化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3550-3560.DOI: 10.16085/j.issn.1000-6613.2022-1575
于志庆1(), 黄文斌1, 王晓晗1, 邓开鑫1, 魏强1, 周亚松1(
), 姜鹏2
收稿日期:
2022-08-25
修回日期:
2022-10-24
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
周亚松
作者简介:
于志庆(1992—),男,博士研究生,研究方向为石油和天然气化工。E-mail:yuzqcup@163.com。
基金资助:
YU Zhiqing1(), HUANG Wenbin1, WANG Xiaohan1, DENG Kaixin1, WEI Qiang1, ZHOU Yasong1(
), JIANG Peng2
Received:
2022-08-25
Revised:
2022-10-24
Online:
2023-07-15
Published:
2023-08-14
Contact:
ZHOU Yasong
摘要:
采用碳前体热解预积炭的方法,引入非均相碳层和杂原子硼对氧化铝载体表面性质进行改性掺杂,制备了相应的CoMo负载型加氢脱硫(HDS)催化剂。采用XRD、N2-吸脱附(BET)、Py-FTIR、H2-TPR、HRTEM和XPS等方法对改性氧化铝和CoMo系列负载催化剂进行物理化学性能表征,并对模型化合物DBT和4,6-DMDBT的HDS催化性能进行评价。分析结果表明:碳层的引入可以有效减少氧化铝载体表面的—OH官能团,进而调节氧化铝的酸性和调控活性金属与载体之间的相互作用,避免了CoAl2O4尖晶石的生成。杂原子B的掺杂可使得载体表面产生更多的缺陷位点,增强Mo物种的硫化程度和分散程度,活性金属在载体表面形成更多的“Type Ⅱ”型CoMoS活性相,这有利于复杂含硫化合物的加氢脱除。实验结果显示:270℃下DBT和290℃下4,6-DMDBT在CoMo-Al2O3@BC的催化剂上,重时体积空速为4h-1条件下,HDS转化率最高,分别可达83.42%和69.98%,较CoMo-Al2O3催化剂分提升13.67%和10.40%。
中图分类号:
于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560.
YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560.
沥青粉组成质量分数/% | 软化点 /℃ | 堆积密度 /g·cm-3 | |||
---|---|---|---|---|---|
饱和分 | 胶质 | 芳香分 | 沥青质 | ||
1.87 | 9.10 | 33.74 | 55.29 | 178.74 | 0.10 |
表1 沥青粉的性质分析
沥青粉组成质量分数/% | 软化点 /℃ | 堆积密度 /g·cm-3 | |||
---|---|---|---|---|---|
饱和分 | 胶质 | 芳香分 | 沥青质 | ||
1.87 | 9.10 | 33.74 | 55.29 | 178.74 | 0.10 |
名称 | SBET/m2·g-1 | V/cm3·g-1 | D/nm |
---|---|---|---|
Al2O3 | 258.51 | 0.73 | 9.99 |
Al2O3@C | 234.82 | 0.68 | 9.12 |
Al2O3@BC | 231.39 | 0.68 | 8.93 |
CoMo-Al2O3 | 236.33 | 0.64 | 9.38 |
CoMo-Al2O3@C | 217.74 | 0.62 | 8.46 |
CoMo-Al2O3@BC | 215.66 | 0.62 | 8.27 |
表2 不同载体的比表面积和孔结构、孔容
名称 | SBET/m2·g-1 | V/cm3·g-1 | D/nm |
---|---|---|---|
Al2O3 | 258.51 | 0.73 | 9.99 |
Al2O3@C | 234.82 | 0.68 | 9.12 |
Al2O3@BC | 231.39 | 0.68 | 8.93 |
CoMo-Al2O3 | 236.33 | 0.64 | 9.38 |
CoMo-Al2O3@C | 217.74 | 0.62 | 8.46 |
CoMo-Al2O3@BC | 215.66 | 0.62 | 8.27 |
名称 | L/nm | N |
---|---|---|
CoMo-Al2O3 | 5.1 | 2.8 |
CoMo-Al2O3@C | 4.8 | 3.8 |
CoMo-Al2O3@BC | 3.8 | 3.9 |
表3 硫化催化剂二硫化钼板平均长度、层数统计结果
名称 | L/nm | N |
---|---|---|
CoMo-Al2O3 | 5.1 | 2.8 |
CoMo-Al2O3@C | 4.8 | 3.8 |
CoMo-Al2O3@BC | 3.8 | 3.9 |
名称 | CoMo-Al2O3 | CoMo-Al2O3@C | CoMo-Al2O3@BC |
---|---|---|---|
Mo4+/% | 61 | 73 | 79 |
Mo5+/% | 16 | 10 | 7 |
Mo6+/% | 23 | 17 | 14 |
CoO | 34 | 30 | 24 |
CoMoS | 54 | 61 | 69 |
Co9S8 | 10 | 9 | 7 |
表4 硫化态催化剂上Mo 3d及Co 2p电子的XPS表征结果
名称 | CoMo-Al2O3 | CoMo-Al2O3@C | CoMo-Al2O3@BC |
---|---|---|---|
Mo4+/% | 61 | 73 | 79 |
Mo5+/% | 16 | 10 | 7 |
Mo6+/% | 23 | 17 | 14 |
CoO | 34 | 30 | 24 |
CoMoS | 54 | 61 | 69 |
Co9S8 | 10 | 9 | 7 |
反应物 | 催化剂 | kHDS/10-4mol·h-1·g-1 | kDDS/10-4mol·h-1·g-1 | kHYD/10-4mol·h-1·g-1 |
---|---|---|---|---|
DBT | CoMo-Al2O3 | 2.66 | 1.95 | 0.71 |
CoMo-Al2O3@C | 3.54 | 2.39 | 1.15 | |
CoMo-Al2O3@BC | 4.01 | 2.62 | 1.39 | |
4,6-DMDBT | CoMo-Al2O3 | 0.86 | 0.10 | 0.76 |
CoMo-Al2O3@C | 1.05 | 0.11 | 0.94 | |
CoMo-Al2O3@BC | 1.17 | 0.11 | 1.05 |
表5 DBT和4,6-DMDBT在不同催化剂上的加氢脱硫动力学参数
反应物 | 催化剂 | kHDS/10-4mol·h-1·g-1 | kDDS/10-4mol·h-1·g-1 | kHYD/10-4mol·h-1·g-1 |
---|---|---|---|---|
DBT | CoMo-Al2O3 | 2.66 | 1.95 | 0.71 |
CoMo-Al2O3@C | 3.54 | 2.39 | 1.15 | |
CoMo-Al2O3@BC | 4.01 | 2.62 | 1.39 | |
4,6-DMDBT | CoMo-Al2O3 | 0.86 | 0.10 | 0.76 |
CoMo-Al2O3@C | 1.05 | 0.11 | 0.94 | |
CoMo-Al2O3@BC | 1.17 | 0.11 | 1.05 |
1 | ZHOU Wenwu, ZHANG Yanan, TAO Xiujuan, et al. Effects of gallium addition to mesoporous alumina by impregnation on dibenzothiophene hydrodesulfurization performances of the corresponding NiMo supported catalysts[J]. Fuel, 2018, 228: 152-163. |
2 | FU Wenqian, ZHANG Lei, TANG Tiandi, et al. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y[J]. Journal of the American Chemical Society, 2011, 133(39): 15346-15349. |
3 | LAI Weikun, CHEN Zhou, ZHU Jianping, et al. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts[J]. Nanoscale, 2016, 8(6): 3823-3833. |
4 | PENG Chong, HUANG Xinlu, DUAN Xuezhi, et al. Direct production of high octane gasoline and ULSD blend stocks by LCO hydrocracking[J]. Catalysis Today, 2016, 271: 149-153. |
5 | PENA L, VALENCIA D, KLIMOVA T. CoMo/SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene[J]. Applied Catalysis B: Environmental, 2014, 147: 879-887. |
6 | HAN Wei, NIE Hong, LONG Xiangyun, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
7 | VLASOVA E N, DELIY I V, NUZHDIN A L, et al. Catalytic properties of CoMo/Al2O3 sulfide catalysts in the hydrorefining of straight-run diesel fraction mixed with rapeseed oil[J]. Kinetics and Catalysis, 2014, 55(4): 481-491. |
8 | HAN Wei, NIE Hong, LONG Xiangyun, et al. Effects of the support Brønsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al2O3 catalysts[J]. Catalysis Today, 2017, 292: 58-66. |
9 | BALLINGER T H, YATES J T. IR spectroscopic detection of Lewis acid sites on alumina using adsorbed carbon monoxide. Correlation with aluminum-hydroxyl group removal[J]. Langmuir, 1991, 7(12): 3041-3045. |
10 | LI Yanpeng, LIU Dapeng, LIU Chenguang. Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) performance of an ex situ presulfided MoNiP/Al2O3 catalyst: Model compounds study and pilot test for fluidized catalytic cracking (FCC) diesel oil[J]. Energy & Fuels, 2010, 24(2): 789-795. |
11 | MILOV M A, RUZANKIN S F, ZHIDOMIROV G M. On the molecular models of lewis acid sites on the surface of γ-Al2O3 and in zeolites: A density functional study of CO adsorption[J]. Journal of Structural Chemistry, 1997, 38(5): 698-702. |
12 | KLIMOVA T E, VALENCIA D, MENDOZA-NIETO J A, et al. Behavior of NiMo/SBA-15 catalysts prepared with citric acid in simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2013, 304: 29-46. |
13 | NUZHDIN A L, BUKHTIYAROVA G A, PORSIN A A, et al. Effect of mono-, di-, and triethylene glycol on the activity of phosphate-doped NiMo/Al2O3 hydrotreating catalysts[J]. Catalysts, 2019, 9(1): 96. |
14 | PAPADOPOULOU C, VAKROS J, MATRALIS H K, et al. Preparation, characterization, and catalytic activity of CoMo/γ-Al2O3 catalysts prepared by equilibrium deposition filtration and conventional impregnation techniques[J]. Journal of Colloid and Interface Science, 2004, 274(1): 159-166. |
15 | SUN Mingyong, NICOSIA D, PRINS R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis[J]. Catalysis Today, 2003, 86(1/2/3/4): 173-189. |
16 | RAMIREZ J, MACISA G, CEDENO L, et al. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences[J]. Catalysis Today, 2004, 98(1/2): 19-30. |
17 | HARLE V, VRINAT M, SCHARFF J P, et al. Catalysis assisted characterizations of nanosized TiO2-Al2O3 mixtures obtained in molten alkali metal nitrates[J]. Applied Catalysis A-General, 2000, 196(2): 261-269. |
18 | ZHANG Pengfei, MU Fujun, ZHOU Yasong, et al. Synthesis of highly ordered TiO2-Al2O3 and catalytic performance of its supported NiMo for HDS of 4,6-dimethyldibenzothiophene[J/OL]. Catalysis Today. . |
19 | RAMIREZ J, FUENTES S, DIAZ G, et al. Hydrodesulphurization activity and characterization of sulphided molybdenum and cobalt—molybdenum catalysts : Comparison of alumina-, silica-alumina- and titania-supported catalysts[J]. Applied Catalysis A-General, 1989, 52(1): 211-224. |
20 |
MURALIDHAR G, MASSOTH F E, SHABTAI J. Catalytic functionalities of supported sulfides (![]() |
21 | ZHOU Wenwu, LIU Meifang, ZHOU Yasong, et al. 4,6-Dimethyldibenzothiophene hydrodesulfurization on nickel-modified USY-supported NiMoS catalysts: Effects of modification method[J]. Energy & Fuels, 2017, 31(7): 7445-7455. |
22 | LI Lei, WANG Minjian, HUANG Lingxiang, et al. Electron-donating-accepting behavior between nitrogen-doped carbon materials and Fe species and its promotion for DBT hydrodesulfurization[J]. Applied Catalysis B-Environmental, 2019, 254: 360-370. |
23 | XU Leilei, SONG Huanling, CHOU Lingjun. One-pot synthesis of ordered mesoporous NiO-CaO-Al2O3 composite oxides for catalyzing CO2 reforming of CH4 [J]. ACS Catalysis, 2012, 2(7): 1331-1342. |
24 | ZHAO Ruiyu, ZENG Lingyou, LING Juan, et al. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 564-569. |
25 | GAO Daowei, DUAN Aijun, ZHANG Xin, et al. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS[J]. Applied Catalysis B: Environmental, 2015, 165: 269-284. |
26 | LI Lida, XU Chengzhi, ZHENG Meiqin, et al. Effect of B2O3 modified Ag/TiO2-Al2O3 adsorbents on the adsorption desulfurization of diesel[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 990-997. |
27 | NING Guoqing, HUANG Xiaoqiao, LI Jianwei, et al. Catalytic ability of MgO to break C—H bonds during slurry oil carbon deposition[J]. Particuology, 2018, 38: 222-227. |
28 | LIU Qing, GAO Jiajian, GU Fangna, et al. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation[J]. Journal of Catalysis, 2015, 326: 127-138. |
29 | PEREZ-RAMIREZ J, VERBOEKEND D, BONILLA A, et al. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Advanced Functional Materials, 2009, 19(24): 3972-3979. |
30 | YU Quanyong, ZHANG Lei, GUO Rong, et al. Catalytic performance of CoMo catalysts supported on mesoporous ZSM-5 zeolite-alumina composites in the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Fuel Processing Technology, 2017, 159: 76-87. |
31 | JOFFRE J, LERBER D A, GEBESTE P. Quantum chemical studies of the adsorption of thiophene on MoS2 hydroprocessing sites[J]. Bulletin des Societes Chimiques Belges, 2010, 93(8/9): 831-838. |
32 | WANG Lu, ZHANG Yongna, ZHANG Yuliang, et al. Hydrodesulfurization of 4,6-DMDBT on a multi-metallic sulfide catalyst with layered structure[J]. Applied Catalysis A-General, 2011, 394(1/2): 18-24. |
33 | CRISTOL S, J-F PAUL, PAYEN E, et al. DBT derivatives adsorption over molybdenum sulfide catalysts: A theoretical study[J]. Journal of Catalysis, 2004, 224(1): 138-147. |
34 | FARAG H. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo and CoMo sulfide catalysts: Kinetic modeling approach for estimating selectivity[J]. Journal of Colloid and Interface Science, 2010, 348(1): 219-226. |
35 | CHANG Jie, WANG Anjie, LIU Jing, et al. Oxidation of dibenzothiophene with cumene hydroperoxide on MoO3/SiO2 modified with alkaline earth metals[J]. Catalysis Today, 2010, 149(1/2): 122-126. |
36 | HUANG Weiqiang, DUAN Aijun, ZHAO Zhen, et al. Ti-modified alumina supports prepared by sol-gel method used for deep HDS catalysts[J]. Catalysis Today, 2008, 131(1/2/3/4): 314-321. |
37 | LI Mingfeng, LI Huifeng, JIANG Feng, et al. The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts[J]. Catalysis Today, 2010, 149(1/2): 35-39. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[5] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[6] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[8] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[9] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[10] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[11] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[12] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[13] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[14] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[15] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 275
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |