化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 447-460.DOI: 10.16085/j.issn.1000-6613.2023-0614
张杰1(
), 王放放2, 夏忠林1, 赵光金2, 马双忱1(
)
收稿日期:2023-04-16
修回日期:2023-09-18
出版日期:2023-10-25
发布日期:2023-11-30
通讯作者:
马双忱
作者简介:张杰(1994—),男,硕士研究生,研究方向为六氟化硫废气降解技术。E-mail:j17ncepu@163.com。
ZHANG Jie1(
), WANG Fangfang2, XIA Zhonglin1, ZHAO Guangjin2, MA Shuangchen1(
)
Received:2023-04-16
Revised:2023-09-18
Online:2023-10-25
Published:2023-11-30
Contact:
MA Shuangchen
摘要:
六氟化硫(SF6)的减排是电力行业服务“碳达峰、碳中和”的攻坚环节,文章总结了电力行业温室气体SF6排放现状和主要排放源,从开源、节流、升级和降解角度出发,总结了四种SF6减排手段,即源头替代、回收净化、设备升级以及无害化处理等,综述了各种技术存在的问题及对策。通过SF6减排技术优先选择性分析,提出了SF6气体减排分“两步走”战略,为构建绿色低碳新型电力系统以及实现“净零”目标提供参考。建议加强对非CO2温室气体SF6的政策约束力度、进一步制定针对电力行业的SF6气体减排目标、加快SF6气体减排技术应用进程、建立完善的SF6全生命周期管理方法,促使我国SF6气体管控再上新台阶。
中图分类号:
张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460.
ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460.
| 气体 | 理化特性 | 环境特性 | 相对绝缘性能 | |||||
|---|---|---|---|---|---|---|---|---|
| 毒理性 | 液化温度/℃ | 易燃性 | 大气寿命 | GWP | ODP | 主要毒性分解产物(微水) | ||
| SF6 | 无 | -64 | 无 | 3200a | 25200 | 0 | HF、SOF2等 | 1 |
| N2 | 无 | -196 | 无 | — | 0 | 0 | 无 | 0.38 |
| CO2 | 无 | -78.5 | 无 | 5-200a | 1 | 0 | 无 | 0.35 |
| c-C4F8 | 低 | -8 | 无 | 3200a | 8700 | 0 | HF等 | 1.27 |
| CF3I | 低 | -22.5 | 无 | 0.005a | 1~5 | 0 | HF等 | 1.2 |
| C5F10O | 无 | 26.5 | 无 | 0.042a | 1 | 0 | COF2等 | 2 |
| C4F7N | 低 | -4.7 | 无 | 30a | 2100 | 0 | 氰化物、HF等 | 2.1 |
表1 SF6及部分替代气体主要性能比较
| 气体 | 理化特性 | 环境特性 | 相对绝缘性能 | |||||
|---|---|---|---|---|---|---|---|---|
| 毒理性 | 液化温度/℃ | 易燃性 | 大气寿命 | GWP | ODP | 主要毒性分解产物(微水) | ||
| SF6 | 无 | -64 | 无 | 3200a | 25200 | 0 | HF、SOF2等 | 1 |
| N2 | 无 | -196 | 无 | — | 0 | 0 | 无 | 0.38 |
| CO2 | 无 | -78.5 | 无 | 5-200a | 1 | 0 | 无 | 0.35 |
| c-C4F8 | 低 | -8 | 无 | 3200a | 8700 | 0 | HF等 | 1.27 |
| CF3I | 低 | -22.5 | 无 | 0.005a | 1~5 | 0 | HF等 | 1.2 |
| C5F10O | 无 | 26.5 | 无 | 0.042a | 1 | 0 | COF2等 | 2 |
| C4F7N | 低 | -4.7 | 无 | 30a | 2100 | 0 | 氰化物、HF等 | 2.1 |
| 方法 | 优点 | 缺点 |
|---|---|---|
| 深冷提纯(液化法) | 方法简单 | 效率低,对分解产物分离效果差 |
| 膜分离法 | 常温进行、无相态变化、无化学变化、选择性好、适应性强,能耗低 | 膜易堵塞,维护费用高,操作复杂 |
| 吸附提纯法 | 吸附剂种类多,可进行选择性吸附 | 吸附饱和无明显现象,更换频率不易确定;仅适用于低浓度SF6 |
| 精馏提纯法 | 利用相对挥发度的不同,可较容易将SF6与其他组分分离 | 操作条件要求高 |
表2 SF6净化方法比较
| 方法 | 优点 | 缺点 |
|---|---|---|
| 深冷提纯(液化法) | 方法简单 | 效率低,对分解产物分离效果差 |
| 膜分离法 | 常温进行、无相态变化、无化学变化、选择性好、适应性强,能耗低 | 膜易堵塞,维护费用高,操作复杂 |
| 吸附提纯法 | 吸附剂种类多,可进行选择性吸附 | 吸附饱和无明显现象,更换频率不易确定;仅适用于低浓度SF6 |
| 精馏提纯法 | 利用相对挥发度的不同,可较容易将SF6与其他组分分离 | 操作条件要求高 |
| 30 | 梁真镇, 付梦月, 高英武, 等. 六氟化硫中可水解氟化物的吸附试验及分析[J]. 化学推进剂与高分子材料, 2011, 9(4): 89-90, 93. |
| LIANG Zhenzhen, FU Mengyue, GAO Yingwu, et al. Adsorption test and analysis of hydrolysable fluorides in sulfur hexafluoride[J]. Chemical Propellants & Polymeric Materials, 2011, 9(4): 89-90, 93. | |
| 31 | 刘英卫, 钟世强, 祁炯, 等. 六氟化硫气体回收处理技术及设备[J]. 电力设备, 2008(8): 14-17. |
| LIU Yingwei, ZHONG Shiqiang, QI Jiong, et al. Technology and equipment of recovery and treatment for SF6 gas[J]. Electrical Equipment, 2008(8): 14-17. | |
| 32 | 孙强, 杨典, 王芳, 等. 基于ASPEN PLUS的六氟化硫提纯工艺研究[J]. 云南化工, 2020, 47(9): 41-45. |
| SUN Qiang, YANG Dian, WANG Fang, et al. Research on distillation of pure sulfur hexafluoride based on ASPEN PLUS[J]. Yunnan Chemical Technology, 2020, 47(9): 41-45. | |
| 33 | 唐念, 乔胜亚, 李丽, 等. HF和H2S作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J]. 电工技术学报, 2017, 32(19): 202-211. |
| TANG Nian, QIAO Shengya, LI Li, et al. Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 202-211. | |
| 34 | 赵锋, 李胜利, 李晋城, 等. 高低温冷阱富集分离SF6典型分解产物实验研究[J]. 高电压技术, 2015, 41(11): 3866-3871. |
| ZHAO Feng, LI Shengli, LI Jincheng, et al. Experimental study on the separation and enrichment for typical decomposition products of SF6 with high and low temperature trap[J]. High Voltage Engineering, 2015, 41(11): 3866-3871. | |
| 35 | LIU C H, PALANISAMY S, CHEN S, et al. Mechanism of formation of SF6 decomposition gas products and its identification by GC-MS and electrochemical methods: A mini review[J]. International Journal of Electrochemical Science, 2015, 10(5): 4223-4231. |
| 36 | 宋玉梅, 刘伟, 朱峰, 等. 吸附剂对六氟化硫气体中八氟丙烷的吸附特性研究[J]. 电工材料, 2021(5): 12-15. |
| SONG Yumei, LIU Wei, ZHU Feng, et al. Study on adsorption characteristics of adsorbent for cctafluoropropane in sulfur hexafluoride gas[J]. Electrical Engineering Materials, 2021(5): 12-15. | |
| 37 | 彭立培, 王少波. 六氟化硫制备与纯化技术[J]. 舰船科学技术, 2006, 28(2): 30-33. |
| PENG Lipei, WANG Shaobo. Reviews on preparation and purification methods of sulfur hexafluoride[J]. Ship Science and Technology, 2006, 28(2): 30-33. | |
| 38 | 陈敏. 基于精馏提纯的六氟化硫气体净化处理技术研究[J]. 广州化工, 2017, 45(18): 8-9, 31. |
| CHEN Min. Study on purification technique of SF6 based on distillation[J]. Guangzhou Chemical Industry, 2017, 45(18): 8-9, 31. | |
| 39 | 刘易雄, 王同详. SF6气体净化处理系统及应用[J]. 高压电器, 2014, 50(2): 109-114. |
| LIU Yixiong, WANG Tongxiang. SF6 gas purifying system[J]. High Voltage Apparatus, 2014, 50(2): 109-114. | |
| 40 | 陈梅. 电气设备六氟化硫气体回收处理技术之试验研究[J]. 科技与企业, 2012(24): 354. |
| CHEN Mei. Experimental study on recovery and treatment technology of sulfur hexafluoride gas in electrical equipment[J]. Keji Yu Qiye, 2012(24): 354. | |
| 41 | 郭秋宁. 活性氧化铝的性质、制备及应用[J]. 广西化工, 1996, 25(4): 31-34. |
| GUO Qiuning. Properties, preparation and application of activated alumina[J]. Guangxi Chemical Industry, 1996, 25(4): 31-34. | |
| 42 | 杨国华, 黄统琳, 姚忠亮, 等. 吸附剂的应用研究现状和进展[J]. 化学工程与装备, 2009(6): 84-88, 83. |
| YANG Guohua, HUANG Tonglin, YAO Zhongliang, et al. Current application research on the adsorbents and their development tendency[J]. Chemical Engineering & Equipment, 2009(6): 84-88, 83. | |
| 43 | 唐炬, 曾福平, 梁鑫, 等. 吸附剂对局部放电下SF6分解特征组分的吸附研究[J]. 中国电机工程学报, 2014, 34(3): 486-494. |
| TANG Ju, ZENG Fuping, LIANG Xin, et al. Study on the influence of adsorbent on SF6 decomposition characteristics under partial discharge[J]. Proceedings of the CSEE, 2014, 34(3): 486-494. | |
| 44 | 钟理鹏, 汲胜昌, 李金宇, 等. 吸附剂对SF6典型分解产物含量及变化规律的影响[J]. 西安交通大学学报, 2015, 49(2): 86-92, 134. |
| ZHONG Lipeng, JI Shengchang, LI Jinyu, et al. Effects of adsorbent on contents and evolving law of typical SF6 decomposition products[J]. Journal of Xi’an Jiaotong University, 2015, 49(2): 86-92, 134. | |
| 1 | 张咪, 高克利, 侯华, 等. SF6替代绝缘气体的虚拟筛选与分子设计综述[J]. 高电压技术, 2023, 49(7): 2816-2830. |
| ZHANG Mi, GAO Keli, HOU Hua, et al. Review on Computational Screening and Molecular Design of Replacement Gases for SF6 [J]. High Voltage Engineering, 2023, 49(7): 2816-2830. | |
| 2 | 崔兆仑, 郝艳捧, 阳林, 等. SF6废气无害化降解研究综述[J]. 中国电机工程学报, 2023, 43(19): 7720-7736. |
| CUI Zhaolun, HAO Yanpeng, YANG Lin, et al. Review on harmless abatement of SF6 waste gas[J]. Proceedings of the CSEE, 2023, 43(19): 7720-7736. | |
| 3 | 黄小龙, 赵双伟, 王勇, 等. 环保型高压电力开关设备研究进展综述[J]. 工程科学与技术, 2023, 55(3): 14-29. |
| HUANG Xiaolong, ZHAO Shuangwei, WANG Yong, et al. A review of research progress on environment-friendly high-voltage power switchgear[J]. Advanced Engineering Sciences, 2023, 55(3): 14-29. | |
| 4 | 彭静, 王军, 亓富军, 等. “双碳”目标下配电网多阶段扩展规划[J]. 电力系统保护与控制, 2022, 50(7): 153-161. |
| PENG Jing, WANG Jun, QI Fujun, et al. Multi-stage expansion planning of a distribution network with double-carbon policy[J]. Power System Protection and Control, 2022, 50(7): 153-161. | |
| 5 | SIMMONDS P G, RIGBY M, MANNING A J, et al. The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF6)[J]. Atmospheric Chemistry and Physics, 2020, 20(12): 7271-7290 |
| 6 | ZHOU Sheng, TENG Fei, TONG Qing. Mitigating sulfur hexafluoride (SF6) emission from electrical equipment in China[J]. Sustainability, Multidisciplinary Digital Publishing Institute, 2018, 10(7): 2402. |
| 7 | 中国气象局. 2020年中国温室气体公报[EB/OL].[2023-09-30]. . |
| 8 | RABIE Mohamed, FRANCK Christian. Assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6 [J]. Environmental Science & Technology Letters, American Chemical Society, 2018, 52(2): 369-380. |
| 45 | 陈敏. 六氟化硫气体吸附提纯技术与吸附剂选择研究[J]. 广州化工, 2016, 44(18): 127-129. |
| CHEN Min. Study on purification technique and adsorbent choice of SF6 [J]. Guangzhou Chemical Industry, 2016, 44(18): 127-129. | |
| 46 | 刘朋亮, 张建飞, 李琳凤, 等. 膜技术在六氟化硫混合绝缘气体回收及提纯中的应用[J]. 电气技术, 2021, 22(3): 89-93. |
| LIU Pengliang, ZHANG Jianfei, LI Linfeng, et al. Application of membrane technology in recovery and purification of sulfur hexafluoride mixed insulating gas[J]. Electrical Engineering, 2021, 22(3): 89-93. | |
| 47 | BUILES S, ROUSSEL T, VEGA L F. Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using Monte Carlo simulations[J]. AIChE Journal, 2011, 57(4): 962-974. |
| 48 | SUN M S, SHAH D B, XU H H, et al. Adsorption equilibria of C1 to C4 alkanes, CO2, and SF6 on silicalite[J]. The Journal of Physical Chemistry B, 1998, 102(8): 1466-1473. |
| 49 | PRIBYLOV A A, KALINNIKOVA I A, REGENT N I. Features of sulfur hexafluoride adsorption on carbon adsorbents[J]. Russian Chemical Bulletin, 2003, 52(4): 882-888. |
| 50 | 郑先强. SF6气体在多孔材料中的吸附和分离的分子模拟研究[D]. 北京: 北京化工大学, 2021. |
| ZHENG Xianqiang. Molecular simulation of adsorption and separation of SF6 gas in porous materials[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| 51 | HUANG Li, GU Dinghong, YANG Longyu, et al. Photoreductive degradation of sulfur hexafluoride in the presence of styrene[J]. Journal of Environmental Sciences, 2008, 20(2): 183-188. |
| 52 | 黄丽, 顾丁红, 沈燕, 等. 光还原法降解强温室气体SF6的研究[C]//上海市化学化工学会2007年度学术年会论文摘要集, 中国, 上海, 2007: 212-213, 216, 269. |
| HUANG Li, GU Dinghong, SHEN Yan, et al. Photoreduction of SF6 as a strong greenhouse gas[C]//Abstracts of the 2007 Annual Meeting of the Shanghai Chemical and Chemical Society, Shanghai, China, 2007: 212-213, 216, 269. | |
| 9 | Department of Commerce N US. Global monitoring laboratory-carbon cycle greenhouse gases[EB/OL]. . |
| 10 | KIKSTRA J S, VINCA A, LOVAT F, et al. Climate mitigation scenarios with persistent COVID-19-related energy demand changes[J]. Nature Energy, 2021, 6(12): 1114-1123. |
| 11 | US EPA O. Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021[EB/OL].. |
| 12 | 周文俊, 郑宇, 杨帅, 等. 替代SF6的环保型绝缘气体研究进展与趋势[J]. 高压电器, 2016, 52(12): 8-14. |
| ZHOU Wenjun, ZHENG Yu, YANG Shuai, et al. Research progress and trend of SF6 alternative with environment friendly insulation gas[J]. High Voltage Apparatus, 2016, 52(12): 8-14. | |
| 13 | 李学妨, 史俊, 刘晓波, 等. 环保型绝缘气体技术经济性能综合评估研究[J]. 高压电器, 2023, 59(2): 52-60, 68. |
| LI Xuefang, SHI Jun, LIU Xiaobo, et al. Research on Comprehensive Assessment of Technical and Economic Performance of Environmentally Friendly Insulating Gas.[J]. High Voltage Apparatus, 2023, 59(2): 52-60, 68. | |
| 14 | 贾申利, 贾荣照, 朱璐. 真空开断型环保GIS发展现状及趋势[J]. 高压电器, 2022, 58(9): 1-12. |
| JIA Shenli, JIA Rongzhao, ZHU Lu. Advances in the development of vacuum-based eco-friendly GIS[J]. High Voltage Apparatus, 2022, 58(9): 1-12. | |
| 15 | 李国兴, 姜子秋, 关艳玲, 等. 六氟化硫气体低温液化特性试验研究[J]. 黑龙江电力, 2015, 37(5): 399-403. |
| LI Guoxing, JIANG Ziqiu, GUAN Yanling, et al. Research on characteristic test of SF6 gas low-temperature liquefaction[J]. Heilongjiang Electric Power, 2015, 37(5): 399-403. | |
| 16 | 侯志强, 郭若琛, 李军浩. 直流电压下SF6/N2混合气体沿面局部放电特性[J]. 电工技术学报, 2020, 35(14): 3087-3096. |
| HOU Zhiqiang, GUO Ruochen, LI Junhao. Partial discharge characteristics of the surface discharge in SF6/N2 of the mixed gas under DC voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3087-3096. | |
| 53 | YAMADA Yasuhiro, TAMURA Hiroyuki, TAKEDA Daisuke. Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices[J]. The Journal of Chemical Physics, 2011, 134(10): 104302. |
| 54 | 沈燕. 强温室气体SF6、SF5CF3与CF4的等离子体降解与光降解过程的研究[D]. 上海: 复旦大学, 2008. |
| SHEN Yan. Study on plasma degradation and photodegradation of strong greenhouse gases SF6, SF5CF3 and CF4 [D]. Shanghai: Fudan University, 2008. | |
| 55 | SONG Xiaoxiao, LIU Xingang, YE Zhaolian, et al. Photodegradation of SF6 on polyisoprene surface: Implication on elimination of toxic byproducts[J]. Journal of Hazardous Materials, 2009, 168(1): 493-500. |
| 56 | 张晓星, 李亚龙, 胡雄雄, 等. 基于TiO2表面紫外光催化降解高浓度SF6的实验与仿真研究[J]. 高电压技术, 2019, 45(7): 2212-2218. |
| ZHANG Xiaoxing, LI Yalong, HU Xiongxiong, et al. Simulation and experimental study on degradation of high concentration SF6 based on ultraviolet photocatalysis principle of titanium dioxide surface[J]. High Voltage Engineering, 2019, 45(7): 2212-2218. | |
| 57 | WANG Y, SHIH M, TSAI C H, et al. Total toxicity equivalents emissions of SF6, CHF3, and CCl2F2 decomposed in a RF plasma environment[J]. Chemosphere, 2006, 62(10): 1681-1688. |
| 58 | RADOIU Marilena, HUSSAIN Shahid. Microwave plasma removal of sulphur hexafluoride[J]. Journal of Hazardous Materials, 2009, 164(1): 39-45. |
| 59 | ROSOCHA L A, KIM Y, ANDERSON G K, et al. Decomposition of ethane in atmospheric-pressure dielectric-barrier discharges: Experiments[J]. IEEE Transactions on Plasma Science, 2006, 34(6): 2526-2531. |
| 60 | 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. |
| LI Heping, YU Daren, SUN Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. | |
| 61 | 沈燕, 黄丽, 张仁熙, 等. 介质阻挡放电降解SF6的研究[J]. 环境化学, 2007, 26(3): 275-279. |
| SHEN Yan, HUANG Li, ZHANG Renxi, et al. Decomposition of SF6 by dielectric barriers discharge[J]. Environmental Chemistry, 2007, 26(3): 275-279. | |
| 62 | KIM S W, KIM J B, KIM J H, et al. A study on particulate matter formed from plasma decomposition of SF6 [J]. Journal of Korean Society for Atmospheric Environment, 2017, 33(4): 326-332. |
| 63 | GUI Yingang, CHEN Wenlong, LU Yuncai, et al. Au catalyst-modified MoS2 monolayer as a highly effective adsorbent for SO2F2 gas: A DFT study[J]. ACS Omega, 2019, 4(7): 12204-12211. |
| 64 | LEE H M, CHANG M B, WU K Y. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970. |
| 65 | ZHUANG Quan, CLEMENTS Bruce, MCFARLAN Andrew, et al. Decomposition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF6) using a dielectric barrier discharge (DBD) plasma[J]. The Canadian Journal of Chemical Engineering, 2014, 92(1): 32-35. |
| 66 | ZHANG J, ZHOU J Z, XU Z P, et al. Decomposition of potent greenhouse gas sulfur hexafluoride (SF6) by kirschsteinite-dominant stainless steel slag[J]. Environmental Science & Technology, 2014, 48(1): 599-606. |
| 67 | 李亚龙, 张晓星, 崔兆仑, 等. NH3对DBD降解SF6影响的试验研究[J]. 电工技术学报, 2019, 34(24): 5262-5269. |
| LI Yalong, ZHANG Xiaoxing, CUI Zhaolun, et al. Experiment of effect of ammonia on degradation of sulfur hexafluoride by dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5262-5269. | |
| 68 | 董晓虎, 程绳, 姚京松, 等. H2O浓度对填充床式反应器降解SF6影响的实验研究[J]. 高压电器, 2021, 57(3): 172-179. |
| DONG Xiaohu, CHENG Sheng, YAO Jingsong, et al. Experimental study on H2O concentration on degradation effect of SF6 by packed-bed reactor[J]. High Voltage Apparatus, 2021, 57(3): 172-179. | |
| 69 | ZHANG Xiaoxing, ZHANG Guozhi, WU Yongqian, et al. Synergistic treatment of SF6 by dielectric barrier discharge/γ-Al2O3 catalysis[J]. AIP Advances, 2018, 8(12): 125109. |
| 70 | ZHANG Xiaoxing, WANG Yufei, CUI Zhaolun, et al. Experimental study on the degradation of SF6 by dielectric barrier discharge with different packing materials[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 397-406. |
| 71 | 张晓星, 周畅, 崔兆仑, 等. 填充颗粒尺寸对介质阻挡放电降解SF6的影响[J]. 电工技术学报, 2022, 37(18): 4766-4776. |
| ZHANG Xiaoxing, ZHOU Chang, CUI Zhaolun, et al. Effect of particle size on degradation of SF6 by dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4766-4776. | |
| 17 | 张潮海, 韩冬, 李康, 等. SF6替代气体技术及其在GIL中的应用与发展[J]. 高电压技术, 2017, 43(3): 689-698. |
| ZHANG Chaohai, HAN Dong, LI Kang, et al. SF6 alternative techniques and their applications and prospective developments in gas insulated transmission lines[J]. High Voltage Engineering, 2017, 43(3): 689-698. | |
| 18 | 牛文豪, 张国强, 林涛, 等. 氟碳介质热致气液两相流的工频击穿特性及其在GIL中的应用展望[J]. 高电压技术, 2017, 43(3): 743-753. |
| NIU Wenhao, ZHANG Guoqiang, LIN Tao, et al. AC breakdown initiated by thermally induced bubble of nonflammable fluorocarbon and its application prospect in GIL[J]. High Voltage Engineering, 2017, 43(3): 743-753. | |
| 19 | 彭敏, 王宝山, 于萍, 等. 六氟化硫替代气体三氟化硫氮的制备及表征[J]. 应用化工, 2018, 47(11): 2301-2303, 2313. |
| PENG Min, WANG Baoshan, YU Ping, et al. Preparation and characterization of NSF3 for the alternative gas of SF6 [J]. Applied Chemical Industry, 2018, 47(11): 2301-2303, 2313. | |
| 20 | 李卫国, 侯孟希, 袁创业, 等. 稍不均匀场下CF4/N2混合物雷电冲击绝缘特性研究[J]. 高压电器, 2016, 52(12): 128-133. |
| LI Weiguo, HOU Mengxi, YUAN Chuangye, et al. Breakdown characteristics of CF4/N2 in slightly non-uniform electric field under lightning impulse stress[J]. High Voltage Apparatus, 2016, 52(12): 128-133. | |
| 21 | BEROUAL A, HADDAD A M. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications[J]. Energies, 2017, 10(8): 1216. |
| 22 | KIEFFEL Yannick, IRWIN Todd, PONCHON Philippe, et al. Green gas to replace SF6 in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39. |
| 23 | 侯华, 王宝山. 六氟化硫替代气体绝缘强度的官能团加和理论方法[J]. 高等学校化学学报, 2021, 42(12): 3709-3715. |
| HOU Hua, WANG Baoshan. Group additivity theoretical model for the prediction of dielectric strengths of the alternative gases to SF6 [J]. Chemical Journal of Chinese Universities, 2021, 42(12): 3709-3715. | |
| 24 | 王宝山, 余小娟, 侯华, 等. 六氟化硫绝缘替代气体的构效关系与分子设计技术现状及发展[J]. 电工技术学报, 2020, 35(1): 21-33. |
| 72 | DERVOS C T, VASSILIOU P. Sulfur hexafluoride (SF6): Global environmental effects and toxic byproduct formation[J]. Journal of the Air & Waste Management Association, 2000, 50(1): 137-141. |
| 73 | 宋潇潇. 全氟温室气体SF6、 NF3的降解途径探索[D]. 上海: 复旦大学, 2009. |
| SONG Xiaoxiao. Study on the degradation pathway of perfluorinated greenhouse gases SF6 and NF3 [D]. Shanghai: Fudan University, 2009. | |
| 74 | KASHIWAGI Daishin, TAKAI Asami, TAKUBO Takeshi, et al. Metal phosphate catalysts effective for degradation of sulfur hexafluoride[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 632-640. |
| 75 | KASHIWAGI Daishin, TAKAI Asami, TAKUBO Takeshi, et al. Catalytic activity of rare earth phosphates for SF6 decomposition and promotion effects of rare earths added into AlPO4 [J]. Journal of Colloid and Interface Science, 2009, 332(1): 136-144. |
| 76 | 张晓星, 王毅, 田双双, 等. O2对CePO4热催化降解SF6废气的影响[J]. 高电压技术, 2022, 48(6): 2152-2158. |
| ZHANG Xiaoxing, WANG Yi, TIAN Shuangshuang, et al. Effect of O2 on thermocatalytic degradation of SF6 by CePO4 [J]. High Voltage Engineering, 2022, 48(6): 2152-2158. | |
| 77 | 熊浩, 陈铁, 刘航, 等. 基于磷酸盐的热催化降解SF6废气研究[J]. 高压电器, 2021, 57(3): 180-185. |
| XIONG Hao, CHEN Tie, LIU Hang, et al. Study on thermal catalytic degradation of SF6 waste gas based on phosphate[J]. High Voltage Apparatus, 2021, 57(3): 180-185. | |
| 78 | PARK N K, PARK H G, LEE T J, et al. Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF6 [J]. Catalysis Today, 2012, 185(1): 247-252. |
| 79 | 厉亚军. 不锈钢渣降解强温室气体六氟化硫(SF6)的研究[D]. 上海: 上海大学, 2012. |
| LI Yajun. The degradation of potent greenhouse gas sulfur hexafluoride (SF6) by stainless steel slag[D]. Shanghai: Shanghai University, 2012. | |
| 24 | WANG Baoshan, YU Xiaojuan, HOU Hua, et al. Review on the developments of structure-activity relationship and molecular design of the replacement dielectric gases for SF6 [J]. Transactions of China Electrotechnical Society, 2020, 35(1): 21-33. |
| 25 | 颜湘莲, 高克利, 郑宇, 等. SF6混合气体及替代气体研究进展[J]. 电网技术, 2018, 42(6): 1837-1844. |
| YAN Xianglian, GAO Keli, ZHENG Yu, et al. Progress of gas mixture and alternative gas of SF6 [J]. Power System Technology, 2018, 42(6): 1837-1844. | |
| 26 | 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. |
| ZHANG Xiaoxing, TIAN Shuangshuang, XIAO Song, et al. A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. | |
| 27 | LEE Hakju, YEUN Jeuk, Heesub AHN, et al. Insulation design of 25.8kV class gas insulated switchgear in dry air[C]//2022 6th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). March 15-18, 2022, Seoul, Korea, Republic of IEEE, 2022: 253-256. |
| 28 | 侯孟希, 于昊洋, 金钊, 等. CF4及其N2混合物微观放电参数计算与绝缘特性仿真研究[J]. 高压电器, 2020, 56(1): 121-127. |
| HOU Mengxi, YU Haoyang, JIN Zhao, et al. Calculation of discharge micro-parameters and simulation of insulation characteristics for CF4 and its N2 mixture[J]. High Voltage Apparatus, 2020, 56(1): 121-127. | |
| 29 | 黄青松. 六氟化硫气体回收净化处理装置技术的发展前景[J]. 科技创新与应用, 2015(24): 51-52. |
| HUANG Qingsong. Development prospect of sulfur hexafluoride gas recovery purification treatment device technology[J]. Technology Innovation and Application, 2015(24): 51-52. | |
| 80 | 相震. 减排六氟化硫应对全球气候变化[J]. 中国环境管理, 2010, 2(2): 23-27. |
| XIANG Zhen. SF6 emission reduction to deal with the global climate change[J]. Chinese Journal of Environmental Management, 2010, 2(2): 23-27. | |
| 81 | 卞梦凡, 高钰婷, 郝影, 等. 国家温室气体清单编制原则与当前实务[J]. 中国统计, 2021(12): 42-44. |
| BIAN Mengfan, GAO Yuting, HAO Ying, et al. Principles and current practice of compiling national greenhouse gas inventory[J]. China Statistics, 2021(12): 42-44. | |
| 82 | 李志刚, 蔡巍, 李帆. 六氟化硫气体的全寿命周期管理[J]. 华北电力技术, 2016(5): 29-34. |
| LI Zhigang, CAI Wei, LI Fan. The full life cycle management of sulfur hexafluoride gas[J]. North China Electric Power, 2016(5): 29-34. | |
| 83 | 肖淞, 石生尧, 林婧桐, 等. “碳达峰、碳中和”目标下高压电气设备中强温室绝缘气体SF6控制策略分析[J]. 中国电机工程学报, 2023, 43(1): 339-358. |
| XIAO Song, SHI Shengyao, LIN Jingtong, et al. Analysis on the control strategy of the strong greenhouse insulating gas SF6 in high-voltage electrical equipment under the goal of “emission peak and carbon neutrality”[J]. Proceedings of the CSEE, 2023, 43(1): 339-358. |
| [1] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
| [2] | 杨志强, 曾纪珺, 马义丁, 尉涛, 赵波, 刘英哲, 张伟, 吕剑, 李兴文, 张博雅, 唐念, 李丽, 孙东伟. 六氟化硫替代气体的研究现状及未来发展趋势[J]. 化工进展, 2023, 42(8): 4093-4107. |
| [3] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
| [4] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
| [5] | 耿书阳, 姜泽毅, 张欣茹. 均混预热电石熔炼新工艺的能耗特征与热经济成本分析[J]. 化工进展, 2023, 42(4): 1787-1796. |
| [6] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
| [7] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
| [8] | 刘丹, 范云洁, 王慧敏, 严政, 李鹏飞, 李家成, 曹雪波. 基于废弃PET的高值化功能性多孔碳材料及其应用进展[J]. 化工进展, 2023, 42(2): 969-984. |
| [9] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
| [10] | 张清清, 毕海普, 舒中俊, 欧红香, 王尚彬, 王钧奇, 潘煜. 泡沫灭火剂中全氟辛烷磺酸类物质的管控行为及替代物研究进展[J]. 化工进展, 2022, 41(S1): 340-350. |
| [11] | 龙红明, 丁龙, 钱立新, 春铁军, 张洪亮, 余正伟. 烧结烟气中NO x 和二 英的减排现状及发展趋势[J]. 化工进展, 2022, 41(7): 3865-3876. |
| [12] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
| [13] | 慕彦君, 宋倩倩, 王红秋, 付凯妹, 雪晶, 王春娇. 美国炼化行业低碳发展策略与启示[J]. 化工进展, 2022, 41(6): 2797-2805. |
| [14] | 甘凤丽, 江霞, 常玉龙, 靳紫恒, 汪华林, 师敬伟. 石化行业碳中和技术路径探索[J]. 化工进展, 2022, 41(3): 1364-1375. |
| [15] | 张春, 王学瑞, 刘华, 高雪超, 张玉亭, 顾学红. 面向工业过程碳减排的分子筛膜技术研究进展[J]. 化工进展, 2022, 41(3): 1376-1390. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |