化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 461-478.DOI: 10.16085/j.issn.1000-6613.2023-0677
许春树1,2(), 姚庆达2,3, 梁永贤2, 周华龙2,4()
收稿日期:
2023-04-24
修回日期:
2023-10-07
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
周华龙
作者简介:
许春树(1981—),男,高级工程师,研究方向为鞋用材料的功能设计及检测分析。E-mail:echose@126.com。
基金资助:
XU Chunshu1,2(), YAO Qingda2,3, LIANG Yongxian2, ZHOU Hualong2,4()
Received:
2023-04-24
Revised:
2023-10-07
Online:
2023-10-25
Published:
2023-11-30
Contact:
ZHOU Hualong
摘要:
共价有机框架(COFs)是一类新兴的多孔晶体聚合物材料,具有出色的结构规则性、高度有序的孔径大小、固有的孔隙率、巨大的比表面积、丰富的活性官能团,使其成为吸附水体中各种污染物的理想材料。本文从COFs的拓扑结构设计和孔隙结构设计角度出发,梳理了COFs结构设计要点,而后分析了侧基功能化、官能团转换和骨架功能化等COFs功能化策略,重点阐述了含N、S、O、Fe(0)、Ag(0)等活性官能团、金属/非金属节点对COFs多孔性、水稳定性、吸附性的影响,而后介绍了COFs在去除重金属离子方面的研究进展,详细介绍了COFs对水中典型重金属离子Hg(Ⅱ)和Cr(Ⅵ)的吸附性能,并结合密度泛函理论阐述COFs去除水中重金属离子的作用机理。最后,总结了COFs的功能化策略及功能化COFs作为高性能吸附剂的技术优势,并分析了目前存在的问题,展望未来发展方向,以期对COFs的制备与应用提供参考。
中图分类号:
许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478.
XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ)[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478.
COFs | 比表面积/m2·g-1 | 重金属离子 | 吸附pH | 吸附量/mg·g-1 | 循环次数 | 解吸剂 | 参考文献 |
---|---|---|---|---|---|---|---|
COF-S-CH3 | 1934 | Hg(Ⅱ) | 7 | 734 | 6 | HCl | [ |
COF-SH | 546 | Hg(Ⅱ) | 6 | 1350 | — | — | [ |
DDTA-TPA | 80.14 | Hg(Ⅱ) | 6 | 1445 | 5 | EDTA-2Na | [ |
TpTch-120 | 216.1 | Hg(Ⅱ) | 7 | 4277 | 4 | HCl和硫脲 | [ |
RFCOF-SR | 188.6 | Hg(Ⅱ) | 4 | 415.7 | 5 | HCl | [ |
COF-SH | 235.0 | Hg(Ⅱ) | 7 | 1286.6 | 10 | HCl | [ |
COF-SO3H | 110.6 | Hg(Ⅱ) | 6 | 1550 | 4 | HCl | [ |
TAB-DFP | 348.5 | Hg(Ⅱ) | 5 | 837.9 | 5 | HCl和硫脲 | [ |
BTT-AMPD | 322.96 | Hg(Ⅱ) | — | 476.19 | — | — | [ |
MTF-TP | 1266 | Hg(Ⅱ) | 7 | 540 | 10 | HCl | [ |
COF-Ag(0) | 230 | Hg(Ⅱ) | 5 | 113 | 5 | — | [ |
TPB-DMTP-SH | 291 | Hg(Ⅱ) | 5.6 | 4395 | 4 | HCl | [ |
COF-SH | 207 | Hg(Ⅱ) | 5 | 763.4 | 5 | HNO3 | [ |
COF-SH | 1204.6 | Hg(Ⅱ) | 5 | 586.3 | 8 | HCl | [ |
COF-SH | 1127.71 | Hg(Ⅱ) | 5 | 186.6 | — | — | [ |
表1 部分COFs对典型重金属离子Hg(Ⅱ)的吸附性能总结表
COFs | 比表面积/m2·g-1 | 重金属离子 | 吸附pH | 吸附量/mg·g-1 | 循环次数 | 解吸剂 | 参考文献 |
---|---|---|---|---|---|---|---|
COF-S-CH3 | 1934 | Hg(Ⅱ) | 7 | 734 | 6 | HCl | [ |
COF-SH | 546 | Hg(Ⅱ) | 6 | 1350 | — | — | [ |
DDTA-TPA | 80.14 | Hg(Ⅱ) | 6 | 1445 | 5 | EDTA-2Na | [ |
TpTch-120 | 216.1 | Hg(Ⅱ) | 7 | 4277 | 4 | HCl和硫脲 | [ |
RFCOF-SR | 188.6 | Hg(Ⅱ) | 4 | 415.7 | 5 | HCl | [ |
COF-SH | 235.0 | Hg(Ⅱ) | 7 | 1286.6 | 10 | HCl | [ |
COF-SO3H | 110.6 | Hg(Ⅱ) | 6 | 1550 | 4 | HCl | [ |
TAB-DFP | 348.5 | Hg(Ⅱ) | 5 | 837.9 | 5 | HCl和硫脲 | [ |
BTT-AMPD | 322.96 | Hg(Ⅱ) | — | 476.19 | — | — | [ |
MTF-TP | 1266 | Hg(Ⅱ) | 7 | 540 | 10 | HCl | [ |
COF-Ag(0) | 230 | Hg(Ⅱ) | 5 | 113 | 5 | — | [ |
TPB-DMTP-SH | 291 | Hg(Ⅱ) | 5.6 | 4395 | 4 | HCl | [ |
COF-SH | 207 | Hg(Ⅱ) | 5 | 763.4 | 5 | HNO3 | [ |
COF-SH | 1204.6 | Hg(Ⅱ) | 5 | 586.3 | 8 | HCl | [ |
COF-SH | 1127.71 | Hg(Ⅱ) | 5 | 186.6 | — | — | [ |
COFs | 比表面积/m2·g-1 | 重金属离子 | 吸附pH | 吸附量/mg·g-1 | 循环次数 | 解吸剂 | 参考文献 |
---|---|---|---|---|---|---|---|
Tp-At | 17.2 | Cr(Ⅲ) | — | 95.44 | — | — | [ |
TpTch-90 | 41.99 | Cr(Ⅵ) | 2 | 249.17 | 5 | HCl | [ |
TpPa-SO3H | 62.5 | Cr(Ⅲ) | — | 105.26 | 5 | HNO3和EDTA | [ |
COF-OH | 26.4 | Cr(Ⅵ) | 3 | 649.35 | — | — | [ |
COF-NH2 | 321.1 | Cr(Ⅵ) | 2 | 187.5 | — | — | [ |
COF-NH2 | 180 | Cr(Ⅵ) | 3 | 304.9 | 5 | NaOH | [ |
COF-SH | 1127.71 | Cr(Ⅵ) | 5 | 509 | — | — | [ |
COF-Fe(0) | 102.97 | Cr(Ⅵ) | 1 | 516 | — | — | [ |
表2 部分COFs对典型重金属离子Cr(Ⅲ)和Cr(Ⅵ)的吸附性能总结表
COFs | 比表面积/m2·g-1 | 重金属离子 | 吸附pH | 吸附量/mg·g-1 | 循环次数 | 解吸剂 | 参考文献 |
---|---|---|---|---|---|---|---|
Tp-At | 17.2 | Cr(Ⅲ) | — | 95.44 | — | — | [ |
TpTch-90 | 41.99 | Cr(Ⅵ) | 2 | 249.17 | 5 | HCl | [ |
TpPa-SO3H | 62.5 | Cr(Ⅲ) | — | 105.26 | 5 | HNO3和EDTA | [ |
COF-OH | 26.4 | Cr(Ⅵ) | 3 | 649.35 | — | — | [ |
COF-NH2 | 321.1 | Cr(Ⅵ) | 2 | 187.5 | — | — | [ |
COF-NH2 | 180 | Cr(Ⅵ) | 3 | 304.9 | 5 | NaOH | [ |
COF-SH | 1127.71 | Cr(Ⅵ) | 5 | 509 | — | — | [ |
COF-Fe(0) | 102.97 | Cr(Ⅵ) | 1 | 516 | — | — | [ |
1 | 李若男, 周丽莎, 陈舜胜, 等. 纤维素纳米纤维及其改性产物吸附重金属的研究进展[J]. 化工进展, 2022, 41(1): 310-319. |
LI Ruonan, ZHOU Lisha, CHEN Shunsheng, et al. Research progress on adsorption of heavy metals by cellulose nanofibers and their modified products[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 310-319. | |
2 | 石岩松, 王婧, 崔文杰, 等. 不同形态微塑料和汞对斑马鱼胚胎发育毒性联合作用研究[J]. 中国环境科学, 2023, 43 (4): 1978-1984. |
SHI Yansong, WANG Jing, CUI Wenjie, et al. Joint effects of microplastics with different shapes and mercury on the developmental toxicity of zebrafish embryos[J]. China Environmental Science, 2023, 43 (4): 1978-1984. | |
3 | 徐国豪, 刘英豪, 常明慧, 等. 土壤外源铬的作物毒性响应及富集差异研究[J]. 农业环境科学学报, 2023, 42 (2): 284-290. |
XU Guohao, LIU Yinghao, CHANG Minghui, et al. Toxicity response and difference in accumulation of exogenous soil chromium in crops[J]. Journal of Agro-Environment Science, 2023, 42 (2): 284-290. | |
4 | 张金松, 李冬梅. 新《生活饮用水卫生标准》推动供水行业水质保障体系化建设[J]. 给水排水, 2022, 48(8): 6-12. |
ZHANG Jinsong, LI Dongmei, New Standards for drinking water quality leads water industry into systematic construction of water quality assurance[J]. Water and Wastewater Engineering, 2022, 48(8): 6-12. | |
5 | 姚庆达, 温会涛, 杨长凯, 等. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058. |
YAO Qingda, WEN Huitao, YANG Changkai, et al. Structure and performance of multilayer graphene oxide membrane and its application in water treatment: A review[J]. Materials Reports, 2020, 34(15): 15047-15058. | |
6 | 姚庆达, 梁永贤, 王小卓, 等. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 36-48. |
Yao Q, Liang Y, Wang X, et al. Structure and performance of graphene oxide/chitosan composite and its application in water treatment: a review [J]. Materials Report, 2022, 36(4): 36-48. | |
7 | 梁永贤, 姚庆达, 许春树, 等. 氧化石墨烯和氧化石墨烯/聚乙烯亚胺复合材料对Cu(Ⅱ)的吸附性能研究[J]. 皮革与化工, 2023, 40(1): 1-8. |
LIANG Yongxian, YAO Qingda, XU Chunshu, et al. Adsorption of C u ( Ⅱ ) by graphene oxide and graphene oxide/polyethylenimine composites[J]. Leather and Chemicals, 2023, 40(1): 1-8. | |
8 | 陈琦, 王文涛, 张志鹏, 等. 共价有机框架材料对放射性核素吸附的研究进展[J]. 化工进展, 2021,40(S2): 241-255. |
CHEN Qi, WANG Wentao, ZHANG Zhipeng, et al. Progress of covalent framework for radionuclides absorption[J]. Chemical Industry and Engineering Progress, 2021,40(S2): 241-255.0 | |
9 | 蔡勐, 李新冬, 欧阳国仔, 等. 共价有机框架(COF)对重金属离子吸附去除研究进展[J]. 塑料工业, 2022, 50(10): 21-29. |
CAI Meng, LI Xindong, OUYANG Guozai, et al. Research progress on adsorption and removal of heavy metal ions by covalent organic frameworks (COFs)[J]. China Plastics Industry, 2022, 50(10): 21-29. | |
10 | 唐朝春, 黄从新. 共价有机框架材料吸附去除重金属离子研究进展[J]. 水处理技术, 2022, 48(3): 1-6. |
TANG Chaochun, HUANG Congxin. Progress in adsorption and removal of heavy metal ions by covalent organic framework materials[J]. Technology of Water Treatment, 2022, 48(3): 1-6. | |
11 | 李诗宇, 阴永光, 史建波, 等. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 54(5): 1017-1025. |
LI Shiyu, YIN Yongguang, SHI Jianbo, et al. Application of covalent organic frameworks in adsorptive removal of divalent mercury from water[J]. Progress in Chemistry, 2022, 54(5): 1017-1025. | |
12 | 于潇涵, 黄伟, 李彦光. 二维共价有机框架材料的可控合成及其光催化应用研究进展[J]. 化学学报, 2022, 80(11): 1494-1506. |
YU Xiaohan, HUANG Wei, LI Yanguang. Controllable synthesis and photocatalytic applications of two-dimensional covalent organic frameworks[J]. Acta Chimica Sinica, 2022, 80(11): 1494-1506. | |
13 | 陈育萱, 陈奇, 张占辉, 等. 共价有机框架材料作为非均相配体在有机合成中的应用[J]. 有机化学, 2021, 41: 3826-3843. |
CHEN Yuxuan, CHEN Qi, ZHANG Zhanhui, et al. Application of covalent organic framework materials as heterogeneous ligands in organic synthesis[J]. Chinese Journal of Organic Chemistry, 2021, 41: 3826-3843. | |
14 | LI Yusen, CHEN Qing, XU Tiantian, et al. De novo design and facile synthesis of 2D covalent organic frameworks: A two-in-one strategy[J]. Journal of the American Chemical Society, 2019, 141(35): 13822-13828. |
15 | HAO Mengjie, XIE Yinghui, LIU Xiaolu, et al. Modulating uranium extraction performance of multivariate covalent organic frameworks through donor-acceptor linkers and amidoxime nanotraps[J]. JACS Au, 2023, 3(1): 239-251. |
16 | HUANG Ning, ZHAI Lipeng, COUPRY Damien E, et al. Multiple-component covalent organic framework[J]. Nature Communications, 2016, 7: 12325. |
17 | QI Huaigang, PENG Yu, LV Xinghua, et al. Synergetic effects of COFs interlayer regulation and surface modification on thin-film nanocomposite reverse osmosis membrane with high performance[J]. Desalination, 2023, 548: 116265. |
18 | PENG Yongwu, LI Liuxiao, ZHU Chongzhi, et al. intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2020, 142: 13162-13169. |
19 | HUANG Ning, DING Xuesong, KIM Jangbae, et al. A Photoresponsive smart covalent organic framework[J]. Angewandte Communications, 2015, 54: 8704-8707. |
20 | QI Yan, ZHANG Jing, ZHANG Li, et al. 3D macro/mesoporous highly reproducible amino-functionalized covalent organic framework nanospheres for fat-rich foodstuffs pretreatment in nontargeted analysis[J]. Chemical Engineering Journal, 2023, 454: 140319. |
21 | FREY Laura, JARJU Jenni J, SALONEN Laura M, et al. Boronic-acid-derived covalent organic frameworks: From synthesis to applications[J]. New Journal of Chemistry, 2021, 45: 14879-14907. |
22 | MU Zhenjie, ZHU Yuhao, LI Bixiao, et al. Covalent organic frameworks with record pore apertures[J]. Journal of the American Chemical Society, 2022, 144(11): 5145-5454. |
23 | FU Shuqing, ZHU Mingzhi, XUE Boxin, et al. Synergy between ionic capacity and intrinsic porosity in imidazolium-based cationic organic polymers and its effect on anionic dye adsorption[J]. Macromolecules, 2022, 55(19): 8784-8794. |
24 | ABUZEID Hesham R, EL-MAHDY Ahmed F M, Shiaowei KUO. Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units[J]. Microporous and Mesoporous Materials, 2020, 300: 110151. |
25 | LI Xianghua, TANG Huaijun, GAO Long, et al. A sp2-carbon-linked covalent organic framework containing tetraphenylethene units used as yellow phosphors in white light-emitting diodes[J]. Polymer, 2022, 241: 124474. |
26 | LI Wei, JIANG Hongxin, CUI Mengfan, et al. SiO2 templates-derived hierarchical porous COFs sample pretreatment tool for non-targeted analysis of chemicals in foods[J]. Journal of Hazardous Materials, 2022, 432: 128705. |
27 | DIERCKS Christian S, LIN Song, KORNIENKO Nikolay, et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction[J]. Journal of the American Chemical Society, 2018, 140: 1116-1122. |
28 | HU Yiming, DUNLAP Nathan, WAN Shun, et al. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity[J]. Journal of the American Chemical Society, 2019, 141: 7518-7525. |
29 | SHINDE Digambar B, CAO Li, LIU Xiaowei, et al. Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation[J]. Journal of Membrane Science Letters, 2021, 1(2): 100008. |
30 | LIU Ziya, ZHANG Kun, HUANG Guoji, et al. Highly processable covalent organic framework gel electrolyte enabled by side-chain engineering for lithium-ion batteries[J]. Angewandte Chemie, 2022, 61(2): e202110695. |
31 | HUANG Ning, ZHAI Lipeng, XU Hong, et al. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions[J]. Journal of the American Chemical Society, 2017, 139(6): 2428-2434. |
32 | LIU Jiao, YANG Tong, WANG Zhipeng, et al. Pyrimidazole-based covalent organic frameworks: Integrating functionality and ultrastability via isocyanide chemistry[J]. Journal of the American Chemical Society, 2020, 142: 20956-20961. |
33 | WU Xiaowei, HONG Youle, XU Bingqing, et al. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction[J]. Journal of the American Chemical Society, 2020, 142(33): 14357-14364 |
34 | LIU Ruiqi, HUANG Lijin, TAO Hui, et al. Microenvironment engineering of covalent organic frameworks for the efficient removal of sulfamerazine from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107300. |
35 | CAO Ying, HU Xue, ZHU Changqian, et al. Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective P b ( Ⅱ ) removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 125004. |
36 | LU Zhenwu, YANG Chunying, HE Liu, et al. Asymmetric hydrophosphonylation of imines to construct highly stable covalent organic frameworks with efficient intrinsic proton conductivity[J]. Journal of the American Chemical Society, 2022, 144(22): 9624-9633. |
37 | YANG Yixuan, TANG Xihao, WU Jialin, et al. Transformation of a hydrazone-linked covalent organic framework into a highly stable hydrazide-linked one[J]. ACS Applied Polymer Materials, 2022, 4(7): 4624-4631. |
38 | KANG Jinyang, HANG Jiahui, CHEN Bo, et al. Amide linkages in pyrene-based covalent organic frameworks toward efficient photocatalytic reduction of uranyl[J]. ACS Applied Polymer Materials, 2022, 14(51): 57225-57234. |
39 | ZHANG Gen, TSUJIMOTO Masahiko, PACKWOOD Daniel, et al. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach[J]. Journal of the American Chemical Society, 2018, 140(7): 2602-2609. |
40 | MASCHITA Johannes, BANERJEE Tanmay, LOTSCH Bettina V. Direct and linker-exchange alcohol-assisted hydrothermal synthesis of imide-linked covalent organic frameworks[J]. Chemistry of Materials, 2022, 34(5): 2249-2258. |
41 | NAGAI Atsushi, GUO Zhaoqi, FENG Xiao, et al. Pore surface engineering in covalent organic frameworks[J]. Nature Communications, 2011, 2: 536. |
42 | HUANG Ning, KRISHNA Rajamani, JIANG Donglin. Tailor-made pore surface engineering in covalent organic frameworks: Systematic functionalization for performance screening[J]. Journal of the American Chemical Society, 2015, 137(22): 7079-7082. |
43 | CHEN Long, FURUKAWA Ko, GAO Jia, et al. Photoelectric covalent organic frameworks: Converting open lattices into ordered donor–acceptor heterojunctions[J]. Journal of the American Chemical Society, 2014, 136(28): 9806-9809. |
44 | SUN Qi, AGUILA Briana, PERMAN Jason, et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793. |
45 | XIAO Saijin, QIU Anting, LI Huihan, et al. Simultaneous detection and separation of uranium based on a fluorescent amidoxime-functionalized covalent organic polymer[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2023, 289(15): 122182. |
46 | LU Qiuyu, MA Yunchao, LI Hui, et al. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions[J]. Angewandte Chemie, 2018, 57(21): 6042-6048. |
47 | YANG Yongliang, YU Ling, CHU Tiancheng, et al. Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration[J]. Nature Communications, 2022, 13: 2615. |
48 | GUAN Xinyu, LI Hui, MA Yunchao, et al. Chemically stable polyarylether-based covalent organic frameworks[J]. Nature Chemistry, 2019, 11: 587-594. |
49 | ZHANG Shuyuan, TANG Xihao, YAN Yilun, et al. Facile and site-selective synthesis of an amine-functionalized covalent organic framework[J]. ACS Macro Letters, 2021, 10(12): 1590-1596. |
50 | WANG Yuancheng, LIU Hui, PAN Qingyan, et al. Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis[J]. Journal of the American Chemical Society, 2020, 142(13): 5958-5963. |
51 | VEDACHALAM Seenuvasan, SEKAR Pandiaraj, NITHYA Chandrasekaran, et al. Dopant-free main group elements supported covalent organic-inorganic hybrid conducting polymer for sodium-ion battery application[J]. ACS Applied Energy Materials, 2022, 5(1): 557-566. |
52 | ALMANSAF Zainab, HU Jiyun, ZANCA Federica, et al. P t ( Ⅱ ) -decorated covalent organic framework for photocatalytic difluoroalkylation and oxidative cyclization reactions[J]. ACS Applied Materials and Interfaces, 2021, 13(5): 6349-6358. |
53 | DURKA Krzysztof, KAZIMIERCZUK Krzysztof, Sergiusz LULIŃSKI. Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D covalent organic framework derived from a non-linear diboronic acid[J]. Microporous and Mesoporous Materials, 2022, 337: 111914. |
54 | HAASE Frederik, TROSCHKE Erik, Gökcen SAVASCI, et al. Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis[J]. Nature Communications, 2018, 9: 2600. |
55 | LI Xinle, ZHANG Changlin, CAI Songliang, et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks[J]. Nature Communications, 2018, 9: 2998. |
56 | Prasenjit DAS, CHAKRABORTY Gouri, Roeser JÉRÔME, et al. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production[J]. Journal of the American Chemical Society, 2023, 145(5): 2975-2984. |
57 | WALLER Peter J, ALFARAJ Yasmeen S, DIERECKS Christian S, et al. Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(29): 9099-9103. |
58 | SEO Jeong Min, Hyuk Jun NOH, JEONG Hu Young, et al. Converting unstable imine-linked network into stable aromatic benzoxazole-linked one via post-oxidative cyclization4[J]. Journal of the American Chemical Society, 2019, 141(30): 11786-11790. |
59 | LYLE Steven J, POPP Thomas M Osborn, WALLER Peter J, et al. Multistep solid-state organic synthesis of carbamate-linked covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(28): 11253-11258. |
60 | WANG Yuancheng, LIU Hui, PAN Qingyan, et al. Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis[J]. Journal of the American Chemical Society, 2020, 142(13): 5958-5963. |
61 | DINARI Mohammad, HATAMI Mohammad. Novel N-riched crystalline covalent organic framework as a highly porous adsorbent for effective cadmium removal[J]. Journal of Environmental Chemical Engineering, 2019, 7: 102907. |
62 | LI Yongqiang, WANG Quan, JU Yuhua, et al. Novel pyridine-based covalent organic framework containing N,N,N-chelating sites for selective detection and effective removal of nickel[J]. Inorganic Chemistry Frontiers, 2022, 9: 3845. |
63 | LI Dianmei, LI Shuqing, HUANG Jiayi, et al. A recyclable bipyridine-containing covalent organic framework-based QCM sensor for detection of Hg(Ⅱ) ion in aqueous solution[J]. Journal of Solid State Chemistry, 2021, 302: 122421. |
64 | ZHANG Yanbo, WANG Quan, LI Yongqiang, et al. Bithiophene-based COFs for silver ions detection and removal[J]. Microporous and Mesoporous Materials, 2022, 346: 112289. |
65 | LIU Xiaoshuang, XU Haomiao, WANG Longlong, et al. Surface nano-traps of Fe0/COFs for arsenic(Ⅲ) depth removal from wastewater in non-ferrous smelting industry[J]. Chemical Engineering Journal, 2020, 381: 122559. |
66 | LI Wei, LI Yang, QIAN Hailong, et al. Fabrication of a covalent organic framework and its gold nanoparticle hybrids as stable mimetic peroxidase for sensitive and selective colorimetric detection of mercury in water samples[J]. Talanta, 2019, 204: 224-228. |
67 | SHI Zhixiong, CHEN Zhuo, ZHANG Yan, et al. COF TzDa/Ag/AgBr Z-scheme heterojunction photocatalyst for efficient visible light driven elimination of antibiotics tetracycline and heavy metal ion Cr(Ⅵ)[J]. Separation and Purification Technology, 2022, 288: 120717. |
68 | WU Zhongjia, ZHU Junlun, WEN Wei, et al. Spherical covalent organic framework supported Cu/Ag bimetallic nanoparticles with highly catalytic activity for reduction of 4-nitrophenol[J]. Journal of Solid State Chemistry, 2022, 311: 123116. |
69 | DONG Zhaoyi, YANG Yixuan, CAI Xinting, et al. Site-selective synthesis of an amine-functionalized β-ketoenamine-linked covalent organic framework for improved detection and removal of Cu2+ ion from water[J]. Journal of Solid State Chemistry, 2022, 316: 123644. |
70 | HAN Jiajia, PEI Longsheng, SU Jianpo, et al. A novel covalent organic framework with abundant N—O—O and N—N—O sites for detection and removal of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+ [J]. Ionics, 2023, 29: 807-817. |
71 | HUSSAIN Muzammil, MAILE Nagesh, TAHIR Khurram, et al. Flexible thiourea-based covalent organic frameworks for ultrahigh mercury removal from aqueous solutions[J]. Chemical Engineering Journal, 2022, 446: 137410. |
72 | LI Xiaofeng, JIA Zhimin, ZHANG Jie, et al. Construction of covalent organic frameworks with alternating rigid and flexible units and their controlled release of active sites[J]. Chemical Engineering Journal, 2023, 454: 140119.2 |
73 | MAZhiyao, LIU Fuyang, LIU Nengsheng, et al. Facile synthesis of sulfhydryl modified covalent organic frameworks for high efficient H g ( Ⅱ ) removal from water[J].Journal of Hazardous Materials, 2021, 405: 124190. |
74 | TAO Yuan, XIONG Xiaohong, XIONG Jianbo, et al. High-performance removal of mercury ions (Ⅱ) and mercury vapor by SO3 --anchored covalent organic framework[J]. Journal of Solid State Chemistry, 2020, 282: 121126. |
75 | YU Yanxin, LI Guoliang, LIU Jianghua, et al. A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(Ⅱ)[J]. Chemical Engineering Journal, 2020, 401: 126139. |
76 | FU Quanbin, ZHANG Tingting, SUN Xin, et al. Pyridine-based covalent organic framework for efficient and selective removal of H g ( Ⅱ ) from water: Adsorption behavior and adsorption mechanism investigations[J]. Chemical Engineering Journal, 2023, 454: 140154. |
77 | LI Yang, SONG Yonghai, LI Junjie, et al. S, N-rich luminous covalent organic frameworks for Hg2+ detection and removal[J]. Chemosphere, 2023, 311: 136919. |
78 | RAJALAKSHMI Kanagaraj, MUTHUSAMY Selvaraj, XIE Meng, et al. Fabrication of thiophene decorated side chain entanglement free COFs for highly regenerable mercury extraction[J]. Chemical Engineering Journal, 2022, 430: 133149. |
79 | WANG Longlong, XU Haomiao, QIU Yixiang, et al. Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic waste water[J]. Journal of Hazardous Materials, 2020, 389(5): 121824. |
80 | Laura MERÍ-BOFÍ, ROYUELA Sergio, ZAMORA Félix, et al. Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg ( Ⅱ ) [J]. Journal of Materials Chemistry A, 2017, 5: 17973-17981. |
81 | PAN Fei, TONG Chunyi, WANG Zhaoyang, et al. Novel sulfhydryl functionalized covalent organic frameworks for ultra-trace Hg2+ removal from aqueous solution[J]. Journal of Materials Science and Technology, 2021, 93: 89-95. |
82 | WANG Wei, GONG Minjuan, ZHU Donghai, et al. Post-synthetic thiol modification of covalent organic frameworks for mercury ( Ⅱ ) removal from water[J]. Environmental Science and Ecotechnology, 2023, 14: 100236. |
83 | WANG Heping, FENG Bang, ZHANG Qianwen, et al. Amidinothiourea-linked covalent organic framework for the adsorption of heavy metal ions[J]. Polymer International, 2022, 71(1): 38-46. |
84 | ZHANG Xiaoqin, HAO Jun, ZHENG Xiaoshan, et al. High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: Selective ion exchange[J]. Separation and Purification Technology, 2021, 274: 118993. |
85 | WANG Heping, WANG Ting, MA Rongrong, et al. Facile synthesis of sulfonated covalent organic framework for the adsorption of heavy metal ions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 122-129. |
86 | ZHU Donghai, ZHOU SHuangxi, ZHOU Ziming, et al. Highly efficient and selective removal of C r ( Ⅵ ) by covalent organic frameworks: Structure, performance and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600(5): 124910. |
87 | LIU Haowei, ZHANG Xiaofan, HOU Lumiao, et al. Nitrogen-rich hierarchical porous polyphosphazene for rapid and efficient adsorption of anionic contaminants: Kinetics, isotherm, thermodynamics and mechanism[J]. Applied Surface Science, 2023, 616: 156538. |
88 | KONG Ke, CHENG Bo, LIANG Jun, et al. The aminated covalent organic polymers for reversible removal of concurrent perfluorooctane sulfonate and dichromate[J]. Chemical Engineering Journal, 2022, 446: 137343. |
89 | ZHANG Hourui, ZHANG Lu, DONG Shuangshi, et al. Regulating energy band structures of triazine covalent organic frameworks with electron-donating/withdrawing substituents for visible-light-responsive photocatalytic tetracycline degradation and Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2023, 446: 130756. |
90 | YANG Yanan, ZHANG Yu, ZHENG Hong, et al. Functionalized dual modification of covalent organic framework for efficient and rapid trace heavy metals removal from drinking water[J]. Chemosphere, 2022, 290: 133215. |
91 | CHEN Weiben, YANG Zongfan, XIE Zhen, et al. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium ( Ⅵ ) [J]. Journal of Materials Chemistry A, 2019, 7: 998. |
92 | QIN Na, MAO Aojie, LI Linqiang, et al. Construction of benzothiadiazole-based D-A covalent organic frameworks for photocatalytic reduction of C r ( Ⅵ ) and synergistic elimination of organic pollutants[J]. Polymer, 2022, 262: 125483. |
93 | SHEN Huizhen, CHEN Li, ZHOU Cailong, et al. Immobilizing Fe0 nanoparticles on covalent organic framework towards enhancement of C r ( Ⅵ ) removal by adsorption and reduction synergistic effect[J]. Separation and Purification Technology, 2022, 290: 120883. |
94 | ZHANG Shun, LAN Huachun, CUI Yuqi, et al. Insight into the key role of cr intermediates in the efficient and simultaneous degradation of organic contaminants and C r ( Ⅵ ) reduction via g-C3N4-assisted photocatalysis[J]. Environmental Science and Technology, 2022, 56(6): 3552-3563. |
95 | GAO Ya, YI Xiaohong, WANG Chongchen, et al. Effective C r ( Ⅵ ) reduction over high throughput Bi-BDC MOF photocatalyst[J]. Materials Research Bulletin, 2023, 158: 112072. |
96 | LI Fei, ZHANG Guang. Effective removal of toxic heavy metal ions from wastewater using boroxine covalent organic framework[J]. Journal of Molecular Liquids, 2021, 336: 116326. |
97 | ZHANG Anrui, LIU Xuewei, HONG Jiahui, et al. A mussel-pearl side chain interaction in mercury ( Ⅱ ) and phenol removal by sulfur-functionalized covalent organic frameworks: A DFT study[J]. Science of the Total Environment, 2022, 838(2): 156082. |
98 | HUANG Zhen, XIONG Chao, YING Lingri, et al. Facile synthesis of a MOF-derived magnetic CoAl-LDH@chitosan composite for P b ( Ⅱ ) and C r ( Ⅵ ) adsorption[J]. Chemical Engineering Journal, 2022, 449: 137722. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[10] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[11] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[12] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[15] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |