化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2475-2485.DOI: 10.16085/j.issn.1000-6613.2022-1273
收稿日期:
2022-07-06
修回日期:
2022-11-24
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
李剑锋
作者简介:
张宁(1984—),女,博士研究生,研究方向为水污染控制与资源化。E-mail:276038582@qq.com。
基金资助:
ZHANG Ning(), WU Haibin, LI Yu, LI Jianfeng(), CHENG Fangqin
Received:
2022-07-06
Revised:
2022-11-24
Online:
2023-05-10
Published:
2023-06-02
Contact:
LI Jianfeng
摘要:
漂浮型光催化材料以高效光催化剂为核心,以太阳光等绿色清洁能源为驱动力,克服了纳米光催化剂难以回收利用这一瓶颈问题,通过吸附、光催化等耦合作用高效原位降解水体中的污染物,是实现光催化高级氧化技术规模化应用最有前景的途径之一。本文从载体类型出发,概括总结了近年来漂浮型光催化材料的轻质特性构建策略、形貌结构和不同载体利弊;分析比较了典型光催化剂-载体复合材料制备方法的优缺点;分类阐述了漂浮型光催化剂在水处理领域的应用研究成果。通过归纳漂浮型光催化材料在实际应用中存在的问题,指出未来漂浮型光催化剂的研究开发应重点关注环境友好型载体和材料性能稳定性;同时可通过构建多功能复合材料或采取多工艺耦合的方式以推动高效光催化剂在水处理方面的规模化应用。
中图分类号:
张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485.
ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485.
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解效率 | 参考 文献 |
---|---|---|---|---|---|
TiO2/硅藻土颗粒 | 煅烧法 | 2mm | 150W 氙灯 可见光滤光片 | 四环素:92%/150min | [ |
g-C3N4/膨胀玻璃珠 | 煅烧法 | 2~4mm | 36W 荧光灯 四组 | 微囊藻毒素-LR:100%/60min 柱状藻毒素:100%/100min | [ |
TiO2-ZnO/轻质膨胀黏土 | 浸渍-焙烧 | 4~8mm | 125W UV-C(398mW/cm2) NH3·H2O:400mg/L | NH3·H2O:95.2%/3h | [ |
TiO2/泡沫玻璃 | 喷涂法 | 1~2mm | 8W UV-A LED 柴油:688mg/L 自然太阳光 亚甲基蓝:20μmol/L | 柴油:60.6%/68h 亚甲基蓝:56.4%/6h | [ |
BiOI/SiO2微球 | 浸渍-水热法 | 1.2μm | 300W 氙灯(λ>400nm) 柴油:1000mg/L 罗丹明B:10mg/L | 柴油:86%/300min 罗丹明B:86.2%/15h(36W LED) | [ |
CeO2/膨胀石墨 | 浸渍-焙烧法 | 片状石墨(80目)为基材 | 300W 氙灯(λ>400nm) 苯酚:10mg/L | 苯酚:吸附率38.8%/30min 降解率97.3%/2h | [ |
聚二甲基二烯丙基氯化铵- g-C3N4-膨胀石墨 | 浸渍改性 | 400~500μm | 500W 氙灯(λ>420nm) | 微囊藻毒素-LR:100%/2h | [ |
Ag/g-C3N4/还原氧化石墨烯 气凝胶 | 水热法 | 块状 | 300W 氙灯(λ>420nm) 罗丹明6G:10mg/L | 罗丹明6G:降解率93%/4h 矿化率70.5%/4h | [ |
表1 典型无机载体漂浮型光催化剂一览表
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解效率 | 参考 文献 |
---|---|---|---|---|---|
TiO2/硅藻土颗粒 | 煅烧法 | 2mm | 150W 氙灯 可见光滤光片 | 四环素:92%/150min | [ |
g-C3N4/膨胀玻璃珠 | 煅烧法 | 2~4mm | 36W 荧光灯 四组 | 微囊藻毒素-LR:100%/60min 柱状藻毒素:100%/100min | [ |
TiO2-ZnO/轻质膨胀黏土 | 浸渍-焙烧 | 4~8mm | 125W UV-C(398mW/cm2) NH3·H2O:400mg/L | NH3·H2O:95.2%/3h | [ |
TiO2/泡沫玻璃 | 喷涂法 | 1~2mm | 8W UV-A LED 柴油:688mg/L 自然太阳光 亚甲基蓝:20μmol/L | 柴油:60.6%/68h 亚甲基蓝:56.4%/6h | [ |
BiOI/SiO2微球 | 浸渍-水热法 | 1.2μm | 300W 氙灯(λ>400nm) 柴油:1000mg/L 罗丹明B:10mg/L | 柴油:86%/300min 罗丹明B:86.2%/15h(36W LED) | [ |
CeO2/膨胀石墨 | 浸渍-焙烧法 | 片状石墨(80目)为基材 | 300W 氙灯(λ>400nm) 苯酚:10mg/L | 苯酚:吸附率38.8%/30min 降解率97.3%/2h | [ |
聚二甲基二烯丙基氯化铵- g-C3N4-膨胀石墨 | 浸渍改性 | 400~500μm | 500W 氙灯(λ>420nm) | 微囊藻毒素-LR:100%/2h | [ |
Ag/g-C3N4/还原氧化石墨烯 气凝胶 | 水热法 | 块状 | 300W 氙灯(λ>420nm) 罗丹明6G:10mg/L | 罗丹明6G:降解率93%/4h 矿化率70.5%/4h | [ |
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解率 | 参考 文献 |
---|---|---|---|---|---|
还原氧化石墨烯/BiOBr/丝瓜海绵 | 水热法 | d=5.5cm 圆柱状 | 300W氙灯 (80mW/cm2) (λ>420nm) | 铜绿微囊藻:90%/3h 总有机碳(TOC):74% | [ |
表面改性-TiO2/棕榈树干 | 浸渍法 | 块状 | 自然阳光 刚果红:10mg/L 苯酚:10mg/L 4-硝基苯酚:10mg/L 2.4-二硝基苯酚:10mg/L 甲苯胺:10mg/L | 刚果红:98.2%/210min 苯酚:58.4%/210min 4-硝基苯酚:83.0%/210min 2.4-二硝基苯酚:70.7%/210min 甲苯胺:61.6%/210min | [ |
Fe0/低密度聚乙烯 | 低温热附着法 | 4mm 0.9~2.0g/cm3 | 85W商用荧光灯 丽春红4R:50~150mg/L | 丽春红4R:100%/15min (50mg/L时) | [ |
Ag/AgCl@ZIF-8/改性聚氨酯海绵 | 涂层法 | 4.5cm×4.5cm×0.5cm | 500W卤灯 (λ>420nm) | 铜绿微囊藻:98.5%/4h | [ |
ZnO-C3N4/聚对苯二甲酸乙二醇酯 | 超声浸渍法 | — | 150W卤钨灯 苯:8400mg/L | 苯:99.7%/1.5h | [ |
聚醚酰亚胺/g-C3N4 | 黏结法 | 块状 | 11W近自然光 甲基橙:4mg/L | 甲基橙:80%/68h | [ |
聚二甲基硅氧烷/聚多巴胺/普鲁士蓝 | 模板法 | 2~3mm | 70mW/cm2 亚甲基蓝:5mg/L | 亚甲基蓝:/1.5~2h | [ |
介孔黑色 TiO2泡沫 | 冷冻干燥-筑造成型-表面氢化 | d=1.0cm h=0.2~0.3cm | 300W 氙灯 100mW/cm2 催化剂:2.5g/L 污染物:1mg/L | 十六烷:99%/15h(TOC) 罗丹明B:100%/3h(TOC) | [ |
Ag2O/g-C3N4水凝胶 | 原位合成法 | 31.86g 5cm | 500W钨灯 4.78×106个细胞/mL 催化剂:1g/L | 铜绿微囊藻:98.6%/5h | [ |
g-C3N4-纳米纤维素 | 溶剂浇铸法 | h=0.3mm (40±3)kg/m3 | LED 罗丹明B:5mg/L | 95%/6h | [ |
生物质-TiO2-气凝胶 | 凝胶法-浇筑法 | 丸状 棒状 | 300W 氙灯(50W/m2) 可见光(>420nm) Cr6+:10μg/g | Cr6+:100%/90min | [ |
TiO2-有机硅复合气凝胶 | 原位缩聚法 | d=4cm h=0.3cm | 4W/40W/250W 紫外灯 (300nm<λ<380nm) 罗丹明B:20mg/L 双酚A:20mg/L | 罗丹明B 4W:100%/11h 40W:100%/5h 250W:100%/150min 双酚A 4W:TOC,87%/25h | [ |
TiO2-NaOB/海藻酸钙 | 离子凝胶法 | 3.0~4.9mm | 10组3W UV LED 柠檬黄:50mg/L 亚甲基蓝:50mg/L | 柠檬黄:降解率95%/3h 矿化率34.4%/3h 亚甲基蓝:降解率99%/3h 矿化率53.6%/3h | [ |
聚砜/海藻酸盐/TiO2 | 相转变 | 1~6mm | 15WUV 亚甲基蓝:3.2mg/L 双氯芬酸:20mg/L 三氯生20mg/L | 100%/50min 100%/40min 100%/120min | [ |
表2 典型有机载体漂浮型光催化剂一览表
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解率 | 参考 文献 |
---|---|---|---|---|---|
还原氧化石墨烯/BiOBr/丝瓜海绵 | 水热法 | d=5.5cm 圆柱状 | 300W氙灯 (80mW/cm2) (λ>420nm) | 铜绿微囊藻:90%/3h 总有机碳(TOC):74% | [ |
表面改性-TiO2/棕榈树干 | 浸渍法 | 块状 | 自然阳光 刚果红:10mg/L 苯酚:10mg/L 4-硝基苯酚:10mg/L 2.4-二硝基苯酚:10mg/L 甲苯胺:10mg/L | 刚果红:98.2%/210min 苯酚:58.4%/210min 4-硝基苯酚:83.0%/210min 2.4-二硝基苯酚:70.7%/210min 甲苯胺:61.6%/210min | [ |
Fe0/低密度聚乙烯 | 低温热附着法 | 4mm 0.9~2.0g/cm3 | 85W商用荧光灯 丽春红4R:50~150mg/L | 丽春红4R:100%/15min (50mg/L时) | [ |
Ag/AgCl@ZIF-8/改性聚氨酯海绵 | 涂层法 | 4.5cm×4.5cm×0.5cm | 500W卤灯 (λ>420nm) | 铜绿微囊藻:98.5%/4h | [ |
ZnO-C3N4/聚对苯二甲酸乙二醇酯 | 超声浸渍法 | — | 150W卤钨灯 苯:8400mg/L | 苯:99.7%/1.5h | [ |
聚醚酰亚胺/g-C3N4 | 黏结法 | 块状 | 11W近自然光 甲基橙:4mg/L | 甲基橙:80%/68h | [ |
聚二甲基硅氧烷/聚多巴胺/普鲁士蓝 | 模板法 | 2~3mm | 70mW/cm2 亚甲基蓝:5mg/L | 亚甲基蓝:/1.5~2h | [ |
介孔黑色 TiO2泡沫 | 冷冻干燥-筑造成型-表面氢化 | d=1.0cm h=0.2~0.3cm | 300W 氙灯 100mW/cm2 催化剂:2.5g/L 污染物:1mg/L | 十六烷:99%/15h(TOC) 罗丹明B:100%/3h(TOC) | [ |
Ag2O/g-C3N4水凝胶 | 原位合成法 | 31.86g 5cm | 500W钨灯 4.78×106个细胞/mL 催化剂:1g/L | 铜绿微囊藻:98.6%/5h | [ |
g-C3N4-纳米纤维素 | 溶剂浇铸法 | h=0.3mm (40±3)kg/m3 | LED 罗丹明B:5mg/L | 95%/6h | [ |
生物质-TiO2-气凝胶 | 凝胶法-浇筑法 | 丸状 棒状 | 300W 氙灯(50W/m2) 可见光(>420nm) Cr6+:10μg/g | Cr6+:100%/90min | [ |
TiO2-有机硅复合气凝胶 | 原位缩聚法 | d=4cm h=0.3cm | 4W/40W/250W 紫外灯 (300nm<λ<380nm) 罗丹明B:20mg/L 双酚A:20mg/L | 罗丹明B 4W:100%/11h 40W:100%/5h 250W:100%/150min 双酚A 4W:TOC,87%/25h | [ |
TiO2-NaOB/海藻酸钙 | 离子凝胶法 | 3.0~4.9mm | 10组3W UV LED 柠檬黄:50mg/L 亚甲基蓝:50mg/L | 柠檬黄:降解率95%/3h 矿化率34.4%/3h 亚甲基蓝:降解率99%/3h 矿化率53.6%/3h | [ |
聚砜/海藻酸盐/TiO2 | 相转变 | 1~6mm | 15WUV 亚甲基蓝:3.2mg/L 双氯芬酸:20mg/L 三氯生20mg/L | 100%/50min 100%/40min 100%/120min | [ |
制备方法 | 优点 | 缺点 |
---|---|---|
表面涂层法 | 适用基材范围广,方法简便易操作,无需昂贵的实验室设备 | 制备时间长,易造成催化剂浪费,质量难控 |
溶胶凝胶法 | 沉积催化剂的纯度、均匀性、较低的温度、材料的形貌(形状、分布、尺寸)易控、可多层涂层,易在大的表面上获得涂层均匀的多组分氧化物膜,无需复杂设备 | 后期需煅烧适合耐高温基材,制备时间长,溶剂多有毒性,实验室研究,若用于放大生产尚需进一步研究 |
喷雾热解法 | 经济有效,沉积层均匀、精细,制备的材料比表面积高,活性强,无需昂贵仪器设备和试剂 | 易从基材上脱落、浸出和溶解 |
溶剂浇铸法 | 成本合理,反应可控,制备时间短 | 光催化剂活性降低 |
表3 代表性光催化剂-载体复合材料制备方法及其优缺点
制备方法 | 优点 | 缺点 |
---|---|---|
表面涂层法 | 适用基材范围广,方法简便易操作,无需昂贵的实验室设备 | 制备时间长,易造成催化剂浪费,质量难控 |
溶胶凝胶法 | 沉积催化剂的纯度、均匀性、较低的温度、材料的形貌(形状、分布、尺寸)易控、可多层涂层,易在大的表面上获得涂层均匀的多组分氧化物膜,无需复杂设备 | 后期需煅烧适合耐高温基材,制备时间长,溶剂多有毒性,实验室研究,若用于放大生产尚需进一步研究 |
喷雾热解法 | 经济有效,沉积层均匀、精细,制备的材料比表面积高,活性强,无需昂贵仪器设备和试剂 | 易从基材上脱落、浸出和溶解 |
溶剂浇铸法 | 成本合理,反应可控,制备时间短 | 光催化剂活性降低 |
1 | 路建美. 微纳功能材料在环境治理中的应用[J]. 化工进展, 2020, 39(6): 2049-2065. |
LU Jianmei. Application of micro-nano functional materials in environmental governance[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2049-2065. | |
2 | DU P, CARNEIRO J T, MOULIJN J A, et al. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis[J]. Applied Catalysis A: General, 2008, 334: 119-128. |
3 | SHAN A Y, MOHDGHAZI T I, RASHID S A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review[J]. Applied Catalysis A: General, 2010, 389(1/2): 1-8. |
4 | CHEN Yan, WU Qiong, LIU Li, et al. The fabrication of self-floating Ti3+/N co-doped TiO2/diatomite granule catalyst with enhanced photocatalytic performance under visible light irradiation[J]. Applied Surface Science, 2019, 467/468: 514-525. |
5 | MATTEWS R W. Photooxidation of organic impurities in water using thin films of titanium dioxide[J]. The Journal of Physical Chemistry, 1987, 91: 3328-3333. |
6 | WANG Xin, WANG Xuejiang, ZHAO Jianfu, et al. An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites[J]. Applied Catalysis B: Environmental, 2017, 206: 479-489. |
7 | KHAN U A, LIU J J, PAN J B, et al. Fabrication of flower-shaped hierarchical rGO QDs-Bi-Bi2WO6/EP floating photocatalyst: Eminent degradation kinetic under sun-like irradiation[J]. Applied Surface Science, 2019, 484: 341-353. |
8 | QIU Hongxuan, HU Jiwen, ZHANG Run, et al. The photocatalytic degradation of diesel by solar light-driven floating BiOI/EP composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123996. |
9 | WANG Xin, WANG Xuejiang, ZHAO Jianfu, et al. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2 /expanded perlite floating composites[J]. Chemical Engineering Journal, 2017, 320: 253-263. |
10 | Maciej ŁUGOSZ, Paweł ŻMUDZKI, Anna KWIECIEŃ, et al. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst[J]. Journal of Hazardous Materials, 2015, 298: 146-153. |
11 | XUE Hongbo, JIANG Yauchen, YUAN Kechun, et al. Floating photocatalyst of B-N-TiO2/expanded perlite: A sol-gel synthesis with optimized mesoporous and high photocatalytic activity[J]. Scientific Reports, 2016, 6:29902. |
12 | VAIANO Vincenzo, MATARANGOLO Matarangolo, SACCO Olga. UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets[J]. Chemical Engineering Journal, 2018, 350: 703-713. |
13 | HUI J, PESTANA C J, CAUX M, et al. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2021, 405: 112935. |
14 | XING Zipeng, ZHANG Jiaqi, CUI Jiayi, et al. Recent advances in floating TiO2-based photocatalysts for environmental application[J]. Applied Catalysis B: Environmental, 2018, 225:424-467. |
15 | KALHORI E M, YETILMEZSOY K, UYGUR N, et al. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA)[J]. Applied Surface Science, 2013, 287: 428-442. |
16 | SEPEHR M N, KAZEMIAN H, GHAHRAMANI E, et al. Defluoridation of water via light weight expanded clay aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1821-1834. |
17 | MOHAMMADI Zahra, SHARIFNIA Shahram, SHAVISI Yaser. Photocatalytic degradation of aqueous ammonia by using TiO2 ZnO/LECA hybrid photocatalyst[J]. Materials Chemistry and Physics, 2016, 184: 110-117. |
18 | PRONINA N N, KLAUSON D, MOISEEV A, et al. Titanium dioxide sol gel-coated expanded clay granules for use in photocatalytic fluidized-bed reactor[J]. Applied Catalysis B: Environmental, 2015, 178: 117-123. |
19 | Adrián ANGULO-IBÁÑEZ, ARANZABE Estíbaliz, BEOBIDE Garikoitz, et al. Slot-die process of a sol-gel photocatalytic porous coating for large-area fabrication of functional architectural glass[J]. Catalysts, 2021, 11: 711. |
20 | BOUSMAHA M, BEZZERROUK M A, KHARROUBI B, et al. Enhanced photocatalysis by depositing ZnO thin film in the inner wall of glass tube[J]. Optik, 2019, 183: 727-731. |
21 | JIANG W J, JOENS J A, DIONYSIOU D D, et al. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262: 7-13. |
22 | AN Yu, ZHENG Pengwu, MA Xiaofei. Preparation and visible-light photocatalytic properties of the floating hollow glass microspheres TiO2/Ag3PO4 composites[J]. RSC Advances, 2019, 9: 721-729. |
23 | PESTANA C J, NORONHA J P, HUI J, et al. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation[J]. Science of the Total Environment, 2020, 745, 141154. |
24 | SCHNABEL T, JAUTZUS N, MEHLING S, et al. Photocatalytic degradation of hydrocarbons and methylene blue using floatable titanium dioxide catalysts in contaminated water[J]. Journal of Water Reuse and Desalination, 2021, 11 (2): 224-235. |
25 | Hana BÍBOVÁ, Lenka HYKRDOVÁ, HOANG Hiep, et al. SiO2/TiO2 composite coating on light substrates for photocatalytic decontamination of water[J]. Journal of Chemistry, 2019(2): 2634398. |
26 | ZHAI Chenxi, ZHONG Ying, LI Zhihong, et al. Preparation and characterization of mechanical properties of foam glass for artificial floating island carrier[J]. Advances in Mechanical Engineering, 2015, 7(6): 1-6. |
27 | PORLEY Victoria, ROBERTSON Neil. Nanostructured photocatalysts: Substrate and support materials for photocatalysis[M]. London: Elsevier, 2020: 129-171. |
28 | QIU Hongxuan, ZHANG Run, YU Yichang, et al. BiOI-on-SiO2 microspheres: A floating photocatalyst for degradation of diesel oil and dye wastewater[J]. The Science of the total environment, 2019, 706: 136043. |
29 | ZHANG Jing, WANG Xuejiang, WANG Xin, et al. Floating photocatalysts based on loading Bi/N-doped TiO2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel[J]. RSC Advances, 2015, 5: 71922-71931. |
30 | LI Huilin, GUO Qiang, LI Yongli, et al. Facile in-situ synthesis of floating CeO2@ expanded graphite composites with efficient adsorption and visible light photocatalytic degradation of phenol[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106252. |
31 | WANG Yarui, CHEN Fengjie, YU Wanchao, et al. An efficient floating adsorption-photocatalyst to decarboxylate D-Glu and D-MeAsp of microcystin-LR via holes direct oxidation[J]. Chemical Engineering Journal, 2021, 413: 127543. |
32 | LIU Houmei, QIU Hongdeng. Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review[J]. Chemical Engineering Journal, 2020, 393: 124691. |
33 | SONG Y S, PENG Y S, LONG N V, et al. Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater[J]. Applied Surface Science, 2021, 542: 148584. |
34 | TU Xinman, KE Shuhong, LUO Shaohua, et al. Self-supporting rGO/BiOBr composite on loofah-sponge as a floating monolithic photocatalyst for efficient microcystis aeruginosa inactivation[J]. Separation and Purification Technology, 2021, 275: 119226. |
35 | SBOUI M, NSIB M F, RAYES A, et al. Application of solar light for photocatalytic degradation of Congo red by a floating salicylic acid-modified TiO2/palm trunk photocatalyst[J]. Comptes Rendus Chimie, 2017, 20(2): 181-189. |
36 | SBOUI M, NSIB M F, RAYES A, et al. TiO2-PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation[J]. Journal of environmental sciences, 2017, 60: 3-13. |
37 | GAO Likun, LU Yun, ZHAN Xianxu, et al. A robust, anti-acid, and high-temperature-humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane[J]. Surface and Coatings Technology, 2015, 262: 33-39. |
38 | GAO Likun, GAN Wentao, XIAO Shaoliang, et al. A robust superhydrophobic antibacterial Ag-TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination[J]. Ceramics International, 2016, 42(2): 2170-2179. |
39 | MOHAMAD I N H, RAJAKUMAR J, CHEONG K Y, et al. Titanium dioxide/polyvinyl alcohol/cork nanocomposite: A floating photocatalyst for the degradation of methylene blue under irradiation of a visible light source[J]. ACS Omega, 2021, 6: 14493 -14503. |
40 | MAGALHÃES F, LAGO R M. Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes[J]. Solar Energy, 2009, 83(9): 1521-1526. |
41 | MARTÍN DE V M J, NIETO-MÁRQUEZ A, MORCUENDE D, et al. 3D printed floating photocatalysts for wastewater treatment[J]. Catalysis Today, 2019, 328: 157-163. |
42 | MAGALHÃES F, MOURA F C C, LAGO R M. TiO2/LDPE composites: A new floating photocatalyst for solar degradation of organic contaminants[J]. Desalination, 2011, 276(1/2/3): 266-271. |
43 | Jorge VELÁSQUEZ, VALENCIA Sergio, RIOS Luis, et al. Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method[J]. Chemical Engineering Journal, 2012, 203: 398-405. |
44 | MOSSMANN A, DOTTO G L, HOTZA D, et al. Preparation of polyethylene-supported zero-valent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photo-Fenton process[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 102963. |
45 | FAN Gongduan, ZHANG Junkai, ZHAN Jiajun, et al. Recyclable self-floating A-GUN-coated foam as effective visible-light-driven photocatalyst for inactivation of Microcystis aeruginosa [J]. Journal of Hazardous Materials, 2021, 419: 126407. |
46 | FAN Gongduan, YOU Yi, WANG Bo, et al. Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light: Efficiency and its mechanisms[J]. Applied Catalysis B: Environmental, 2019, 256: 117866. |
47 | JOODI Aysan, ALLAHYARI Somaiyeh, RAHEMI Nader, et al. ZnO-C3N4 solar light -driven nanophotocatalysts on floating recycled PET bottle as support for degradation of oil spill[J]. Ceramics International, 2020, 46(8): 11328-11339. |
48 | CÁMARA R M, PORTELA R, GUTIÉRREZ-MARTÍN F, et al. Photocatalytic activity of TiO2 films prepared by surfactant-mediated sol-gel methods over commercial polymer substrates[J]. Chemical Engineering Journal, 2016, 283: 535-543. |
49 | GUO Yong, WANG Ruxia, WANG Peifang, et al. Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of methyl orange under light irradiation[J]. Chemosphere, 2017, 179: 84-91. |
50 | PARK Eunhee, Jaehyun HUR. Three-dimensionally interconnected porous PDMS decorated with poly(dopamine) and Prussian blue for floatable, flexible, and recyclable photo-Fenton catalyst activated by solar light[J]. Applied Surface Science, 2021, 545: 148990. |
51 | ZHANG Kaifu, ZHOU Wei, ZHANG Xiangcheng, et al. Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts[J]. Applied Catalysis B: Environmental, 2017, 206: 336-343. |
52 | FAN Gongduan, DU Banghao, ZHOU Jinjin, et al. Porous self-floating 3D Ag2O/g-C3N4 hydrogel and photocatalytic inactivation of Microcystis aeruginosa under visible light[J]. Chemical Engineering Journal, 2021, 404: 126509. |
53 | DJELLABI Ridha, ZHANG Laiqi, YANG Bo, et al. Sustainable self-floating lignocellulosic biomass-TiO2@Aerogel for outdoor solar photocatalytic Cr( Ⅵ ) reduction[J]. Separation and Purification Technology, 2019, 229: 115830. |
54 | ZHANG Lixin, RAO Lei, WANG Peifang, et al. Superhydrophobic self-floating TiO2-silicone composite aerogels and their air-liquid-solid triphase photocatalytic system[J]. Applied Surface Science, 2021, 536: 147726. |
55 | ZHOU Xuejiao, SHAO Changlu, YANG Shu, et al. Heterojunction of g-C3N4/BiOI immobilized on flexible electrospun polyacrylonitrile nanofibers: Facile preparation and enhanced visible photocatalytic activity for floating photocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 2316-2323. |
56 | DALLABONA I D, MATHIAS Á L, JORGE R M M. A new green floating photocatalyst with Brazilian bentonite into TiO2/alginate beads for dye removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127159. |
57 | HUANG X H, HU T, BU H, et al. Transparent floatable magnetic alginate sphere used as photocatalysts carrier for improving photocatalytic efficiency and recycling convenience[J]. Carbohydrate polymers, 2021, 254: 117281. |
58 | MEHMOOD C T, ZHONG Z, ZHOU H, et al. Constructing porous beads with modified polysulfone-alginate and TiO2 as a robust and recyclable photocatalyst for wastewater treatment[J]. Journal of Water Process Engineering, 2020, 38: 101601. |
59 | ANUSUYADEVI P R, RIAZANOVA A V, HEDENQVIST M S, et al. Floating photocatalysts for effluent refinement based on stable pickering cellulose foams and graphitic carbon nitride (g-C3N4)[J]. ACS Omega, 2020, 5: 22411-22419. |
60 | 张进. 一种漂浮型粉煤灰漂珠负载Pt-BiVO4材料的制备及性能[J]. 化工新型材料, 2014, 42(11): 73-78. |
ZHANG Jin. Preparation and characterization of a floating composite: Pt-BiVO4/fly ash cenospheres[J]. New Chemical materials, 2014, 42(11): 73-78. | |
61 | SONG Jingke, WANG Xuejiang, BU Yunjie, et al. Preparation, characterization, and photocatalytic activity evaluation of Fe-N-codoped TiO2/fly ash cenospheres floating photocatalyst[J]. Environmental Science and Pollution Research, 2016, 23: 22793-22802. |
62 | HUO Pengwei, YAN Yongsheng, LI Songtian, et al. Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity[J]. Desalination, 2010, 256(1/2/3): 196-200. |
63 | DE ANDRADE F V, DE LIMA G M, AUGUSTI R, et al. A novel TiO2/autoclaved cellular concrete composite: From a precast building material to a new floating photocatalyst for degradation of organic water contaminants[J]. Journal of Water Process Engineering, 2015, 7: 27-35. |
64 | Hossein AZIZI-TOUPKANLOO, Mahdi KARIMI-NAZARABAD, Amini GHOLAM-REZA, et al. Immobilization of AgCl@TiO2 on the woven wire mesh: Sunlight-responsive environmental photocatalyst with high durability[J]. Solar Energy, 2020, 196: 653-662. |
65 | NASIR A M, JAAFAR J, AZIZ F, et al. A review on floating nanocomposite photocatalyst: Fabrication and applications for wastewater treatment[J]. Journal of Water Process Engineering, 2020, 36: 101300. |
66 | SRIKANTH B, GOUTHAM R, BADRI NARAYAN R, et al. Recent advancements in supporting materials for immobilised photocatalytic applications in wastewater treatment[J]. Journal of Environmental Management, 2017, 200: 60-78. |
67 | SIYASUKH Adisak, CHIMUPALA Yothin, TONANON Nattaporn. Preparation of magnetic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity[J]. Carbon, 2018, 134: 207-221. |
68 | RAMÍREZ-DEL-SOLAR M, BLANCO E. Submicron porous materials: Porous thin films from sol-gel[M]. Switzerland: Springer, Cham, 2017: 157-188. |
69 | SOLTANI R D C, REZAEE A, SAFARI M, et al. Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates[J]. Desalination and Water Treatment, 2015, 53: 1613-1620. |
70 | VERA M L, LEYVA G, LITTER M I. Simple TiO2 coatings by sol-gel techniques combined with commercial TiO2 particles for use in heterogeneous photocatalysis[J]. Journal of Nanoscience and Nanotechnology, 2017, 17: 4946-4954. |
71 | WANG Xuejiang, WANG Jiayi, ZHANG Jing, et al. Synthesis of expanded graphite C/C composites(EGC) based Ni-N-TiO2 floating photocatalysts for in situ adsorption synergistic photocatalytic degradation of diesel oil[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347: 105-115. |
72 | MAKI Yusuke, Yusuke IDE, OKADA Tomohiko. Water-floatable organosilica particles for TiO2 photocatalysis[J]. Chemical Engineering Journal, 2016, 299: 367-372. |
73 | NAIR A K, GEORGE D R, BABY N J, et al. Solar dye degradation using TiO2 nanosheet based nanocomposite floating photocatalyst[J]. Materials Today: Proceedings, 2021, 46: 2747-2751. |
74 | TANG Jialin, WANG Jiajia, TANG Lin, et al. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation[J]. Chemical Engineering Journal, 2022, 430(Part 1): 132669. |
75 | TONG Zhenwei, YANG Dong, SHI Jiafu, et al. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance[J]. ACS Applied Materials & Interfaces, 2015, 7, 46: 25693-25701. |
76 | URBONAVICIUS M, VARNAGIRIS S, SAKALAUSKAITE S, et al. Application of floating TiO2 photocatalyst for methylene blue decomposition and salmonella typhimurium inactivation[J]. Catalysts, 2021, 11(7): 794. |
77 | DJELLABI Ridha, YANG Bo, XIAO Ke, et al. Unravelling the mechanistic role of Ti-O-C bonding bridge at titania/lignocellulosic biomass interface for Cr(VI) photoreduction under visible light[J]. Journal of Colloid and Interface Science, 2019, 553: 409-417. |
78 | ZHANG Linlin, XING Zipeng, ZHANG Hang, et al. Multifunctional floating titania-coated macro/mesoporous photocatalyst for efficient contaminant removal[J]. ChemPlusChem, 2015, 80(3): 623-629. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[5] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[6] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[7] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[8] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[9] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[10] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[11] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[12] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[13] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[14] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[15] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |