化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1528-1538.DOI: 10.16085/j.issn.1000-6613.2021-1712
郑鹏(), 李蔚玲(), 郭亚飞, 孙健, 王瑞林, 赵传文
收稿日期:
2021-08-11
修回日期:
2021-09-29
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
李蔚玲
作者简介:
郑鹏(1997—),男,硕士研究生,研究方向为鼓泡床多相流反应器。E-mail:基金资助:
ZHENG Peng(), LI Weiling(), GUO Yafei, SUN Jian, WANG Ruilin, ZHAO Chuanwen
Received:
2021-08-11
Revised:
2021-09-29
Online:
2022-03-23
Published:
2022-03-28
Contact:
LI Weiling
摘要:
搭建了鼓泡床碳酸化反应器,研究常温常压下电石渣直接液相碳酸化矿化封存CO2的能力,揭示了重要操作参数表观气速、液固比和CO2浓度对电石渣矿化封存CO2能力和碳酸化效率的影响规律。同时构建响应面模型,分析各参数对电石渣碳酸化效率的影响强度,优化获得最大碳酸化效率及相应操作工况。结果表明,增加气速有利于钙离子溶解和CO2吸收,但反应器中过高气速易导致气相通道效应,不利于气液充分接触。当液固比降低,溶液中钙离子浓度提高,更有利于碳酸化反应,但液固比过低会影响固液间传质。适当增加CO2浓度有利于提高碳酸化效率,但CO2浓度增至到一定值后,对碳酸化效率影响降低。响应面建模分析发现,各因素对碳酸化效率影响顺序为:液固比>CO2浓度>表观气速。优化结果发现碳酸化效率最高为93.58%,工况为表观气速0.07m/s,液固比为8.26mL/g和CO2体积分数为20.91%。研究可知,鼓泡床中常温常压下电石渣直接液相加速碳酸化反应,具有较大的CO2固定量和高的碳酸化效率,实验结果为电石渣加速矿化封存CO2技术的发展提供了基础数据。
中图分类号:
郑鹏, 李蔚玲, 郭亚飞, 孙健, 王瑞林, 赵传文. 鼓泡床中电石渣加速碳酸化分析与响应面优化[J]. 化工进展, 2022, 41(3): 1528-1538.
ZHENG Peng, LI Weiling, GUO Yafei, SUN Jian, WANG Ruilin, ZHAO Chuanwen. Analysis of carbide slag accelerated carbonation in bubble column and response surface optimization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1528-1538.
水平 | 液固比A/mL?g-1 | 浓度B/% | 表观气速C/m?s-1 |
---|---|---|---|
-1 | 1 | 10 | 0.041 |
0 | 5 | 20 | 0.082 |
1 | 9 | 30 | 0.123 |
表1 Box-Behnken Design因素及水平
水平 | 液固比A/mL?g-1 | 浓度B/% | 表观气速C/m?s-1 |
---|---|---|---|
-1 | 1 | 10 | 0.041 |
0 | 5 | 20 | 0.082 |
1 | 9 | 30 | 0.123 |
实验 | 液固比A/mL?g-1 | 浓度B/% | 表观气速C/m?s-1 | 碳酸化效率Y/% |
---|---|---|---|---|
2 | 9 | 10 | 0.082 | 92.17 |
1 | 1 | 10 | 0.082 | 52.01 |
6 | 9 | 20 | 0.041 | 93.17 |
12 | 5 | 30 | 0.123 | 88.53 |
14 | 5 | 20 | 0.082 | 87.00 |
17 | 5 | 20 | 0.082 | 90.01 |
5 | 1 | 20 | 0.041 | 51.04 |
3 | 1 | 30 | 0.082 | 61.04 |
11 | 5 | 10 | 0.123 | 71.49 |
4 | 9 | 30 | 0.082 | 90.36 |
7 | 1 | 20 | 0.123 | 66.89 |
8 | 9 | 20 | 0.123 | 89.89 |
9 | 5 | 10 | 0.041 | 78.26 |
16 | 5 | 20 | 0.082 | 92.3 |
10 | 5 | 30 | 0.041 | 85.67 |
13 | 5 | 20 | 0.082 | 91.88 |
15 | 5 | 20 | 0.082 | 90.71 |
表2 Box-Behnken Design实验设计及结果
实验 | 液固比A/mL?g-1 | 浓度B/% | 表观气速C/m?s-1 | 碳酸化效率Y/% |
---|---|---|---|---|
2 | 9 | 10 | 0.082 | 92.17 |
1 | 1 | 10 | 0.082 | 52.01 |
6 | 9 | 20 | 0.041 | 93.17 |
12 | 5 | 30 | 0.123 | 88.53 |
14 | 5 | 20 | 0.082 | 87.00 |
17 | 5 | 20 | 0.082 | 90.01 |
5 | 1 | 20 | 0.041 | 51.04 |
3 | 1 | 30 | 0.082 | 61.04 |
11 | 5 | 10 | 0.123 | 71.49 |
4 | 9 | 30 | 0.082 | 90.36 |
7 | 1 | 20 | 0.123 | 66.89 |
8 | 9 | 20 | 0.123 | 89.89 |
9 | 5 | 10 | 0.041 | 78.26 |
16 | 5 | 20 | 0.082 | 92.3 |
10 | 5 | 30 | 0.041 | 85.67 |
13 | 5 | 20 | 0.082 | 91.88 |
15 | 5 | 20 | 0.082 | 90.71 |
方差来源 | 平方和 | 自由度 | 均方值 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
Model | 3316.757 | 9 | 368.5286 | 28.33906 | 0.0001 | 显著 |
液固比A | 2264.982 | 1 | 2264.982 | 174.1723 | <0.0001 | |
浓度B | 125.3736 | 1 | 125.3736 | 9.640964 | 0.0172 | |
表观气速C | 9.37445 | 1 | 9.37445 | 0.720875 | 0.4239 | |
AB | 29.3764 | 1 | 29.3764 | 2.258983 | 0.1765 | |
AC | 91.48923 | 1 | 91.48923 | 7.035327 | 0.0328 | |
BC | 23.18423 | 1 | 23.18423 | 1.782818 | 0.2236 | |
A2 | 519.948 | 1 | 519.948 | 39.9829 | 0.0004 | |
B2 | 121.5316 | 1 | 121.5316 | 9.345522 | 0.0184 | |
C2 | 68.04379 | 1 | 68.04379 | 5.232423 | 0.0560 | |
残差 | 91.02983 | 7 | 13.00426 | |||
失拟误差 | 73.42323 | 3 | 24.47441 | 5.56028 | 0.0654 | 不显著 |
纯误差 | 17.6066 | 4 | 4.40165 | |||
总和 | 3407.787 | 16 |
表3 响应面方差分析
方差来源 | 平方和 | 自由度 | 均方值 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
Model | 3316.757 | 9 | 368.5286 | 28.33906 | 0.0001 | 显著 |
液固比A | 2264.982 | 1 | 2264.982 | 174.1723 | <0.0001 | |
浓度B | 125.3736 | 1 | 125.3736 | 9.640964 | 0.0172 | |
表观气速C | 9.37445 | 1 | 9.37445 | 0.720875 | 0.4239 | |
AB | 29.3764 | 1 | 29.3764 | 2.258983 | 0.1765 | |
AC | 91.48923 | 1 | 91.48923 | 7.035327 | 0.0328 | |
BC | 23.18423 | 1 | 23.18423 | 1.782818 | 0.2236 | |
A2 | 519.948 | 1 | 519.948 | 39.9829 | 0.0004 | |
B2 | 121.5316 | 1 | 121.5316 | 9.345522 | 0.0184 | |
C2 | 68.04379 | 1 | 68.04379 | 5.232423 | 0.0560 | |
残差 | 91.02983 | 7 | 13.00426 | |||
失拟误差 | 73.42323 | 3 | 24.47441 | 5.56028 | 0.0654 | 不显著 |
纯误差 | 17.6066 | 4 | 4.40165 | |||
总和 | 3407.787 | 16 |
1 | PAN Shuyuan, CHIANG A, CHANG E E, et al. An innovative approach to integrated carbon mineralization and waste utilization: a review[J]. Aerosol and Air Quality Research, 2015, 15(3): 1072-1091. |
2 | 孙健. 高钙废弃物衍生吸收剂脱碳性能及其成型改性机制的研究[D]. 武汉: 华中科技大学, 2017. |
SUN Jian. Investigation on CO2 capture properties and pelletization modification mechanism of CaO-based sorbent derived from calcium-rich wastes[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
3 | BOOT-HANDFORD M E, ABANADES J C, ANTHONY E J, et al. Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189. |
4 | CORTÉS C G, TZIMAS E, PETEVES S. Technologies for coal based hydrogen and electricity co-production power plants with CO2 capture[R]. JRC Scientific and Technical Reports, EUR, 2009: 23661. |
5 | HO H J, IIZUKA A, SHIBATA E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 8941-8954. |
6 | 王中辉, 苏胜, 尹子骏, 等. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40(4): 2318-2327. |
WANG Zhonghui, SU Sheng, YIN Zijun, et al. Research progress of CO2 mineralization and integrated absorption-mineralization (IAM) method[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2318-2327. | |
7 | SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature, 1990, 345(6275): 486. |
8 | 王超, 杨保俊, 周金刚, 等. 由电石渣制备高分散纳米碳酸钙[J]. 化工进展, 2017, 36(S1): 346-352. |
WANG Chao, YANG Baojun, ZHOU Jingang, et al. Preparation of highly dispersed nano calcium carbonate from calcium carbide residue[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 346-352. | |
9 | 孙荣岳, 叶江明, 毕小龙, 等. 丙酸改性提高电石渣捕集CO2性能的动力学分析[J]. 化工进展, 2017, 36(6): 2325-2330. |
SUN Rongyue, YE Jiangming, BI Xiaolong, et al. Kinetic analysis on CO2 capture performance of carbide slag modified by propionic acid[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2325-2330. | |
10 | 马晓彤, 李英杰, 王文静, 等. 间歇氯化对电石渣循环捕集CO2性能的影响[J]. 化工学报, 2016, 67(12): 5268-5275. |
MA Xiaotong, LI Yingjie, WANG Wenjing, et al. Effect of indirect chlorination on cyclic CO2 capture performance of carbide slag[J]. CIESC Journal, 2016, 67(12): 5268-5275. | |
11 | ZHANG Junqiang, WANG Zhishuai, LI Tong, et al. Preparation of CaO-containing carbon pellet from recycling of carbide slag: effects of temperature and H3PO4 [J]. Waste Management, 2019, 84: 64-73. |
12 | NIU Shengli, LIU Mengqi, LU Chunmei, et al. Thermogravimetric analysis of carbide slag[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 73-79. |
13 | LI Yingjie, WANG Wenjing, CHENG Xingxing, et al. Simultaneous CO2/HCl removal using carbide slag in repetitive adsorption/desorption cycles[J]. Fuel, 2015, 142: 21-27. |
14 | WU Shuimu, LI Yingjie, ZHAO Jianli, et al. Simultaneous CO2/SO2 adsorption performance of carbide slag in adsorption/desorption cycles[J]. The Canadian Journal of Chemical Engineering, 2016, 94(1): 33-40. |
15 | YANG Jie, LIU Shengyu, MA Liping, et al. Mechanism analysis of carbide slag capture of CO2 via a gas-liquid-solid three-phase fluidization system[J]. Journal of Cleaner Production, 2021, 279: 123712. |
16 | YOU Quan, WU Shiyong, WU Youqing, et al. Product distributions and characterizations for integrated mild-liquefaction and carbonization of low rank coals[J]. Fuel Processing Technology, 2017, 156: 54-61. |
17 | AIL S S, DASAPPA S. Biomass to liquid transportation fuel via Fischer Tropsch synthesis-technology review and current scenario[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 267-286. |
18 | WU Weize, HAN Buxing, GAO Haixiang, et al. Desulfurization of flue gas: SO2 absorption by an ionic liquid[J]. Angewandte Chemie International Edition, 2004, 43(18): 2415-2417. |
19 | MOTA A, VICENTE A A, TEIXEIRA J. Effect of spent grains on flow regime transition in bubble column[J]. Chemical Engineering Science, 2011, 66(14): 3350-3357. |
20 | SONG H S, RAMKRISHNA D, TRINH S, et al. Multiplicity and sensitivity analysis of Fischer-Tropsch bubble column slurry reactors: plug-flow gas and well-mixed slurry model[J]. Chemical Engineering Science, 2003, 58(12): 2759-2766. |
21 | BARGHI S, PRAKASH A, MARGARITIS A, et al. Flow regime identification in a slurry bubble column from gas holdup and pressure fluctuations analysis[J]. The Canadian Journal of Chemical Engineering, 2004, 82(5): 865-870. |
22 | JHAWAR A K, PRAKASH A. Heat transfer in a slurry bubble column reactor: a critical overview[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1464-1473. |
23 | CHANG E E, PAN Shuyuan, CHEN Y H, et al. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor[J]. Journal of Hazardous Materials, 2011, 195: 107-114. |
24 | COSTA G, BACIOCCHI R, POLETTINI A, et al. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues[J]. Environmental Monitoring and Assessment, 2007, 135(1/2/3): 55-75. |
25 | LI Xiaomin, BERTOS M F, HILLS C D, et al. Accelerated carbonation of municipal solid waste incineration fly ashes[J]. Waste Management, 2007, 27(9): 1200-1206. |
26 | HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chemical Engineering Science, 2006, 61(13): 4242-4251. |
27 | TAN Wenyi, ZHANG Zixin, LI Hongyi, et al. Carbonation of gypsum from wet flue gas desulfurization process: experiments and modeling[J]. Environmental Science and Pollution Research International, 2017, 24(9): 8602-8608. |
28 | DING Wenjin, YANG Huaming, OUYANG Jing. Mineral carbonation of a desulfurization residue for CO2 sequestration[J]. RSC Advances, 2015, 5(82): 67184-67194. |
29 | LI Ruibing, ZHANG Ting’an, LIU Yan, et al. Characteristics of red mud slurry flow in carbonation reactor[J]. Powder Technology, 2017, 311: 66-76. |
30 | KANTARCI N, BORAK F, ULGEN K O. Bubble column reactors[J]. Process Biochemistry, 2005, 40(7): 2263-2283. |
31 | WANG Tiefeng, WANG Jinfu, JIN Yong. Slurry reactors for gas-to-liquid processes: a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847. |
32 | LIU Weizao, TENG Liumei, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes: a review of recent developments[J]. Chemical Engineering Journal, 2021, 416: 129093. |
33 | HUIJGEN W J J, COMANS R N J. Carbon dioxide sequestration by mineral carbonation: literature review[D]. Petten: Energy Research Centre of the Netherlands, 2003. |
34 | TAMILSELVI DANANJAYAN R R, KANDASAMY P, ANDIMUTHU R. Direct mineral carbonation of coal fly ash for CO2 sequestration[J]. Journal of Cleaner Production, 2016, 112: 4173-4182. |
35 | TEBBICHE I, PASQUIER L C, MERCIER G, et al. Thermally activated serpentine leaching under flue gas conditions in a bubble column reactor operated at ambient pressure and temperature[J]. Hydrometallurgy, 2020, 195: 105391. |
36 | CHANG E E, CHIU A C, PAN Shuyuan, et al. Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor[J]. International Journal of Greenhouse Gas Control, 2013, 12: 382-389. |
37 | FERNÁNDEZ BERTOS M, LI X, SIMONS S J R, et al. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2 [J]. Green Chem, 2004, 6(8): 428-436. |
38 | YADAV V S, PRASAD M, KHAN J, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 1044-1050. |
39 | HO H J, IIZUKA A, SHIBATA E, et al. CO2 utilization via direct aqueous carbonation of synthesized concrete fines under atmospheric pressure[J]. ACS Omega, 2020, 5(26): 15877-15890. |
40 | LIU Rong, WANG Xiaolong, GAO Shiwang. CO2 capture and mineralization using carbide slag doped fly ash[J]. Greenhouse Gases: Science and Technology, 2020, 10(1): 103-115. |
41 | SUN Jian, LIU Wenqiang, HU Yingchao, et al. Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture[J]. Chemical Engineering Journal, 2016, 285: 293-303. |
42 | ALTINER M. Use of Taguchi approach for synthesis of calcite particles from calcium carbide slag for CO2 fixation by accelerated mineral carbonation[J]. Arabian Journal of Chemistry, 2019, 12(4): 531-540. |
43 | KITAMURA M, KONNO H, YASUI A, et al. Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions[J]. Journal of Crystal Growth, 2002, 236(1/2/3): 323-332. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[5] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[6] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[7] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[8] | 尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[9] | 刘丹, 范云洁, 王慧敏, 严政, 李鹏飞, 李家成, 曹雪波. 基于废弃PET的高值化功能性多孔碳材料及其应用进展[J]. 化工进展, 2023, 42(2): 969-984. |
[10] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[11] | 王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
[12] | 王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
[13] | 慕彦君, 宋倩倩, 王红秋, 付凯妹, 雪晶, 王春娇. 美国炼化行业低碳发展策略与启示[J]. 化工进展, 2022, 41(6): 2797-2805. |
[14] | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
[15] | 张卫风, 周武, 王秋华. 相变吸收捕集烟气中CO2技术的发展现状[J]. 化工进展, 2022, 41(4): 2090-2101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |