化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 118-131.DOI: 10.16085/j.issn.1000-6613.2022-0159
收稿日期:
2022-01-24
修回日期:
2022-04-26
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
张早校
作者简介:
王红霞(1992—),女,博士研究生,研究方向为温室气体减排技术。E-mail:whx19930513@163.com。
基金资助:
WANG Hongxia1,2(), XU Wanyi1,2, ZHANG Zaoxiao1,2()
Received:
2022-01-24
Revised:
2022-04-26
Online:
2022-10-20
Published:
2022-11-10
Contact:
ZHANG Zaoxiao
摘要:
氢能是人类生存和发展所需能源的重要补充。氢能产业,特别是氢燃料电池车,其开发与利用已经引起了全球范围内的普遍重视。然而,决定该产业快速发展的关键因素之一是清洁的氢气来源,如何使氢能产业更具经济环保竞争力。通过可再生能源发电电解水制氢将能量以化学能的形式储存起来,不仅能利用可再生能源制取高热值的氢气供使用,同时从制氢源头利用清洁的可再生能源可有效减少碳排放。为此,本文主要分析讨论了可再生能源发电与电解水制氢技术的耦合制取氢气的发展现状与发展趋势,简述了目前国内外利用可再生能源发电制取氢气项目的研究进展,并介绍了一些典型的清洁制氢案例。可以看到,风电、太阳能制氢是目前较为成熟的技术,但仍需提升其经济竞争力。而水电资源分布不均等缺点阻碍了其规模化发展。因此,政府、企业及科研院所需大力推进可再生能源发电制氢研究,有效解决氢能制备的效率问题,加速绿色氢能产业发展。
中图分类号:
王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131.
WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131.
用电方式 | 电价/ CNY·kWh-1 | 制氢成本/CNY·m-3 |
---|---|---|
商业用电 | 0.35 | 1.4~1.75 |
大工业用电 | 0.61 | 2.44~3.05 |
光伏 | 0.5930 | 2.37~2.97 |
表1 中国商业用电、大工业用电和光伏发电制氢成本比较[48]
用电方式 | 电价/ CNY·kWh-1 | 制氢成本/CNY·m-3 |
---|---|---|
商业用电 | 0.35 | 1.4~1.75 |
大工业用电 | 0.61 | 2.44~3.05 |
光伏 | 0.5930 | 2.37~2.97 |
国家 | 光伏电价/CNY·kWh-1 |
---|---|
中国2021 | 0.59[ |
美国2018 | 0.32[ |
日本2018 | 0.83[ |
印度2021 | 0.40[ |
德国2021 | 0.38[ |
西班牙2021 | 0.83[ |
印尼2019 | 0.72[ |
表2 平准化光伏发电成本比较
国家 | 光伏电价/CNY·kWh-1 |
---|---|
中国2021 | 0.59[ |
美国2018 | 0.32[ |
日本2018 | 0.83[ |
印度2021 | 0.40[ |
德国2021 | 0.38[ |
西班牙2021 | 0.83[ |
印尼2019 | 0.72[ |
制氢方式 | 2019年全球制氢成本/CNY·kg-1 | 制氢方式 | 2021年中国制氢成本/CNY·kg-1 |
---|---|---|---|
天然气 | 4.46~10.20 | 煤气化制氢(有/无CCS) | 11~20 |
天然气+CCUS | 7.65~13.39 | 工业副产提氢 | 16 |
煤 | 12.11~15.94 | 蒸汽甲烷重整制氢(有/无CCS) | 18~24 |
煤+CCUS | 13.39~16.58 | 核能制氢 | 20~27 |
低碳电力制氢 | 20.40~49.09 | 网电电解水制氢 | 35~46 |
可再生能源发电电解水制氢 | 28~85 | ||
生物质气化制氢 | 33 |
表3 中国及全球平均制氢成本[66-67]
制氢方式 | 2019年全球制氢成本/CNY·kg-1 | 制氢方式 | 2021年中国制氢成本/CNY·kg-1 |
---|---|---|---|
天然气 | 4.46~10.20 | 煤气化制氢(有/无CCS) | 11~20 |
天然气+CCUS | 7.65~13.39 | 工业副产提氢 | 16 |
煤 | 12.11~15.94 | 蒸汽甲烷重整制氢(有/无CCS) | 18~24 |
煤+CCUS | 13.39~16.58 | 核能制氢 | 20~27 |
低碳电力制氢 | 20.40~49.09 | 网电电解水制氢 | 35~46 |
可再生能源发电电解水制氢 | 28~85 | ||
生物质气化制氢 | 33 |
参数 | 碱性 | PEM |
---|---|---|
太阳能供电/MW | 40 | 40 |
30atm电解系统效率/kWh·(kg H2)-1 | 53.76 | 58.24 |
产氢量/kg H2·h-1 | 595 | 686 |
固定成本投入/104USD | 2658 | 2251 |
寿命/a | 10 | 10 |
表4 40MW太阳能供电下的碱性与PEM电解制氢成本分析参数[68-69]
参数 | 碱性 | PEM |
---|---|---|
太阳能供电/MW | 40 | 40 |
30atm电解系统效率/kWh·(kg H2)-1 | 53.76 | 58.24 |
产氢量/kg H2·h-1 | 595 | 686 |
固定成本投入/104USD | 2658 | 2251 |
寿命/a | 10 | 10 |
40 | 光伏制氢+耦合煤制百万吨甲醇零碳排放项目签署合作协议[J]. 煤化工, 2020, 48(5): 44. |
41 | 刘金亚, 张华, 雷明镜, 等. 太阳能光伏电解水制氢的实验研究[J]. 可再生能源, 2014, 32(11): 1603-1608. |
LIU Jinya, ZHANG Hua, LEI Mingjing, et al. Experimental study on PV electrolysis of water for production of hydrogen[J]. Renewable Energy Resources, 2014, 32(11): 1603-1608. | |
42 | SONG Yujia, MU Hailin, LI Nan, et al. Techno-economic analysis of a hybrid energy system for CCHP and hydrogen production based on solar energy[J]. International Journal of Hydrogen Energy, 2021, doi: 10.1016/j.ijhydene.2021.08.134 . |
43 | MARQUES F C, SILVA J C M, LIBARDI C P, et al. Hydrogen production by photovoltaic-electrolysis using aqueous waste from ornamental stones industries[J]. Renewable Energy, 2020, 152: 1266-1273. |
44 | DAHBI Sanae, AZIZ Abdelhak, BENAZZI Naima, et al. Optimised hydrogen production by a photovoltaic-Electrolysis system DC/DC converter and water-flow controller[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20858-20866. |
45 | WANG Hongsheng, KONG Hui, PU Zhigang, et al. Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell[J]. Energy Conversion and Management, 2020, 210(3): 112699. |
46 | WANG Mingyong, WANG Zhi, GONG Xuzhong, et al. The intensification technologies to water electrolysis for hydrogen production – A review[J]. Renewable & Sustainable Energy Reviews, 2014, 29: 573-588. |
47 | 四大制氢方式及降成本途径[EB/OL]. [2022-01-16]. . |
48 | 中国经济网. 氢能发展不能背离初衷可再生能源制氢是未来方向[EB/OL]. [2022-01-16]. . |
Hydrogen energy development cannot deviate from the original intention and renewable energy hydrogen production is the future direction[EB/OL]. [2022-01-16]. . | |
49 | IEA, Levelised cost of electricity in the United States, 2040[EB/OL]. IEA, Paris.[2022-01-20]. . |
1 | International Energy Agency. Low-carbon hydrogen production, 2010—2030, historical, announced and in the Sustainable Development Scenario,2030[EB/OL]. [2021-11-04]. . |
2 | ABAD A V, DODDS P E. Green hydrogen characterisation initiatives: definitions, standards, guarantees of origin, and challenges[J]. Energy Policy, 2020, 138: 111300. |
3 | BELLABY Paul, FLYNN Rob, RICCI Miriam. Rapidly diffusing innovation: whether the history of the Internet points the way for hydrogen energy[J]. Innovation: The European Journal of Social Science Research, 2012, 25(3): 322-336. |
4 | CLARK W W. Partnerships in creating agile sustainable development communities[J]. Journal of Cleaner Production, 2007, 15(3): 294-302. |
5 | ZAINZINGER Vanessa. Making green hydrogen work[J]. C&EN Global Enterprise, 2020, 98(23): 20-22. |
6 | REISCH Marc. The coming challenge of green hydrogen[J]. C&EN Global Enterprise, 2020, 98(2): 28. |
7 | HOWARTH R W, JACOBSON M Z. How green is blue hydrogen? [J]. Energy Science & Engineering, 2021, 9: 1676-1687. |
8 | BloombergNEF. ‘Green’ Hydrogen to Outcompete ‘Blue’ Everywhere by 2030[EB/OL]. [2021-11-04]. . |
9 | 国家能源局. 百年能源薪火相传[EB/OL]. [2021-11-04]. . |
National Energy Administration. Hundred years of energy success[EB/OL]. [2021-11-04]. . | |
10 | International Energy Agency. Renewable electricity net capacity additions by technology, main and accelerated cases, 2013—2022, IEA, Paris[EB/OL]. [2021-11-04]. . |
11 | International Energy Agency. Renewable electricity net capacity additions by country/region, main case, 2019—2022, IEA, Paris[EB/OL]. [2021-11-04]. . |
50 | IEA, Levelised cost of electricity in Japan, 2040[EB/OL]. IEA, Paris.[2022-01-20]. . |
51 | IEA, Levelised cost of electricity LCOE for solar PV and coal-fired power plants in India in the New Policies Scenario, 2020-2040[EB/OL]. IEA, Paris.[2022-01-20]. |
52 | IEA, Average wholesale electricity prices in Germany, United Kingdom and Spain, 2019-2021[EB/OL]. IEA, Paris.[2022-01-20]. . |
53 | IEA, Average levelised cost of electricity for new utility-scale solar PV commissioned in Indonesia, 2019 versus benchmark[EB/OL]. IEA, Paris.[2022-01-20]. . |
54 | 水力能地热能制氢[EB/OL]. [2021-11-04]. . |
Hydrogen and geothermal hydrogen production[EB/OL]. [2021-11-04]. . | |
55 | 杨阳, 王孝群, 练冲, 等. 径流式水电站弃能利用的制氢系统优化研究[J]. 水力发电学报, 2021, 40(6): 21-30. |
YANG Yang, WANG Xiaoqun, LIAN Chong, et al. Optimization of hydrogen production systems for energy curtailment utilization at Run-of-river hydropower stations[J]. Journal of Hydroelectric Engineering, 2021, 40(6): 21-30. | |
56 | Hydrospider plans first Swiss commercial hydrogen production[J]. Fuel Cells Bull, 2019, 8: 9. |
57 | H2 Energy AG. The first electrolyzer plant in Switzerland generating hydrogen from renewable power at the run-of-the-river plant in Aarau[EB/OL]. . |
58 | Renewable Energy World. Landsvirkjun to build hydrogen production facility at 16-MW Ljosifoss hydropower[EB/OL]. [2021-11-04]. . |
59 | JOVAN D J, DOLANC G, PREGELJ B. Cogeneration of green hydrogen in a cascade hydropower plant[J]. Energy Conversion and Management X, 2021, 10(12): 100081. |
12 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
13 | LUND Henrik. Large-scale integration of wind power into different energy systems[J]. Energy, 2005, 30(13): 2402-2412. |
14 | LUND H, MATHIESEN BV. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050[J]. Energy, 2009, 34(5): 524-5314. |
15 | International Energy Agency. Renewable energy market update 2021[EB/OL]. [2021-11-04]. . |
16 | PATRICIO R A, SALES A D, SACRAMENTO E M, et al. Wind hydrogen energy system and the gradual replacement of natural gas in the State of Ceara-Brazil[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7355-64. |
17 | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135. |
CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. | |
18 | 蒋东方, 高丹, 武珍, 等. 基于智能微网的氢氧联合循环与风能耦合发电系统[J]. 电力科学与工程, 2011, 27(6): 1-5. |
JIANG Dongfang, GAO Dan, WU Zhen, et al. Hydrogen and oxygen combined cycle coupled with the wind power generation system based on the microgrid technology[J]. Electric Power Science and Engineering, 2011, 27(6): 1-5. | |
19 | 张丽, 陈硕翼. 风电制氢技术国内外发展现状及对策建议[J]. 科技中国, 2020(1): 13-16. |
20 | SEDAGHAT Ahmad, MOSTAFAEIPOUR Ali, REZAEI Mostafa, et al. A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(32): 15888-903. |
21 | GIELEN Dolf. Global Energy Transformation: a roadmap to 2050[R]. 2018. |
60 | VALENTE Antonio, IRIBARREN Diego, DUFOUR Javier, et al. Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16660-16672. |
61 | POSSO F, ESPINOZA J L, SANCHEZ J, et al. Hydrogen from hydropower in Ecuador: use and impacts in the transport sector[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15432-15447. |
62 | OLATEJU Babatunde, KUMAR Amit. A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands[J]. Energy, 2016, 115(10): 604-614. |
63 | KAUW M, BENDERS R M J, VISSER C. Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany[J]. Energy, 2015, 90(1): 208-217. |
64 | 国家能源局. 清洁低碳, 能源结构这样转型[R]. [2021-11-04]. http: //www.nea.gov.cn/2021-04/09/c_139869431.htm2021. |
National Energy Administration. Clean and low-carbon, the energy structure is transformed like this[R]. [2021-11-04]. http: //www.nea.gov.cn/2021-04/09/c_139869431.htm2021. | |
65 | 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8): 25-32. |
LUO Chengxian. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 22(8): 25-32. | |
66 | IEA, Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050[EB/OL]. IEA, Paris.[2022-01-16]. . |
67 | 中国煤炭期刊网. 中国不同制氢方式的成本[EB/OL]. [2022-01-14]. . |
China coal industry knowledge services platform. Cost of different hydrogen production methods in China[EB/OL]. [2022-01-14]. . | |
68 | 郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析[J]. 储能科学与技术, 2020, 9(3): 688-695. |
22 | 方世杰, 邵志芳, 张存满. 并网型风电耦合制氢系统经济性分析[J]. 能源技术经济, 2012, 24(3): 39-43. |
FANG Shijie, SHAO Zhifang, ZHANG Cunman. Economic analysis on on-grid wind power coupling with hydrogen-production system[J]. Energy Technology and Economics, 2012, 24(3): 39-43. | |
23 | 温源. 风电制氢能量管理系统控制方法研究[D]. 北京: 华北电力大学(北京), 2019. |
WEN Yuan. Research on control strategy of energy management system of wind power and hydrogen[D]. Beijing: North China Electric Power University, 2019. | |
24 | 肖宇. 氢储能: 支撑起智能电网和可再生能源发电规模化[J]. 中国战略新兴产业, 2016(1): 46-49. |
25 | NADALETI C N, SANTOS G B, LOURENO V A. Integration of renewable energies using the surplus capacity of wind farms to generate H2 and electricity in Brazil and in the Rio Grande do Sul state: Energy planning and avoided emissions within a circular economy[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24190-24202. |
26 | AZCARATE Cristina, BLANCO Rosa, MALLOR Fermín, et al. Peaking strategies for the management of wind-H2 energy systems[J]. Renewable Energy, 2012, 47: 103-111. |
27 | SUN Jie, WANG Ruilin, HONG Hui, et al. An optimized tracking strategy for small-scale double-axis parabolic trough collector[J]. Applied Thermal Engineering, 2017, 112: 1408-1420. |
28 | GUO Shaopeng, LIU Qibin, SUN Jie, et al. A review on the utilization of hybrid renewable energy[J]. Renewable & Sustainable Energy Reviews, 2018, 91: 1121-1147. |
29 | XU Haojie, LI Yinshi, SUN Jie, et al. Transient model and characteristics of parabolic-trough solar collectors: molten salt vs. synthetic oil[J]. Solar Energy, 2019, 182: 182-193. |
30 | PAL P, MUKHERJEE V. Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: an investigation based on techno-economic feasibility assessment for the application of end-user load demand in North-East India[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111421. |
31 | 中国测试.光伏制氢: 能源领域的新一轮变革[EB/OL]. [2022-01-05]. . |
68 | GUO Xiuying, LI Xianming, XU Zhuang, et al. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020, 9(3): 688-695. |
69 | FAN Jingli, YU Pengwei, LI Kai, et al. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China[J]. Energy, 2022, 242: 123003. |
70 | MAGGIO G, SQUADRITO G, NICITA A. Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route[J]. Applied Energy, 2022, 306(A): 117993. |
71 | ZAIK K, WERLE S, NICITA A. Solar and wind energy in Poland as power sources for electrolysis process - A review of studies and experimental methodology[J]. International Journal of Hydrogen Energy, 2022: doi: 10.1016/j.ijhydene.2022.02.074 . |
72 | HENZE Veronika. Bloomberg Philanthropies Announces New Partnership with International Solar Alliance to Mobilize $1 Trillion in Solar Financing. BloombergNEF[EB/OL]. [2021-11-04]. . |
73 | BNEF: 投资的飙升,2021年全球光伏装机上限提至194GW[EB/OL]. [2021-11-04]. . |
BNEF: With the surge in investment, the global PV installed capacity cap will be raised to 194GW in 2021[EB/OL]. [2021-11-04]. | |
74 | CALLENS Jef. The role of carbon capture and storage in getting to net-zero by mid-century: New Energy Outlook 2021[EB/OL]. [2021-11-04]. . |
75 | 黄格省, 阎捷, 师晓玉, 等. 新能源制氢技术发展现状及前景分析[J]. 石化技术与应用, 2019, 37(5): 289-296. |
HUANG Gesheng, YAN Jie, SHI Xiaoyu, et al. Development status and prospect analysis of hydrogen production with new energy technology[J]. Petrochemical Technology & Application, 2019, 37(5): 289-296. | |
31 | China Measurement & Test. Photovoltaic hydrogen production: A new round of reform in the field of energy[EB/OL]. [2022-01-05]. . |
32 | AKYUZ E, COSKUN C, OKTAY Z, et al. Hydrogen production probability distributions for a PV-electrolyser system[J]. International Journal of Hydrogen Energy, 2011, 36(17): 11292-11299. |
33 | CLARKE R E, GIDDEY S, BADWAL S P S. Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source[J]. International Journal of Hydrogen Energy, 2010, 35(3): 928-935. |
34 | LIU Zhixiang, QIU Zhanmou, LUO Yao, et al. Operation of first solar-hydrogen system in China[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2762-2766. |
35 | 郭常青, 伊立其, 闫常峰, 等. 太阳能光伏-PEM水电解制氢直接耦合系统优化[J]. 新能源进展, 2019, 7(3): 287-294. |
GUO Changqing, YI Liqi, YAN Changfeng, et al. Optimization of photovoltaic-PEM electrolyzer direct coupling systems[J]. Advances in New and Renewable Energy, 2019, 7(3): 287-294. | |
36 | SIDDIQUI Osamah, DINCER Ibrahim. Optimization of a new renewable energy system for producing electricity, hydrogen and ammonia[J]. Sustainable Energy Technologies and Assessments, 2021, 44(34): 101023. |
37 | YANG Gan, ZHAI Xiaoqiang. Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies[J]. Applied Thermal Engineering, 2018, 133: 327-340. |
38 | KOJIMA Hirokazu, MATSUDA Tomoki, KANO Kazuki, et al. Methylcyclohexane production under fluctuating hydrogen flow rate conditions[J]. International Journal of Hydrogen Energy, 2021, 46(14): 9433-9442. |
39 | KIKUCHI Yasunori, ICHIKAWA Takayuki, SUGIYAMA Masakazu, et al. Battery-assisted low-cost hydrogen production from solar energy: Rational target setting for future technology systems[J]. International journal of hydrogen energy, 2019, 44(3): 1451-1465. |
[1] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[2] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[3] | 张东, 刘鹏飞, 刘春阳, 侯刚, 惠博, 安周建. 太阳能PV/T光储直驱热电联产系统性能[J]. 化工进展, 2023, 42(6): 2895-2903. |
[4] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[5] | 杜涛, 马进伟, 陈茜茜, 方浩, 陈秉章, 陈厚仁. PV/T模块复合冷却模式性能对比测试与数值模拟分析[J]. 化工进展, 2023, 42(2): 722-730. |
[6] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[7] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[8] | 黄格省, 师晓玉, 丁文娟, 王春娇, 慕彦君, 侯雨璇. 光伏电池封装胶膜材料发展现状与前景分析[J]. 化工进展, 2023, 42(10): 5037-5046. |
[9] | 白浩良, 王晨, 卢静, 康雪. 聚光光伏系统太阳能电池散热技术及发展现状[J]. 化工进展, 2023, 42(1): 159-177. |
[10] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[11] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[12] | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
[13] | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
[14] | 张轩, 樊昕晔, 吴振宇, 郑丽君. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
[15] | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |