yubin, et al. Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291. |
56 | XU Ziang, WAN Lei, LIAO Yiwen, et al. Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(41): 23485-23496. |
57 | GUPTA G, SCOTT K, MAMLOUK M. Performance of polyethylene based radiation grafted anion exchange membrane with polystyrene-b-poly(ethylene/butylene)-b-polystyrene based ionomer using NiCo2O4 catalyst for water electrolysis[J]. Journal of Power Sources, 2018, 375: 387-396. |
[1] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[2] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[3] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[4] | 王蕴青, 杨国锐, 延卫. 过渡金属磷化物的改性方法及其在电化学析氢中的应用[J]. 化工进展, 2023, 42(7): 3532-3549. |
[5] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[6] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[7] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[8] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[9] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[10] | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
[11] | 金玮. 微孔碳材料修饰的隔膜用于高性能锂硫电池[J]. 化工进展, 2022, 41(8): 4386-4396. |
[12] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
[13] | 陶礼, 杨启容, 李昭莹, 亓昊, 王力伟, 马欣如. 基于分子动力学模拟的轮胎橡胶催化热解制氢机理[J]. 化工进展, 2022, 41(6): 3010-3021. |
[14] | 段曼华, 程丹, 肖伟, 杨占旭. 聚丙烯腈/聚酯无纺布微孔复合锂电隔膜的制备及性能[J]. 化工进展, 2022, 41(5): 2615-2622. |
[15] | 张轩, 樊昕晔, 吴振宇, 郑丽君. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |