化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 439-446.DOI: 10.16085/j.issn.1000-6613.2023-0596
王莹1,2(), 韩云平1,2(), 李琳1,2, 李衍博3, 李慧丽4, 颜昌仁4, 李彩侠4
收稿日期:
2023-04-14
修回日期:
2023-08-22
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
韩云平
作者简介:
王莹(1998—),女,博士研究生,研究方向为微生物气溶胶。E-mail:yingwang2018_st@rcees.ac.cn。
基金资助:
WANG Ying1,2(), HAN Yunping1,2(), LI Lin1,2, LI Yanbo3, LI Huili4, YAN Changren4, LI Caixia4
Received:
2023-04-14
Revised:
2023-08-22
Online:
2023-10-25
Published:
2023-11-30
Contact:
HAN Yunping
摘要:
近年来,大规模病毒传染性疾病的频繁爆发已引起全世界关于气载致病微生物的重点关注,尤其是不同人为源病毒气溶胶的产生及逸散过程。本文通过综述近年来污水处理厂病毒气溶胶的逸散浓度、主要种群及关键逸散点源,重点分析了病毒气溶胶与生物气溶胶逸散之间的相互关系及影响因素,探究了目前污水厂病毒气溶胶研究中存在的关键问题,并对未来研究趋势及方向进行了展望。结果发现,病毒气溶胶中的主要组分为诺如病毒和人腺病毒,其浓度存在较为明显的工艺单元及季节差异。污水污泥、污水厂的处理规模、运行状况及其所处的环境条件均是影响城市污水厂病毒气溶胶逸散的主要因素。同时,通过综述已有研究发现,目前针对城市污水厂病毒气溶胶的产生机制、扩散规律以及潜在风险评估还缺乏深入研究,也缺乏针对污水厂实际应用的有效控制措施,未来应在这些方面加强关注。
中图分类号:
王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446.
WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446.
病毒种类 | 采样地点 | 浓度 | 单位 | 参考文献 |
---|---|---|---|---|
NoV | 丹麦,哥本哈根 | 1.42×103 | copies/m3 | [ |
伊朗,德黑兰 | 3.10×103 | copies/m3 | [ | |
日本 | 3.20×103 | copies/m3 | [ | |
AdV | 瑞士,苏黎世 | 3.93×103~2.27×106 | copies/m3 | [ |
RoV | 伊朗,德黑兰 | 27 | copies/m3 | [ |
法国,克莱蒙费朗 | 2.20×105 | copies/m3 | [ | |
加拿大东部 | 1.70×104~2.20×105 | copies/m3 | [ | |
体细胞噬菌体 | 芬兰 | 10~380 | pfu/m3 | [ |
F特异性噬菌体 | 芬兰 | 10~70 | pfu/m3 | [ |
HAV | 法国,克莱蒙费朗 | 2.10×104 | copies/m3 | [ |
加拿大东部 | 4.70×103 | copies/m3 | [ | |
HEV | 法国,克莱蒙费朗 | 1.70×105~8.90×105 | copies/m3 | [ |
肠道病毒 | 法国,克莱蒙费朗 | 1.90×104 | copies/m3 | [ |
表1 城市污水厂病毒气溶胶中病毒组分
病毒种类 | 采样地点 | 浓度 | 单位 | 参考文献 |
---|---|---|---|---|
NoV | 丹麦,哥本哈根 | 1.42×103 | copies/m3 | [ |
伊朗,德黑兰 | 3.10×103 | copies/m3 | [ | |
日本 | 3.20×103 | copies/m3 | [ | |
AdV | 瑞士,苏黎世 | 3.93×103~2.27×106 | copies/m3 | [ |
RoV | 伊朗,德黑兰 | 27 | copies/m3 | [ |
法国,克莱蒙费朗 | 2.20×105 | copies/m3 | [ | |
加拿大东部 | 1.70×104~2.20×105 | copies/m3 | [ | |
体细胞噬菌体 | 芬兰 | 10~380 | pfu/m3 | [ |
F特异性噬菌体 | 芬兰 | 10~70 | pfu/m3 | [ |
HAV | 法国,克莱蒙费朗 | 2.10×104 | copies/m3 | [ |
加拿大东部 | 4.70×103 | copies/m3 | [ | |
HEV | 法国,克莱蒙费朗 | 1.70×105~8.90×105 | copies/m3 | [ |
肠道病毒 | 法国,克莱蒙费朗 | 1.90×104 | copies/m3 | [ |
1 | HAN Yunping, LI Lin, WANG Ying, et al. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J].Frontiers of Environmental Science & Engineering, 2020, 15(3): 1-16. |
2 | HUMBAL Charmi, GAUTAM Sneha, TRIVEDI Ujwalkumar. A review on recent progress in observations, and health effects of bioaerosols[J]. Environment International, 2018, 118: 189-193. |
3 | 杜茜, 温占波, 李劲松. 病毒气溶胶飞沫在室内环境中传播扩散机制的研究进展[J]. 军事医学, 2011, 35(8): 631-633, 638. |
DU Qian, WEN Zhanbo, LI Jingsong. Mechanism of viral aerosol and its droplet transmission and distribution in the indoor environment: A reasearch progress[J]. Military Medical Sciences, 2011, 35(8): 631-633, 638. | |
4 | 吴彦, 王旭初, 王兵, 等. 空气中流感病毒气溶胶采样技术研究进展[J]. 中国卫生检验杂志, 2019, 29(11): 1406-1408. |
WU Yan, WANG Xuchu, WANG Bing, et al. Research progress on aerosol sampling technology of influenza virus in the air[J]. Chinese Journal of Health Laboratory Technology, 2019, 29(11): 1406-1408. | |
5 | SHIU E Y, LEUNG N H, COWLING B J. Controversy around airborne versus droplet transmission of respiratory viruses[J]. Current Opinion in Infectious Diseases, 2019, 32(4): 372-379. |
6 | JUDSON S D, MUNSTER V J. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures[J]. Viruses, 2019, 11(10): 940. |
7 | HAN Yunping, YANG Kaixiong, YANG Tang, et al. Bioaerosols emission and exposure risk of a wastewater treatment plant with A2O treatment process[J]. Ecotoxicology and Environmental Safety, 2019, 169: 161-168. |
8 | Anna GOTKOWSKA-PŁACHTA, FILIPKOWSKA Zofia, KORZENIEWSKA Ewa, et al. Airborne microorganisms emitted from wastewater treatment plant treating domestic wastewater and meat processing industry wastes[J]. CLEAN-Soil, Air, Water, 2013, 41(5): 429-436. |
9 | DIVIZIA Maurizio, CENCIONI Barbara, PALOMBI Leonardo, et al. Sewage workers: Risk of acquiring enteric virus infections including hepatitis A[J]. New Microbiologica, 2008, 31(3): 337-341. |
10 | YANG Tang, HAN Yunping, ZHANG Mengzhu, et al. Characteristics and exposure Risks of potential pathogens and toxic metal(loid)s in aerosols from wastewater treatment plants[J]. Ecotoxicology and Environmental Safety, 2019, 183: 109543. |
11 | THORN J, BEIJER L, RYLANDER R. Work related symptoms among sewage workers: a nationwide survey in Sweden[J]. Occupational and Environmental Medicine, 2002, 59(8): 562-566. |
12 | ACOSTA N, BAUTISTA M A, WADDELL B J, et al. Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population[J]. Water Research, 2022, 220: 118611. |
13 | KUMAR M, PATEL A K, SHAH A V, et al. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2[J]. Science of the Total Environment, 2020, 746: 141326. |
14 | ZANETI R N, GIRARDI V, SPILKI F R, et al. Quantitative microbial risk assessment of SARS-CoV-2 for workers in wastewater treatment plants[J]. Science of the Total Environment, 2021, 754: 142163. |
15 | UHRBRAND K, SCHULTZ A C, MADSEN A M. Exposure to airborne Noroviruses and other bioaerosol components at a wastewater treatment plant in Denmark[J]. Food and Environmental Virology, 2011, 3(3/4): 130-137. |
16 | PASALARI H, ATAEI-PIRKOOH A, AMINIKHAH M, et al. Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden[J]. Environmental Pollution, 2019, 253: 464-473. |
17 | MATSUBARA Koichi, KATAYAMA Hiroyuki. Development of a portable detection method for enteric viruses from ambient air and its application to a wastewater treatment plant[J]. Pathogens, 2019, 8(3): 131. |
18 | MASCLAUX F G, HOTZ P, GASHI D, et al. Assessment of airborne virus contamination in wastewater treatment plants[J]. Environmental Research, 2014, 133(aug.): 260-265. |
19 | COURAULT D, ALBERT I, PERELLE S, et al. Assessment and risk modeling of airborne enteric viruses emitted from wastewater reused for irrigation[J]. Science of the Total Environment, 2017, 592: 512-526. |
20 | BRISEBOIS Evelyne, VEILLETTE Marc, Vanessa DION-DUPONT, et al. Human viral pathogens are pervasive in wastewater treatment center aerosols[J]. Journal of Environmental Sciences, 2018, 67: 45-53. |
21 | Helvi HEINONEN-TANSKI, REPONEN Tiina, KOIVUNEN Jari. Airborne enteric coliphages and bacteria in sewage treatment plants[J]. Water Research, 2009, 43(9): 2558-2566. |
22 | DE GRAAF Miranda, VAN BEEK J, KOOPMANS M P. Human norovirus transmission and evolution in a changing world[J]. Nature Reviews Microbiology, 2016, 14(7): 421-433. |
23 | 杨传宇, 赵林清. 人腺病毒流行病学研究进展[J]. 病毒学报, 2021, 37(3): 732-739. |
YANG Chuanyu, ZHAO Linqing. Progress in epidemiological study of human adenovirus[J]. Chinese Journal of Virology, 2021, 37(3): 732-739. | |
24 | BUBBA L, BROBERG E K, JASIR A, et al. Circulation of non-polio enteroviruses in 24 EU and EEA countries between 2015 and 2017: A retrospective surveillance study[J]. The Lancet Infectious Diseases, 2020, 20(3): 350-361. |
25 | OKAMOTO Hiroaki. Genetic variability and evolution of hepatitis E virus[J]. Virus Research, 2007, 127(2): 216-228. |
26 | MATTHIJNSSENS Jelle, VAN RANST Marc. Genotype constellation and evolution of group A rotaviruses infecting humans[J]. Current Opinion in Virology, 2012, 2(4): 426-433. |
27 | FLANNERY John, KEAVENEY Sinéad, Paulina RAJKO-NENOW, et al. Concentration of norovirus during wastewater treatment and its impact on oyster contamination[J]. Applied and Environmental Microbiology, 2012, 78(9): 3400-3406. |
28 | 周玉芬, 郑祥, 雷洋, 等. 活性污泥对病毒的生物吸附特性[J]. 环境科学, 2012, 33(5): 1621-1624. |
ZHOU Yufen, ZHENG Xiang, LEI Yang, et al. Biosorption characteristics of f2 bacteriophage onto activated sludge[J]. Chinese Journal of Environmental Science, 2012, 33(5): 1621-1624. | |
29 | 程荣, 亓畅, 石磊, 等. 污水处理设施中微生物气溶胶的产生、传播及风险评估[J]. 给水排水, 2020, 46(4): 59-69. |
CHENG Rong, QI Chang, SHI Lei, et al. Generation, transmission and risk assessment of microbial aerosols in sewage treatment facilities[J]. Water & Wastewater Engineering, 2020, 46(4): 59-69. | |
30 | BHARDWAJ Jyoti, HONG Seongkyeol, JANG Junbeom, et al. Recent advancements in the measurement of pathogenic airborne viruses[J]. Journal of Hazardous Materials, 2021, 420: 126574. |
31 | ZHAI Yunbo, LI Xue, WANG Tengfei, et al. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors[J]. Environment International, 2018, 113: 74-90. |
32 | CORPUZ M V, BUONERBA A, VIGLIOTTA G, et al. Viruses in wastewater: Occurrence, abundance and detection methods[J]. Science of the Total Environment, 2020, 745: 140910. |
33 | UHRBRAND K, SCHULTZ A C, KOIVISTO A J, et al. Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant[J]. Water Research, 2017, 112: 110-119. |
34 | TANG J W. The effect of environmental parameters on the survival of airborne infectious agents[J]. Journal of the Royal Society Interface, 2009, 6(): S737-S746. |
35 | PRYOR S C, GALLAGHER M, SIEVERING H, et al. A review of measurement and modelling results of particle atmosphere-surface exchange[J]. Tellus Series B: Chemical and Physical Meteorology, 2008, 60(1): 42-75. |
36 | TONG Yongyi, LIGHTHART Bruce. Effect of simulated solar radiation on mixed outdoor atmospheric bacterial populations[J]. FEMS Microbiology Ecology, 1998, 26(4): 311-316. |
37 | NUANUALSUWAN Suphachai, THONGTHA Panithan, KAMOLSIRIPICHAIPORN Somjai, et al. UV inactivation and model of UV inactivation of foot-and-mouth disease viruses in suspension[J]. International Journal of Food Microbiology, 2008, 127(1/2): 84-90. |
38 | THURSTON-ENRIQUEZ J A, HAAS C N, JACANGELO J, et al. Inactivation of feline calicivirus and adenovirus type 40 by UV radiation[J]. Applied and Environmental Microbiology, 2003, 69(1): 577-582. |
39 | AUGSBURGER N, RACHMADI A T, ZAOURI N, et al. Recent update on UV disinfection to fulfill the disinfection credit value for enteric viruses in water[J]. Environmental Science & Technology, 2021, 55(24): 16283-16298. |
40 | LI Lin, GAO Min, LIU Junxin. Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process[J]. Process Biochemistry, 2011, 46(4): 910-915. |
41 | SINGH N K, SANGHVI G, YADAV M, et al. A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies[J]. Journal of Hazardous Materials, 2021, 410: 124686. |
42 | 顾敏燕. 城市排水系统微生物气溶胶检测评估方法及控制策略[J]. 城市道桥与防洪, 2022(2): 173-178. |
GU Minyan. Evaluation method and control strategy of microbial aerosol detection in urban drainage system[J]. Urban Roads Bridges & Flood Control, 2022(2): 173-178. | |
43 | 刘艳臣, 戚祥, 董骞, 等. 城市污水系统微生物气溶胶产生及其安全防控策略[J]. 中国给水排水, 2022, 38(22): 1-7. |
LIU Yanchen, QI Xiang, DONG Qian, et al. Microbial aerosol generation in sewerage system and its prevention and control strategies[J]. China Water & Wastewater, 2022, 38(22): 1-7. | |
44 | SONG Lu, ZHOU Jianfeng, WANG Can, et al. Airborne pathogenic microorganisms and air cleaning technology development: A review[J]. Journal of Hazardous Materials, 2022, 424: 127429. |
45 | Ewa MIASKIEWICZ-PESKA, LEBKOWSKA Maria. Comparison of aerosol and bioaerosol collection on air filters[J]. Aerobiologia, 2012, 28(2): 185-193. |
46 | VLASKIN Mikhail S. Review of air disinfection approaches and proposal for thermal inactivation of airborne viruses as a life-style and an instrument to fight pandemics[J]. Applied Thermal Engineering, 2022, 202: 117855. |
47 | LI Rong, CUI Long, CHEN Meijuan, et al. Nanomaterials for airborne virus inactivation: A short review[J]. Aerosol Science and Engineering, 2021, 5(1): 1-11. |
48 | SHANG Min, KONG Yadong, YANG Zhijuan, et al. Removal of virus aerosols by the combination of filtration and UV-C irradiation[J]. Frontiers of Environmental Science & Engineering, 2023, 17(3): 27. |
49 | EISCHEID A C, MEYER J N, LINDEN K G. UV disinfection of adenoviruses: Molecular indications of DNA damage efficiency[J]. Applied and Environmental Microbiology, 2009, 75(1): 23-28. |
50 | BECK S E, RODRIGUEZ R A, HAWKINS M A, et al. Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum[J]. Applied and Environmental Microbiology, 2016, 82(5): 1468-1474. |
51 | 郭云涛, 张东荷雨, 张丽阳, 等. 新型冠状病毒等病原体空气消毒技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1438-1451. |
GUO Yuntao, ZHANG Dongheyu, ZHANG Liyang, et al. Air disinfection for SARS-CoV-2 and other pathogens: A review[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12): 1438-1451. | |
52 | TSENG C C, LI C S. Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation[J]. Aerosol Science and Technology, 2005, 39(12): 1136-1142. |
53 | KEBBI Y, MUHAMMAD A I, SANT'ANA A S, et al. Recent advances on the application of UV-LED technology for microbial inactivation: Progress and mechanism[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3501-3527. |
54 | TSENG C C, LI C S. Ozone for inactivation of aerosolized bacteriophages [J]. Aerosol Science and Technology, 2006, 40(9): 683-689. |
55 | VASILYAK L M. Physical methods of disinfection (a review)[J]. Plasma Physics Reports, 2021, 47(3): 318-327. |
56 | ISHIGURO Hitoshi, YAO Yanyan, NAKANO Ryuichi, et al. Photocatalytic activity of Cu2+/TiO2-coated cordierite foam inactivates bacteriophages and Legionella pneumophila [J]. Applied Catalysis B: Environmental, 2013, 129: 56-61. |
57 | MOON E W, LEE H W, ROK J H, et al. Photocatalytic inactivation of viral particles of human norovirus by Cu-doped TiO2 non-woven fabric under UVA-LED wavelengths[J]. Science of the Total Environment, 2020, 749: 141574. |
58 | HU Xurui, HAN Mengfei, WANG Can, et al. A short review of bioaerosol emissions from gas bioreactors: Health threats, influencing factors and control technologies[J]. Chemosphere, 2020, 253: 126737. |
59 | QIN Hongbo, QIU Hengju, HE Shiting, et al. Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasma induces spike protein damage[J]. Journal of Hazardous Materials, 2022, 430: 128414. |
60 | XIA T, KLEINHEKSEL A, LEE E M, et al. Inactivation of airborne viruses using a packed bed non-thermal plasma reactor [J]. Journal of Physics D: Applied Physics, 2019, 52(25): 255201. |
61 | 胡秀敏, 何俊美, 苏裕心. 中草药在消毒领域应用现状及其潜在价值[J]. 中国消毒学杂志, 2020, 37(2): 145-148. |
HU Xiumin, HE Junmei, SU Yuxin. Application status and potential value of Chinese herbal medicine in disinfection field[J]. Chinese Journal of Disinfection, 2020, 37(2): 145-148. |
[1] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[2] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[3] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[4] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[5] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[6] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[7] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[8] | 吴新波, 党鸿钟, 马娇, 严渊, 曾天续, 李维维, 张国珍, 陈永志. A2/O-BAF工艺短程硝化模式下反硝化除磷效能[J]. 化工进展, 2023, 42(2): 1089-1097. |
[9] | 程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968. |
[10] | 章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500. |
[11] | 张金辉, 张焕, 朱新锋, 宋忠贤, 康海彦, 刘红盼, 邓炜, 侯广超, 李桂亭, 黄真真. UiO-66复合材料用于典型有机污染物吸附和光催化氧化的研究进展[J]. 化工进展, 2023, 42(1): 445-456. |
[12] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[13] | 吴中杰, 谢连科, 王晶辉, 黄仁亮. 多级结构羟基硝酸铜纳米酶的制备及其对酚类污染物的降解[J]. 化工进展, 2023, 42(1): 497-505. |
[14] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[15] | 刘怡璇, 林跃朝, 马伟芳. 可见光催化降解水中卤代有机污染物的研究进展[J]. 化工进展, 2022, 41(S1): 571-579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |