化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 479-488.DOI: 10.16085/j.issn.1000-6613.2023-1056
收稿日期:
2023-06-27
修回日期:
2023-10-26
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
毛玉红
作者简介:
王敏(1999—),女,硕士研究生,研究方向为给水处理理论与技术。E-mail:wangminjob@126.com。
基金资助:
WANG Min(), MAO Yuhong(), CHEN Chao, BAI Dan
Received:
2023-06-27
Revised:
2023-10-26
Online:
2023-10-25
Published:
2023-11-30
Contact:
MAO Yuhong
摘要:
铝盐混凝剂因其形成絮体大而密实,具有较好的除浊脱色性能,在混凝领域广泛应用,但却存在处理水铝残留问题。本文为更好地促进铝盐混凝剂在水处理领域的应用,详细介绍了铝盐水解物对人体的毒性效应、对输配水管网系统和饮用水深度处理工艺的影响。总结了残留铝生成机理和形态分析方法,阐述了优势形态Al13和Al30的水解过程以及其发挥优势混凝作用的原因。分析了原水水质条件、化学条件、水力条件和前期预处理对残留铝含量的影响。最后,点明了未来控制残留铝的策略和技术。指出未来应结合人工智能复配合成纳米级新型混凝剂,关注混凝过程中水力条件对残留铝的影响,并开发能够精准测量分析水中各类铝形态的方法,不断创新强化净水工艺,进一步完善残留铝控制措施,保障出水水质安全。
中图分类号:
王敏, 毛玉红, 陈超, 白丹. 水处理工艺中铝盐水解物的毒性、形态及控制研究进展[J]. 化工进展, 2023, 42(S1): 479-488.
WANG Min, MAO Yuhong, CHEN Chao, BAI Dan. Progress on the toxicity, morphology and control of aluminum salt hydrolysates in water treatment process[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 479-488.
国家或机构 | 残留铝限制标准/mg·L-1 |
---|---|
世界卫生组织 | 0.2 |
欧盟 | 0.2 |
美国 | 0.05~0.20 |
日本 | 0.2 |
中国 | 0.2 |
表1 国内外生活饮用水残留铝浓度限值标准
国家或机构 | 残留铝限制标准/mg·L-1 |
---|---|
世界卫生组织 | 0.2 |
欧盟 | 0.2 |
美国 | 0.05~0.20 |
日本 | 0.2 |
中国 | 0.2 |
分类 | 原理 | 优缺点 | 适用情况 | 备注 | 文献 |
---|---|---|---|---|---|
Ferron逐时络合比色法 | 根据 Al3+及其不稳定配合物与光谱试剂反应动力学的差异来分析铝的形态 | 不用分离,不破坏溶液平衡;干扰严重,灵敏度不高 | 高浓度条件下的铝 | 检测限0.05 mg/L; 线性范围0.1~1.5mg/L | [ |
铬天青S分光光度法 | 操作简单,不需要昂贵仪器;酸度难以控制,不稳定 | 生活饮用水和水源水中的铝 | 检测限0.008mg/L; 回收率94%~106% | [ | |
8-羟基喹啉-5-磺酸分光光度法 | 灵敏度高,对铝形态干扰小 | 快速反应铝的测定 | 检测限0.01mg/L; 回收率92.5%~101% | [ | |
离子交换色谱法 | 利用某一特定的色谱系统进行溶液中铝各组分的分析 | 分离柱可多次测定水样; 无法直接得到无机单核铝的含量,误差大且操作烦琐 | 同时分析低浓度的多种离子 | 检测限0.02mg/L; 回收率94%~102% | [ |
高效液相色谱法 | 对铝具有独特选择性 | 饮用水中铝的测定 | 检测限0.015mg/L; 线性范围0.03~0.3mg/L | [ | |
流动注射分析法 | 重现性好,能准确控制反应时间,可与多种检测仪联用 | 现配样品的处理 | 检测限0.002mg/L | [ | |
邻苯二酚紫-示波计时电位法 | 通过调节pH和选择合适的配体两条途径来分析铝形态 | 设备简单、步骤简便、灵敏度高、无需分离;加热或通氧会破坏水样中各种铝形态间的原始平衡,干扰准确性 | 天然水体中各种 铝形态的分析 | 检测限0.003mg/L; 相对标准偏差6.5% | [ |
钙镁试剂-示波计时电位法 | 天然水体中各组分单核铝的测定 | 检测限0.015mg/L; 回收率95%~107% | [ | ||
27Al-NMR核磁共振法 | 铝的不同物种的27Al信号化学位移和线宽不同,可进行形态分析 | 快速、非破坏性、高灵敏度 及可定量 | 环境生物中铝含量分析 | — | [ |
表2 常见铝浓度分析方法
分类 | 原理 | 优缺点 | 适用情况 | 备注 | 文献 |
---|---|---|---|---|---|
Ferron逐时络合比色法 | 根据 Al3+及其不稳定配合物与光谱试剂反应动力学的差异来分析铝的形态 | 不用分离,不破坏溶液平衡;干扰严重,灵敏度不高 | 高浓度条件下的铝 | 检测限0.05 mg/L; 线性范围0.1~1.5mg/L | [ |
铬天青S分光光度法 | 操作简单,不需要昂贵仪器;酸度难以控制,不稳定 | 生活饮用水和水源水中的铝 | 检测限0.008mg/L; 回收率94%~106% | [ | |
8-羟基喹啉-5-磺酸分光光度法 | 灵敏度高,对铝形态干扰小 | 快速反应铝的测定 | 检测限0.01mg/L; 回收率92.5%~101% | [ | |
离子交换色谱法 | 利用某一特定的色谱系统进行溶液中铝各组分的分析 | 分离柱可多次测定水样; 无法直接得到无机单核铝的含量,误差大且操作烦琐 | 同时分析低浓度的多种离子 | 检测限0.02mg/L; 回收率94%~102% | [ |
高效液相色谱法 | 对铝具有独特选择性 | 饮用水中铝的测定 | 检测限0.015mg/L; 线性范围0.03~0.3mg/L | [ | |
流动注射分析法 | 重现性好,能准确控制反应时间,可与多种检测仪联用 | 现配样品的处理 | 检测限0.002mg/L | [ | |
邻苯二酚紫-示波计时电位法 | 通过调节pH和选择合适的配体两条途径来分析铝形态 | 设备简单、步骤简便、灵敏度高、无需分离;加热或通氧会破坏水样中各种铝形态间的原始平衡,干扰准确性 | 天然水体中各种 铝形态的分析 | 检测限0.003mg/L; 相对标准偏差6.5% | [ |
钙镁试剂-示波计时电位法 | 天然水体中各组分单核铝的测定 | 检测限0.015mg/L; 回收率95%~107% | [ | ||
27Al-NMR核磁共振法 | 铝的不同物种的27Al信号化学位移和线宽不同,可进行形态分析 | 快速、非破坏性、高灵敏度 及可定量 | 环境生物中铝含量分析 | — | [ |
1 | CHEN Kaiyue, LIU Yuting, HUNG Jui-Ting, et al. Synergism of Fe and Al salts for the coagulation of dissolved organic matter: Structural developments of Fe/Al-organic matter associations[J]. Chemosphere, 2023, 316: 137737. |
2 | Izabela KRUPIŃSKA. Aluminium drinking water treatment residuals and their toxic impact on human health[J]. Molecules, 2020, 25(3): 641. |
3 | 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: [S]. 北京: 中国标准出版社, 2022. |
Ministry of Health, PRC, Standardization Administration of China, Standardization Administration of the People's Republic of China. Standards for drinking water quality: [S]. Beijing: Standards Press of China, 2022. | |
4 | MARTINEZ Caroline Silveira, ALTERMAN Caroline D C, VERA Gema, et al. Egg white hydrolysate as a functional food ingredient to prevent cognitive dysfunction in rats following long-term exposure to aluminum[J]. Scientific Reports, 2019, 9: 1868. |
5 | WANG Fei, KANG Pan, LI Zhaoyang, et al. Role of MLL in the modification of H3K4me3 in aluminium-induced cognitive dysfunction[J]. Chemosphere, 2019, 232: 121-129. |
6 | LU Xiaoting, XU Shimeng, ZHANG Yunwei, et al. Longitudinal study of the effects of occupational aluminium exposure on workers’ cognition[J]. Chemosphere, 2021, 271: 129569. |
7 | ALSAEED R, ALAJI B, EBRAHIM M. Predicting turbidity and aluminum in drinking water treatment plants using hybrid network (GA-ANN) and GEP[J]. Drinking Water Engineering & Science Discussions, 2021. DOI:10.5194/dwes-2021-8 . |
8 | LI Huan, XUE Xingli, LI Zhaoyang, et al. Aluminium-induced synaptic plasticity injury via the PHF8-H3K9me2-BDNF signalling pathway[J]. Chemosphere, 2020, 244: 125445. |
9 | CHEN Shengyi, WENG Minghung, Li Zihying, et al. Protective effects of camellia and olive oils against cognitive impairment via gut microbiota-brain communication in rats[J]. Food & Function, 2022, 13(13): 7168-7180. |
10 | Deiweson SOUZA-MONTEIRO, NUNES Paula Beatriz, FERREIRA Railson, et al. Aluminum-induced toxicity in salivary glands of mice after long-term exposure: Insights into the redox state and morphological analyses[J]. Biological Trace Element Research, 2020, 198(2): 575-582. |
11 | ESQUERRE Nicolas, BASSO Lilian, DUBUQUOY Caroline, et al. Aluminum ingestion promotes colorectal hypersensitivity in rodents[J]. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7(1): 185-196. |
12 | NIE Yingying, YANG Jingming, ZHOU Longjian, et al. Marine fungal metabolite butyrolactone Ⅰ prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish[J]. Journal of Neuroinflammation, 2022, 19(1): 39. |
13 | IGWENAGU Ephraim, IGBOKWE Ikechukwu Onyebuchi, EGBE-NWIYI Tobias Nnia. Fasting hyperglycaemia, glucose intolerance and pancreatic islet necrosis in albino rats associated with subchronic oral aluminium chloride exposure[J]. Comparative Clinical Pathology, 2020, 29(1): 75-81. |
14 | WEI Xi, WEI Hua, YANG Dawei, et al. Effect of aluminum exposure on glucose metabolism and its mechanism in rats[J]. Biological Trace Element Research, 2018, 186(2): 450-456. |
15 | ARAFAT Esraa A, EL-SAYED Doaa S, HUSSEIN Hussein K, et al. Entomotherapeutic role of Periplaneta americana extract in alleviating aluminum oxide nanoparticles-induced testicular oxidative impairment in migratory locusts (Locusta migratoria) as an ecotoxicological model[J]. Antioxidants, 2023, 12(3): 653. |
16 | BADAWOUD Mohammed H, Gamal ABDEL-AZIZ, EL-FARK M M, et al. The effect of aluminum exposure on maternal health and fetal growth in rats[J]. Cureus, 2022, 14(11): e31775. |
17 | YOKEL Robert A. Aluminum reproductive toxicity: A summary and interpretation of scientific reports[J]. Critical Reviews in Toxicology, 2020, 50(7): 551-593. |
18 | Soon-Thiam KHU, XIN Changchun, WANG Tianzhi, et al. Effects of hydraulic conditions on biofilm detached in drinking water distribution system[J]. Journal of Water Process Engineering, 2023, 53: 103882. |
19 | KURAJICA L, UJEVIĆ BOŠNJAK M, KINSELA A S, et al. Effects of changing supply water quality on drinking water distribution networks: Changes in NOM optical properties, disinfection byproduct formation, and Mn deposition and release[J]. Science of the Total Environment, 2021, 762: 144159. |
20 | 李礼, 赵蓓, 柴文, 等. 城市供水管网中铝形态特征分析[J]. 中国给水排水, 2022, 38(5): 9-13. |
LI Li, ZHAO Bei, CHAI Wen, et al. Analysis on morphological characteristics of aluminum in urban drinking water distribution system[J]. China Water & Wastewater, 2022, 38(5): 9-13. | |
21 | 聂煜东, 李金, 张贤明. 水处理过程中膜污染问题及其预处理技术研究进展[J]. 化工进展, 2021, 40(4): 2278-2289. |
NIE Yudong, LI Jin, ZHANG Xianming. Research progress on membrane fouling and its pretreatment technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2278-2289. | |
22 | YUAN Ziyi, LI Yunfei, LI Tianyu, et al. Identifying key residual aluminum species responsible for aggravation of nanofiltration membrane fouling in drinking water treatment[J]. Journal of Membrane Science, 2022, 659: 120833. |
23 | LIU Danyang, CABRERA Johny, ZHONG Lijuan, et al. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Frontiers of Environmental Science & Engineering, 2021, 15(4): 69. |
24 | LIU Hongyuan, LIU Haoran, XIE Yawei. Fate and fractionation of aluminum in a full-scale Al-based drinking water treatment plant[J]. Journal of Water Supply: Research and Technology-Aqua, 2020, 69(5): 469-477. |
25 | MEGHZILI Bachir, SOUAD Brakchi, ABDELKRIM Azzouz. Risk of residual aluminum in treated waters with aluminum sulphate[J]. Advances in Research, 2016, 6(5): 1-8. |
26 | DUAN Shuxuan, XU Hui, XIAO Feng, et al. Effects of Al species on coagulation efficiency, residual Al and floc properties in surface water treatment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459: 14-21. |
27 | LIU Libing, YANG Qinxue, WANG Pin, et al. Efficient purification of Al30 by organic complexation method[J]. Journal of Environmental Sciences, 2019, 80: 240-247. |
28 | LIU Libing, LU Sen, AN Guangyu, et al. Historical development of Al30 highlighting the unique characteristics and application in water treatment: A review[J]. Coordination Chemistry Reviews, 2022, 473: 214807. |
29 | 王东升, 安广宇, 刘丽冰, 等. Al13的分子学及其在环境工程中的应用[J]. 环境工程学报, 2018, 12(6): 1565-1584. |
WANG Dongsheng, AN Guangyu, LIU Libing, et al. Molecules of Al13 and its application in environmental engineering[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1565-1584. | |
30 | WANG Pin, JIAO Ruyuan, LIU Libing, et al. Optimized coagulation pathway of Al13: Effect of in situ aggregation of Al13 [J]. Chemosphere, 2019, 230: 76-83. |
31 | ALLOUCHE Lionel, TAULELLE Francis. Conversion of Al13 Keggin ε into Al30: A reaction controlled by aluminum monomers[J]. Inorganic Chemistry Communications, 2003, 6(9): 1167-1170. |
32 | CARDONA Yaneth, KORILI Sophia A, GIL Antonio. Understanding the formation of Al13 and Al30 polycations to the development of microporous materials based on Al13- and Al30-PILC montmorillonites: A review[J]. Applied Clay Science, 2021, 203: 105996. |
33 | LIU Libing, LU Sen, DEMISSIE Hailu, et al. Formation of Al30 aggregates and its correlation to the coagulation effect[J]. Chemosphere, 2021, 278: 130493. |
34 | YUAN Ziyi, LI Tianyu, ZHANG Jianfeng, et al. Fluorescence-based method for fast quantification of active aluminums in natural and treated water[J]. Journal of Hazardous Materials, 2022, 433: 128815. |
35 | WANG Pin, DING Shunke, AN Guangyu, et al. Removal of disinfection by-product precursors by Al-based coagulants: A comparative study on coagulation performance[J]. Journal of Hazardous Materials, 2021, 420: 126558. |
36 | WANG Xi, XU Hui, WANG Dongsheng. Mechanism of fluoride removal by AlCl3 and Al13: The role of aluminum speciation[J]. Journal of Hazardous Materials, 2020, 398: 122987. |
37 | FENG Li, LUAN Zhaokun, TANG Hongxiao. Species analysis methods for hydrolysis polymerization of aluminum[J]. Journal of Environmental Sciences, 1998(1): 33-38. |
38 | MESQUITA Raquel B R, RANGEL António O S S. Development of sequential injection methodologies for the spectrophotometric direct and kinetic determination of aluminium in natural and waste waters[J]. Journal of the Brazilian Chemical Society, 2008, 19(6): 1171-1179. |
39 | MEMON M, BHANGER M I. Micellar liquid chromatographic determination of aluminum as its complex with 8-hydroxyquinoline-5-sulfonic acid[J]. Acta Chromatographica, 2004, 14(14): 172-179. |
40 | LETTERMAN Raymond D, DRISCOLL Charles T. Survey of residual aluminum in filtered water[J]. Journal AWWA, 1988, 80(4): 154-158. |
41 | SATO Makoto, MATSUDA Jun, MURAYAMA Harunobu, et al. Analytical chemistry for environmental and human health. Determination of aluminium in biological samples and drinking water by kinetic-differentiation mode HPLC with fluorescent detection[J]. Bunseki Kagaku, 2000, 49(6): 429-435. |
42 | CASSELLA Ricardo J, MAGALHÃES Otto I B, COUTO Marcos Tadeu, et al. Synthesis and application of a functionalized resin for flow injection/F AAS copper determination in waters[J]. Talanta, 2005, 67(1): 121-128. |
43 | Jamaluddin AHMED M, HOSSAN Jamal. Spectrophotometric determination of aluminium by morin[J]. Talanta, 1995, 42(8): 1135-1142. |
44 | 干宁, 雷建平, 李伟, 等. 钙镁试剂-示波计时电位法快速测定天然水中不同形态铝[J]. 环境化学, 2002, 21(4): 397-403. |
GAN Ning, LEI Jianping, LI Wei, et al. Determination of aluminum fractions in natural waters by a.c.oscillopolarography using calmagite[J]. Environmental Chemistry, 2002, 21(4): 397-403. | |
45 | 王文东, 杨宏伟, 蒋晶, 等. 天然水体中铝形态分析方法研究进展[J]. 净水技术, 2009, 28(6): 8-12, 29. |
WANG Wendong, YANG Hongwei, JIANG Jing, et al. Study progress on analysis method of aluminum species in natural water[J]. Water Purification Technology, 2009, 28(6): 8-12, 29. | |
46 | XU Hui, ZHANG Dawei, XU Zhizhen, et al. Study on the effects of organic matter characteristics on the residual aluminum and flocs in coagulation processes[J]. Journal of Environmental Sciences, 2018, 63: 307-317. |
47 | WAN Biao, ELZINGA Evert J, HUANG Rixiang, et al. Molecular mechanism of linear polyphosphate adsorption on iron and aluminum oxides[J]. The Journal of Physical Chemistry C, 2020, 124(52): 28448-28457. |
48 | WANG Wendong, LI Hua, WANG Xiaochang, et al. Spatial variations of aluminum species in drinking water supplies in Xi'an studied applying geographic information system[J]. Journal of Environmental Sciences, 2010, 22(4): 519-525. |
49 | VAN BENSCHOTEN John E, EDZWALD James K. Measuring aluminum during water treatment: Methodology and application[J]. Journal AWWA, 1990, 82(5): 71-78. |
50 | 王文东, 杨宏伟, 蒋晶, 等. 水温和pH对饮用水中铝形态分布的影响[J]. 环境科学, 2009, 30(8): 2259-2262. |
WANG Wendong, YANG Hongwei, JIANG Jing, et al. Effects of temperature and pH on the distribution of aluminum species in drinking water[J]. Environmental Science, 2009, 30(8): 2259-2262. | |
51 | MA Min, GU Junnong, LI Yuxian, et al. Residual aluminum control for source water with high risk of overproof coagulant residue: A novel application of principal component analysis[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2605-2610. |
52 | 贺晓娟, 袁本松, 王砚, 等. 微山湖水质对控制残余铝的影响及生产运行分析[J]. 中国给水排水, 2020, 36(3): 45-48. |
HE Xiaojuan, YUAN Bensong, WANG Yan, et al. Influence of water quality of Weishanhu Lake on residual aluminum and production operation[J]. China Water & Wastewater, 2020, 36(3): 45-48. | |
53 | 甘振东, 李鑫玮, 张健, 等. 原水pH和出厂水残余铝偏高调控技术研究与应用[J]. 给水排水, 2023, 59(1): 47-52. |
GAN Zhendong, LI Xinwei, ZHANG Jian, et al. Research and application of regulation technology for high pH of raw water and residual aluminum[J]. Water & Wastewater Engineering, 2023, 59(1): 47-52. | |
54 | ZHOU Yuxuan, YAN Mingquan, LIU Ruiping, et al. Investigating the effect of hardness cations on coagulation: The aspect of neutralisation through A l ( Ⅲ ) -dissolved organic matter (DOM) binding[J]. Water Research, 2017, 115: 22-28. |
55 | KAJJUMBA George William, FISCHER Daniel, RISSO Le Anna, et al. Application of cerium and lanthanum coagulants in wastewater treatment—A comparative assessment to magnesium, aluminum, and iron coagulants[J]. Chemical Engineering Journal, 2021, 426: 131268. |
56 | JIANG Zhenzhen, ZHU Junren. Preparation, characterization and coagulation performance of a composite coagulant: Polymeric aluminum ferric sulfate[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647(1): 012059. |
57 | EDZWALD James K. Aluminum in drinking water: Occurrence, effects, and control[J]. American Water Works Association, 2020, 112(5): 34-41. |
58 | 吴福雨, 李能能, 樊小东, 等. 混凝剂中的铝形态对黄河水源水中出水余铝的影响[J]. 环境工程学报, 2022, 16(12): 3926-3934. |
WU Fuyu, LI Nengneng, FAN Xiaodong, et al. Effects of aluminum form in coagulant on residual aluminum in effluent of the source water of Yellow River[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3926-3934. | |
59 | Dong-Min SON, KANG Lim-Seok. Evaluation of coagulation-UF process considering residual aluminuim concentration as seawater desalination pretreatment[J]. Journal of Korean Society of Environmental Engineers, 2013, 35(7): 495-502. |
60 | 赵晓非, 张晓阳, 杨腾飞, 等. 碱化度对聚合氯化铝混凝除硅的影响[J]. 化工进展, 2015, 34(12): 4375-4378, 4397. |
ZHAO Xiaofei, ZHANG Xiaoyang, YANG Tengfei, et al. Influence of basicity of polyaluminum chloride on removal of silicon[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4375-4378, 4397. | |
61 | 李润生, 金立新, 李凯, 等. 高盐基度PAC降低饮用水中残留铝的研究[J]. 中国给水排水, 2013, 29(7): 52-55. |
LI Runsheng, JIN Lixin, LI Kai, et al. High basicity polyaluminium chloride for reduction of residual aluminium in drinking water[J]. China Water & Wastewater, 2013, 29(7): 52-55. | |
62 | 毛玉红, 常青, 曾立云. 混凝过程中絮体形貌的PIV成像观测与表征[J]. 中国环境科学, 2014, 34(4): 951-957. |
MAO Yuhong, CHANG Qing, ZENG Liyun. Characterization and measurement of the flocs during the coagulation process by PIV[J]. China Environmental Science, 2014, 34(4): 951-957. | |
63 | 刘海龙, 王东升, 王敏, 等. 强化混凝对水力条件的要求[J]. 中国给水排水, 2006, 22(5): 1-4. |
LIU Hailong, WANG Dongsheng, WANG Min, et al. Requirement for hydrodynamic conditions in enhanced coagulation[J]. China Water & Wastewater, 2006, 22(5): 1-4. | |
64 | LI Mengzhuo, CHENG Jixia, ZOU Fang, et al. Effects of pre-oxidation on residual dissolved aluminum in coagulated water: A pilot-scale study[J]. Water research, 2021, 190: 116682. |
65 | YANG Zhonglian, GAO Baoyu, YUE Qinyan, et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-kaolin synthetic water[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 596-603. |
66 | 李勐卓, 程继夏, 顾军农, 等. 铁-铝盐混凝剂混合投加工艺控制溶解性残余铝的机理[J]. 环境工程学报, 2021, 15(2): 580-587. |
LI Mengzhuo, CHENG Jixia, GU Junnong, et al. Mechanism of controlling dissolved residual aluminum in simultaneous addition of iron and aluminum salt coagulants[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 580-587. | |
67 | 曲江东, 徐慧, 徐建坤, 等. 原水性质对新型含Ca2+复合混凝剂混凝过程的影响[J]. 环境科学, 2019, 40(1): 263-272. |
QU Jiangdong, XU Hui, XU Jiankun, et al. Influence of the coagulation mechanism on the coagulation performances using new composite coagulants: Role of the raw water characteristics[J]. Environmental Science, 2019, 40(1): 263-272. | |
68 | MISHRA Mansi, CHAUHAN M S. Biosorption as a novel approach for removing aluminium from water treatment plant residual—A review[J]. Water Quality Management, 2018, 79: 93-99. |
69 | YU Huibo, ZHANG Xianqiu, HAN Xue, et al. Nanofiltration membrane fouling and control caused by residual aluminum in feed water[J]. Water, Air, & Soil Pollution, 2022, 233(1): 1. DOI: 10.1007/S11270-021-05470-z . |
70 | WANG Wendong, LI Hua, DING Zhenzhen, et al. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification[J]. Journal of Environmental Sciences, 2011, 23(7): 1079-1085. |
[1] | 赵晓非, 张晓阳, 杨腾飞, 范蕾, 王顺武, 于庆龙. 碱化度对聚合氯化铝混凝除硅的影响[J]. 化工进展, 2015, 34(12): 4375-4378,4397. |
[2] | 李 军1,王纯正2,马占华1,孙兰义1. 隔壁塔用于苯、甲苯、二甲苯分离的控制[J]. 化工进展, 2013, 32(04): 757-762. |
[3] | 杨兰琴1,冯雷雨1,2,陈银广1. 中国水环境中全氟化合物的污染水平及控制策略[J]. 化工进展, 2012, 31(10): 2304-2312. |
[4] | 韦朝海,何勤聪,帅 伟,任 源,成国飞,潘维龙. 精细化工废水的污染特性分析及其控制策略 [J]. 化工进展, 2009, 28(11): 2047-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |