化工进展 ›› 2023, Vol. 42 ›› Issue (2): 969-984.DOI: 10.16085/j.issn.1000-6613.2022-0767
刘丹1(), 范云洁1,2, 王慧敏3, 严政1, 李鹏飞1, 李家成1, 曹雪波1()
收稿日期:
2022-04-27
修回日期:
2022-07-28
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
刘丹,曹雪波
作者简介:
刘丹(1981—),女,博士,教授,研究方向为废弃塑料的高值化再利用。E-mail:liudan@zjxu.edu.cn。
基金资助:
LIU Dan1(), FAN Yunjie1,2, WANG Huimin3, YAN Zheng1, LI Pengfei1, LI Jiacheng1, CAO Xuebo1()
Received:
2022-04-27
Revised:
2022-07-28
Online:
2023-02-25
Published:
2023-03-13
Contact:
LIU Dan, CAO Xuebo
摘要:
聚对苯二甲酸乙二醇酯(PET)应用极为广泛。废弃PET在自然界中不易降解,环境污染问题日益严峻。传统的物理回收和化学回收存在产品性能不稳定、工艺复杂、设备要求高等问题。利用物理或化学的方法将废弃PET转化为性能优异、功能强大、应用面广的高附加值功能材料是解决废弃PET环境污染问题及使资源可持续发展的重要技术。本文系统地归纳了废弃PET制备高附加值功能性多孔碳材料的方法,包括直接碳化法、活化法和模板法,重点综述了基于废弃PET的多孔碳材料在环境修复、能量存储与转化、催化等领域的应用研究进展。针对目前基于废弃PET的多孔碳材料制备与应用研究中存在的问题,提出塑料废弃物的高效分类、低能耗、孔隙结构精确可控先进制备技术的研发,以及多孔碳材料构效关系机理的深入探究是实现废弃PET高值转化及工业化应用的重要研究方向。
中图分类号:
刘丹, 范云洁, 王慧敏, 严政, 李鹏飞, 李家成, 曹雪波. 基于废弃PET的高值化功能性多孔碳材料及其应用进展[J]. 化工进展, 2023, 42(2): 969-984.
LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984.
多孔碳制备方法 | 污染物种类 | 污染物成分 | 最大吸附容量/mg·g-1 | 参考文献 |
---|---|---|---|---|
空气活化 | 染料 | 甲基橙 | 59.5 | [ |
K2CO3活化 | 甲基蓝 | 625 | [ | |
维多利亚蓝 | 323 | |||
KOH活化 | 甲基蓝 | 404.09 | [ | |
ZnCl2活化 | 酚类化合物 | 苯酚 | 120 | [ |
邻氯苯酚 | 240 | |||
对氯苯酚 | 230 | |||
CO2活化 | 苯酚 | 291 | [ | |
KOH活化 | 硝基苯酚 | 659 | [ | |
CO2活化 | 抗生素 | 头孢氨苄 | 266.6 | [ |
CO2活化 | 布洛芬 | 71.42 | [ | |
H2SO4活化 | 重金属 | Co2+、Ni2+、Mn2+、Zn2+、Cu2+ | 0.2~4.0 | [ |
直接碳化 | Cr3+ | 100 | [ |
表1 基于废弃PET多孔碳材料对水中污染物的吸附性能
多孔碳制备方法 | 污染物种类 | 污染物成分 | 最大吸附容量/mg·g-1 | 参考文献 |
---|---|---|---|---|
空气活化 | 染料 | 甲基橙 | 59.5 | [ |
K2CO3活化 | 甲基蓝 | 625 | [ | |
维多利亚蓝 | 323 | |||
KOH活化 | 甲基蓝 | 404.09 | [ | |
ZnCl2活化 | 酚类化合物 | 苯酚 | 120 | [ |
邻氯苯酚 | 240 | |||
对氯苯酚 | 230 | |||
CO2活化 | 苯酚 | 291 | [ | |
KOH活化 | 硝基苯酚 | 659 | [ | |
CO2活化 | 抗生素 | 头孢氨苄 | 266.6 | [ |
CO2活化 | 布洛芬 | 71.42 | [ | |
H2SO4活化 | 重金属 | Co2+、Ni2+、Mn2+、Zn2+、Cu2+ | 0.2~4.0 | [ |
直接碳化 | Cr3+ | 100 | [ |
1 | 中商产业研究院. 2022年全球瓶级PET市场现状及发展趋势预测分析[EB/OL]. [2022-03-16]. . |
China Institute of Commerce and Industry. Prediction and analysis of development trend and market status of global bottle grade PET in 2022[EB/OL]. [2022-03-16]. . | |
2 | PARKER Laura. How the plastic bottle went from miracle container to hated garbage[EB/OL]. [2019-08-23]. . |
3 | GEYER Roland, JAMBECK Jenna R, LAW Kara Lavender. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
4 | GOMES Thiago S, VISCONTE Leila L Y, PACHECO Elen B A V. Life cycle assessment of polyethylene terephthalate packaging: An overview[J]. Journal of Polymers and the Environment, 2019, 27(3): 533-548. |
5 | RAHEEM Ademola Bolanle, NOOR Zainura Zainon, HASSAN Azman, et al. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review[J]. Journal of Cleaner Production, 2019, 225: 1052-1064. |
6 | LGNATYEV Igor A, THIELEMANS Wim, VANDER BEKE Bob. Recycling of polymers: A review[J]. ChemSusChem, 2014, 7(6): 1579-1593. |
7 | THIOUNN Timmy, SMITH Rhett C. Advances and approaches for chemical recycling of plastic waste[J]. Journal of Polymer Science, 2020, 58(10): 1347-1364. |
8 | LI B, XIONG H, XIAO Y. Progress on synthesis and applications of porous carbon materials[J]. International Journal of Electrochemical Science, 2020, 15: 1363-1377. |
9 | BAZARGAN Alireza, HUI Chi Wai, MCKAY Gordon. Porous carbons from plastic waste[M]//Porous Carbons—Hyperbranched polymer—Polymer solvation. Cham: Springer International Publishing, 2013: 1-25. |
10 | WEI Shuhui, KAMALI Ali Reza. Dual-step air-thermal treatment for facile conversion of PET into porous carbon particles with enhanced dye adsorption performance[J]. Diamond and Related Materials, 2020, 107: 107914. |
11 | RAHMAWATI I, PRIYANTO A, DARSONO T, et al. The adsorption of dye waste using black carbon from polyethylene terephthalate (PET) plastic bottle waste[J]. Journal of Physics: Conference Series, 2019, 1321(2): 022011. |
12 | FERNÁNDEZ-MORALES I, ALMAZÁN-ALMAZÁN M C, PÉREZ-MENDOZA M, et al. PET as precursor of microporous carbons: Preparation and characterization[J]. Microporous and Mesoporous Materials, 2005, 80: 107-115. |
13 | RODRIGUEZ-REINOSO F, MOLINA-SABIO M, GONZÁLEZ M T. The use of steam and CO2 as activating agents in the preparation of activated carbons[J]. Carbon, 1995, 33(1): 15-23. |
14 | ZHOU Xiaoli, ZHANG Hua, SHAO Liming, et al. Preparation and application of hierarchical porous carbon materials from waste and biomass: A review[J]. Waste and Biomass Valorization, 2021, 12(4): 1699-1724. |
15 | 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3): 34-39. |
ZHANG Benbin, LIU Yunquan, YE Yueyuan. Progress in preparation of activated carbon and its activation mechanism[J]. Modern Chemical Industry, 2014, 34(3): 34-39. | |
16 | 樊星, 侯党社, 张文亮, 等. 活性炭制备技术研究进展[J]. 现代盐化工, 2019, 46(4): 70-71. |
FAN Xing, HOU Dangshe, ZHANG Wenliang, et al. Research progress on preparation technology of activated carbon[J]. Modern Salt and Chemical Industry, 2019, 46(4): 70-71. | |
17 | ADIBFAR Mohammad, KAGHAZCHI Tahereh, ASASIAN Neda, et al. Conversion of poly(ethylene terephthalate) waste into activated carbon: Chemical activation and characterization[J]. Chemical Engineering & Technology, 2014, 37(6): 979-986. |
18 | SUN Yahui, ZHAO Jianghong, WANG Jianlong, et al. Sulfur-doped millimeter-sized microporous activated carbon spheres derived from sulfonated poly(styrene-divinylbenzene) for CO2 capture[J]. The Journal of Physical Chemistry C, 2017, 121(18): 10000-10009. |
19 | LIU Jingjing, SUN Nannan, SUN Chenggong, et al. Spherical potassium intercalated activated carbon beads for pulverised fuel CO2 post-combustion capture[J]. Carbon, 2015, 94: 243-255. |
20 | WANG Jiacheng, KASKEL Stefan. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
21 | OTOWA Toshiro, TANIBATA Ritsuo, ITOH Masao. Production and adsorption characteristics of MAXSORB: High-surface-area active carbon[J]. Gas Separation & Purification, 1993, 7(4): 241-245. |
22 | LOZANO-CASTELLÓ D, CALO J M, CAZORLA-AMORÓS D, et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen[J]. Carbon, 2007, 45(13): 2529-2536. |
23 | RAYMUNDO-PIÑERO E, AZAÏS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795. |
24 | QIAO Wenming, YOON Seong-Ho, MOCHIDA Isao. KOH activation of needle coke to develop activated carbons for high-performance EDLC[J]. Energy & Fuels, 2006, 20(4): 1680-1684. |
25 | WANG Huanlei, GAO Qiuming, HU Juan. High hydrogen storage capacity of porous carbons prepared by using activated carbon[J]. Journal of the American Chemical Society, 2009, 131(20): 7016-7022. |
26 | ŚWIĄTKOWSKI A. Industrial carbon adsorbents[M]//DABROWSKI A. (Ed.) Studies in surface science and catalysis. Amsterdam: Elsevier, 1999, Part A: 69-93. |
27 | ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2012, 23(1): 015401. |
28 | YUAN Xiangzhou, CHO Moon-Kyung, LEE Jong Gyu, et al. Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption[J]. Environmental Pollution, 2020, 265: 114868. |
29 | LI Zhiwen, SONG Depeng, ZHI Jian, et al. Synthesis of ultrathin ordered porous carbon through Bergman cyclization of enediyne self-assembled monolayers on silica nanoparticles[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15829-15833. |
30 | YU Wenlong, CHEN Zhe, YU Shitao, et al. Highly dispersed Pt catalyst supported on nanoporous carbon derived from waste PET bottles for reductive alkylation[J]. RSC Advances, 2019, 9(53): 31092-31101. |
31 | 林羲栋, 唐友臣, 苏权飞, 等. 层次孔碳材料:结构设计、功能改性及新能源器件应用[J]. 化工学报, 2020, 71(6): 2586-2598. |
LIN Xidong, TANG Youchen, SU Quanfei, et al. Hierarchical porous carbon materials: Structure design, functional modification and new energy devices applications[J]. CIESC Journal, 2020, 71(6): 2586-2598. | |
32 | DING Junwei, ZHONG Yuan, LI Hui, et al. Valorization of poly(ethylene)terephthalate wastes into nanoporous carbons for the adsorption of 1, 3-diphenylguanidine from an aqueous solution[J]. New Journal of Chemistry, 2020, 44(12): 4907-4915. |
33 | WANG Qiaodi, LI Yiming, WANG Kai, et al. Mass production of porous biocarbon self-doped by phosphorus and nitrogen for cost-effective zinc-air batteries[J]. Electrochimica Acta, 2017, 257: 250-258. |
34 | YUAN Xiangzhou, LI Shuangjun, JEON Sunbin, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials, 2020, 399: 123010. |
35 | HAO Liang, LIU Ning, ZHANG Boyi, et al. Waste-to-wealth: Sustainable conversion of polyester waste into porous carbons as efficient solar steam generators[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115: 71-78. |
36 | LI Yiming, LI Lei, ZHU Longfeng, et al. Interlocked multi-armed carbon for stable oxygen reduction[J]. Chemical Communications, 2016, 52(32): 5520-5522. |
37 | LI Liang, ZANG Linlin, ZHANG Shaochun, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191-197. |
38 | WANG Xu, LIU Qingchang, WU Siyao, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials, 2019, 31(19): e1807716. |
39 | RASHID Ruhma, SHAFIQ Iqrash, AKHTER Parveen, et al. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method[J]. Environmental Science and Pollution Research, 2021, 28(8): 9050-9066. |
40 | TRIPATHI Pranav K, GAN Lihua, LIU Mingxian, et al. Mesoporous carbon nanomaterials as environmental adsorbents[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(2): 1823-1837. |
41 | YE Gui, YU Zhiyong, LI Yiming, et al. Efficient treatment of brine wastewater through a flow-through technology integrating desalination and photocatalysis[J].Water Research, 2019, 157: 134-144. |
42 | 杨宇轩, 朱晨曦, 黄群星. 废弃物衍生分级多孔炭的制备及吸附应用进展[J]. 化工进展, 2021, 40(1): 427-439. |
YANG Yuxuan, ZHU Chenxi, HUANG Qunxing. Progress on preparation and adsorption application of solid waste derived hierarchical porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 427-439. | |
43 | CASTRO Cínthia Soares de, VIAU Luísa Nagyidai, ANDRADE Júlia Teixeira, et al. Mesoporous activated carbon from polyethyleneterephthalate (PET) waste: Pollutant adsorption in aqueous solution[J]. New Journal of Chemistry, 2018, 42(17): 14612-14619. |
44 | DJAHED Babak, SHAHSAVANI Esmaeel, KHALILI NAJI Fariba, et al. A novel and inexpensive method for producing activated carbon from waste polyethylene terephthalate bottles and using it to remove methylene blue dye from aqueous solution [J]. Desalination and Water Treatment, 2016, 57(21): 9871-9880. |
45 | STRACHOWSKI P, KASZUWARA W, BYSTRZEJEWSKI M. A novel magnetic composite adsorbent of phenolic compounds based on waste poly(ethylene terephthalate) and carbon-encapsulated magnetic nanoparticles[J]. New Journal of Chemistry, 2017, 41(21): 12617-12630. |
46 | PARRA J B, ANIA C O, ARENILLAS A, et al. High value carbon materials from PET recycling[J]. Applied Surface Science, 2004, 238: 304-308. |
47 | Raúl MENDOZA-CARRASCO, CUERDA-CORREA Eduardo M, ALEXANDRE-FRANCO María F, et al. Preparation of high-quality activated carbon from polyethyleneterephthalate (PET) bottle waste. Its use in the removal of pollutants in aqueous solution[J]. Journal of Environmental Management, 2016, 181: 522-535. |
48 | MESTRE Ana S, PIRES João, NOGUEIRA José M F, et al. Waste-derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure[J]. Bioresource Technology, 2009, 100(5): 1720-1726. |
49 | Premanjali RAI, SINGH Kunwar P. Valorization of Poly(ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application[J]. Journal of Environmental Management, 2018, 207: 249-261. |
50 | SYCH N V. Sorption of heavy metal ions with activated carbons obtained from polyethylene terephthalate waste[J]. Russian Journal of Applied Chemistry, 2009, 82(6): 947-950. |
51 | CARVALHO Lílian A, ARDISSON José D, LAGO Rochel M, et al. Reactive porous composites for chromium(vi) reduction applications based on Fe/carbon obtained from post-consumer PET and iron oxide[J]. RSC Advances, 2015, 5(118): 97248-97255. |
52 | KAUR Balpreet, SINGH Jasminder, GUPTA Raj Kumar, et al. Porous carbons derived from polyethylene terephthalate (PET) waste for CO2 capture studies[J]. Journal of Environmental Management, 2019, 242: 68-80. |
53 | SHAO Lishu, LI Yong, HUANG Jianhan, et al. Synthesis of triazine-based porous organic polymers derived N-enriched porous carbons for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2856-2865. |
54 | ZHANG Chong, KONG Rui, WANG Xue, et al. Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage[J]. Carbon, 2017, 114: 608-618. |
55 | YUAN Xiangzhou, LEE Jong Gyu, YUN Heesun, et al. Solving two environmental issues simultaneously: waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2 [J]. Chemical Engineering Journal, 2020, 397: 125350. |
56 | CHEN Dongyang, FU Yu, YU Wenguang, et al. Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal[J]. Chemical Engineering Journal, 2018, 334: 900-906. |
57 | HAO Guangping, LI Wencui, QIAN Dan, et al. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388. |
58 | VISHNYAKOV Aleksey, RAVIKOVITCH Peter I, NEIMARK Alexander V. Molecular level models for CO2 sorption in nanopores[J]. Langmuir, 1999, 15(25): 8736-8742. |
59 | 王秀, 郝健, 郭庆杰. 多孔碳结构调控及其在二氧化碳吸附领域的应用[J]. 洁净煤技术, 2021, 27(1): 135-143. |
WANG Xiu, HAO Jian, GUO Qingjie. Porous carbon structure control and its application in the field of carbon dioxide adsorption[J]. Clean Coal Technology, 2021, 27(1): 135-143. | |
60 | BANDOSZ Teresa J, SEREDYCH Mykola, Enrique RODRÍGUEZ-CASTELLÓN, et al. Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions[J]. Carbon, 2016, 96: 856-863. |
61 | YANG Jie, YUE Limin, LIN Binbin, et al. CO2 adsorption of nitrogen-doped carbons prepared from nitric acid preoxidized petroleum coke[J]. Energy & Fuels, 2017, 31(10): 11060-11068. |
62 | LI Dawei, ZHOU Jiaojiao, ZHANG Zongbo, et al. Improving low-pressure CO2 capture performance of N-doped active carbons by adjusting flow rate of protective gas during alkali activation[J]. Carbon, 2017, 114: 496-503. |
63 | BAI Ruizhu, YANG Mingli, HU Gengshen, et al. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke[J]. Carbon, 2015, 81: 465-473. |
64 | TIWARI Deepak, GOEL Chitrakshi, BHUNIA Haripada, et al. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture[J]. Journal of Environmental Management, 2017, 197: 415-427. |
65 | JALILOV Almaz S, RUAN Gedeng, HWANG Chih Chau, et al. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1376-1382. |
66 | YUE Limin, RAO Linli, WANG Linlin, et al. Enhanced CO2 adsorption on nitrogen-doped porous carbons derived from commercial phenolic resin[J]. Energy & Fuels, 2018, 32(2): 2081-2088. |
67 | RAO Linli, LIU Shenfang, WANG Linlin, et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance[J]. Chemical Engineering Journal, 2019, 359: 428-435. |
68 | XU Jianguo, SHI Jinsong, CUI Hongmin, et al. Preparation of nitrogen doped carbon from tree leaves as efficient CO2 adsorbent [J]. Chemical Physics Letters, 2018, 711: 107-112. |
69 | YUE Limin, XIA Qiongzhang, WANG Liwei, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid and Interface Science, 2018, 511: 259-267. |
70 | WEI Huanming, CHEN Jing, FU Ning, et al. Biomass-derived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity[J]. Electrochimica Acta, 2018, 266: 161-169. |
71 | LI Yao, XU Ran, WANG Binbin, et al. Enhanced N-doped porous carbon derived from KOH-activated waste wool: A promising material for selective adsorption of CO2/CH4 and CH4/N2 [J]. Nanomaterials, 2019, 9(2): 266. |
72 | 范壮军. 超级电容器概述[J]. 物理化学学报, 2020, 36(2): 9-11, 8. |
FAN Zhuangjun. Overview of supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 9-11, 8. | |
73 | 李祥业, 白天娇, 翁昕, 等. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6):3314-3329. |
LI Xiangye, BAI Tianjiao, WENG Xin, et al. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6):3314-3329. | |
74 | LI Zijiong, GUO Dongfang, LIU Yanyue, et al. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors[J]. Chemical Engineering Journal, 2020, 397: 125418. |
75 | VEERAKUMAR Pitchaimani, SANGILI Arumugam, MANAVALAN Shaktivel, et al. Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6347-6374. |
76 | DOMINGO-GARCÍA M, FERNÁNDEZ J A, ALMAZÁN-ALMAZÁN M C, et al. Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors[J]. Journal of Power Sources, 2010, 195(12): 3810-3813. |
77 | ZHANG Hua, ZHOU Xiaoli, SHAO Liming, et al. Upcycling of PET waste into methane-rich gas and hierarchical porous carbon for high-performance supercapacitor by autogenic pressure pyrolysis and activation[J]. Science of the Total Environment, 2021, 772: 145309. |
78 | XIAO Chunhui, CHEN Jinhua, LIU Bo, et al. Sensitive and selective electrochemical sensing of L-cysteine based on a caterpillar-like manganese dioxide-carbon nanocomposite[J]. Physical Chemistry Chemical Physics, 2011, 13(4): 1568-1574. |
79 | XING W, HUANG C C, ZHUO S P, et al. Hierarchical porous carbons with high performance for supercapacitor electrodes[J]. Carbon, 2009, 47(7): 1715-1722. |
80 | LIU Xiaoguang, WEN Yanliang, CHEN Xuecheng, et al. Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage[J]. Science of the Total Environment, 2020, 723: 138055. |
81 | CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
82 | LIU Jie, GALPAYA Dilini G D, YAN Lijing, et al. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery[J]. Energy & Environmental Science, 2017, 10(3): 750-755. |
83 | 谭震, 王崇, 徐东彦, 等. 锂硫电池自放电特性的研究[J]. 高校化学工程学报, 2017, 31(4):977-983. |
TAN Zhen, WANG Chong, XU Dongyan, et al. Research on self-discharge of lithium-sulfur batteries[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(4):977-983. | |
84 | RAHMAN Md Arafat, WONG Yat Choy, SONG Guangsheng, et al. A review on porous negative electrodes for high performance lithium-ion batteries[J]. Journal of Porous Materials, 2015, 22(5): 1313-1343. |
85 | Paulina PÓŁROLNICZAK, KASPRZAK Dawid, Justyna KAŹMIERCZAK-RAŹNA, et al. Composite sulfur cathode for Li-S batteries comprising hierarchical carbon obtained from waste PET bottles[J]. Synthetic Metals, 2020, 261: 116305. |
86 | CHEN Lihua, ZHAO Shujing, HASI Qi-Meige, et al. Porous carbon nanofoam derived from pitch as solar receiver for efficient solar steam generation[J]. Global Challenges, 2020, 4(5): 1900098. |
87 | XIAO Chaohu, LIANG Weidong, CHEN Lihua, et al. Janus poly(ionic liquid) monolithic photothermal materials with superior salt-rejection for efficient solar steam generation[J]. ACS Applied Energy Materials, 2019, 2(12): 8862-8870. |
88 | LI Tiantian, FANG Qile, XI Xianfeng, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2): 586-593. |
89 | LI Yaling, CUI Xuexue, ZHAO Mingyu, et al. Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2): 704-710. |
90 | WANG Kai, CHENG Zhongfa, LI Pengfei, et al. Three-dimensional self-floating foam composite impregnated with porous carbon and polyaniline for solar steam generation[J]. Journal of Colloid and Interface Science, 2021, 581: 504-513. |
91 | ZHANG Boyi, SONG Changyuan, LIU Chang, et al. Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation[J]. Journal of Materials Chemistry A, 2019, 7(40): 22912-22923. |
92 | HU Xiaopeng, XIA Yide, LIU Yiwei, et al. Determination of patulin using dual-dummy templates imprinted electrochemical sensor with PtPd decorated N-doped porous carbon for amplification[J]. Microchimica Acta, 2021, 188(5):148. |
93 | LEE Jongmin, KIM Soosung, SHIN Heungjoo. Hierarchical porous carbon electrodes with sponge-like edge structures for the sensitive electrochemical detection of heavy metals[J]. Sensors, 2021, 21(4): 1346. |
94 | AYYALUSAMY Sureshkumar, MISHRA Susmita, SURYANARAYANAN Vembu. Promising post-consumer PET-derived activated carbon electrode material for non-enzymatic electrochemical determination of carbofuran hydrolysate[J]. Scientific Reports, 2018, 8(1):13151. |
95 | WANG Mingyan, HUANG Junrao, WANG Meng, et al. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables[J]. Food Chemistry, 2014, 151: 191-197. |
96 | WEI Hang, SUN Jianjun, WANG Yanmin, et al. Rapid hydrolysis and electrochemical detection of trace carbofuran at a disposable heated screen-printed carbon electrode[J]. The Analyst, 2008, 133(11): 1619-1624. |
97 | 郭宏伟. 基于多孔炭材料的高能量密度超级电容器的构筑及电化学性能研究[D]. 兰州: 兰州理工大学, 2018. |
GUO Hongwei. Design of high energy density supercapacitors based on porous carbon materials and research on their electrochemical performance[D]. Lanzhou: Lanzhou University of Technology, 2018. | |
98 | 郑俊生, 秦楠, 郭鑫, 等. 高比能超级电容器: 电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58. |
ZHANG Junsheng, QIN Nan, GUO Xin, et al. High energy density supercapacitors: Electrode material, electrolyte and energy density limitation principle[J]. Journal of Materials Engineering, 2020, 48(9): 47-58. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[10] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[11] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[12] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[13] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[14] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[15] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |