化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4882-4893.DOI: 10.16085/j.issn.1000-6613.2021-0243
收稿日期:
2021-02-01
修回日期:
2021-06-07
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
向中华
作者简介:
杨博龙(1993—),男,博士研究生,研究方向为燃料电池。E-mail:基金资助:
YANG Bolong(), HAN Qing, XIANG Zhonghua()
Received:
2021-02-01
Revised:
2021-06-07
Online:
2021-09-05
Published:
2021-09-13
Contact:
XIANG Zhonghua
摘要:
膜电极(MEA)为质子交换膜燃料电池(PEMFC)提供了电子、质子、反应气体和产物水等多相物质传递和电化学反应的重要场所。设计和制备具有优异特性的MEA对提高PEMFC的性能,降低制造成本,加快其商业化应用是至关重要的。本文首先对PEMFC的反应机理进行了分析,接着从气体扩散层(GDL)、催化层(CL)、质子交换膜构造(PEM)3个方面阐述各部件在MEA中的作用,归纳总结了各部件的制备方法、传热传质方式、仿真模型、构效关系以及优缺点,最后对影响MEA的各种因素进行了总结,并且结合目前涌现出的许多新兴技术对PEMFC的发展进行了展望。本综述对未来高性能、长寿命和低成本的MEA开发具有指导意义。
中图分类号:
杨博龙, 韩清, 向中华. 质子交换膜燃料电池膜电极结构与设计研究进展[J]. 化工进展, 2021, 40(9): 4882-4893.
YANG Bolong, HAN Qing, XIANG Zhonghua. Progress of membrane electrode structure and its design for proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4882-4893.
1 | WANG G L, ZOU L L, HUANG Q H, et al. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications[J]. Journal of Materials Chemistry A, 2019, 7(16): 9447-9477. |
2 | LIU J, YU H Y, ZHANG T H, et al. Honeycomb-like self-supported Co-N-C catalysts with an ultra-stable structure: highly efficient electrocatalysts toward oxygen reduction reaction in alkaline and acidic solutions[J]. ACS Applied Energy Materials, 2021, 4(3): 2522-2530. |
3 | LI H X, WEN Y L, JIANG M, et al. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction[J]. Advanced Functional Materials, 2021, 31(22): 2011289. |
4 | ZHENG L, DONG Y Y, CHI B, et al. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs[J]. Small, 2019, 15(4): 1803520. |
5 | ZHU M Z, ZHAO C, LIU X K, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells[J]. ACS Catalysis, 2021, 11(7): 3923-3929. |
6 | 李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展, 2018, 37(9): 3446-3453. |
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3446-3453. | |
7 | SALCEDO I R, COLODRERO R M P, BAZAGA-GARCÍA M, et al. Phase transformation dynamics in sulfate-loaded lanthanide triphosphonates. proton conductivity and application as fillers in PEMFCs[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15279-15291. |
8 | SONG Z X, WANG B Q, CHENG N C, et al. Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs[J]. Journal of Materials Chemistry A, 2017, 5(20): 9760-9767. |
9 | 国务院办公厅. 关于印发《新能源汽车产业发展规划(2021—2035年)》的通知[EB/OL]. [2020-10-20]. . |
General Office of the State Council. Notice on the issuance of the《New energy vehicle industry development plan (2021—2035)》[EB/OL][2020-10-20]. . | |
10 | ZHAO W Y, YE Y K, JIANG W J, et al. Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2020, 8(31): 15822-15828. |
11 | DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. |
12 | DE LONG Y, YE F H, SHI L, et al. N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries[J]. Carbon, 2021, 179: 365-376. |
13 | LEI Y P, WANG Q C, PENG S J, et al. Electrospun inorganic nanofibers for oxygen electrocatalysis: design, fabrication, and progress[J]. Advanced Energy Materials, 2020, 10(45): 1902115. |
14 | FU X G, GAO R, JIANG G P, et al. Evolution of atomic-scale dispersion of FeNxin hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC[J]. Nano Energy, 2021, 83: 105734. |
15 | STEINBACH A. Final report-high performance, durable, low cost membrane electrode assemblies for transportation applications[R]. Office of Scientific and Technical Information (OSTI), 2017. |
16 | WANG X, JIA Y, MAO X, et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis[J]. Advanced Materials, 2020, 32(16): 2000966. |
17 | FU X G, LI N, REN B H, et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell[J]. Advanced Energy Materials, 2019, 9(11): 1803737. |
18 | QIAO M F, WANG Y, WANG Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells[J]. Angewandte Chemie, 2020, 132(7): 2710-2716. |
19 | ZHANG H G, CHUNG H T, CULLEN D A, et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites[J]. Energy & Environmental Science, 2019, 12(8): 2548-2558. |
20 | PARK S, LEE J W, POPOV B N. Effect of carbon loading in microporous layer on PEM fuel cell performance[J]. Journal of Power Sources, 2006, 163(1): 357-363. |
21 | RALPH T R, HARDS G A, KEATING J E, et al. Low cost electrodes for proton exchange membrane fuel cells: performance in single cells and Ballard stacks[J]. Journal of the Electrochemical Society, 1997, 144(11): 3845-3857. |
22 | HOTTINEN T, MIKKOLA M, MENNOLA T, et al. Titanium sinter as gas diffusion backing in PEMFC[J]. Journal of Power Sources, 2003, 118(1/2): 183-188. |
23 | SONG J M, CHA S Y, LEE W M. Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method[J]. Journal of Power Sources, 2001, 94(1): 78-84. |
24 | JORDAN L R, SHUKLA A K, BEHRSING T, et al. Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure[J]. Journal of Applied Electrochemistry, 2000, 30(6): 641-646. |
25 | PASSALACQUA E, SQUADRITO G, LUFRANO F, et al. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry, 2001, 31(4): 449-454. |
26 | PARK S, LEE J W, POPOV B N. Effect of PTFE content in microporous layer on water management in PEM fuel cells[J]. Journal of Power Sources, 2008, 177(2): 457-463. |
27 | ZHANG B Q, WANG S Y, FAN W J, et al. Photoassisted oxygen reduction reaction in H2-O2 fuel cells[J]. Angewandte Chemie International Edition, 2016, 55(47): 14748-14751. |
28 | WANG Y J, LONG W, WANG L L, et al. Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals[J]. Energy & Environmental Science, 2018, 11(2): 258-275. |
29 | WANG L K, ZHOU Y C, TIMOSHENKO J, et al. Designing nanoplatelet alloy/nafion catalytic interface for optimization of PEMFCs: performance, durability, and CO resistance[J]. ACS Catalysis, 2019, 9(2): 1446-1456. |
30 | LEE E, PARK C, LEE D W, et al. Tunable synthesis of N, C-codoped Ti3+-enriched titanium oxide support for highly durable PEMFC cathode[J]. ACS Catalysis, 2020, 10(20): 12080-12090. |
31 | SHOKUHFAR A, NEJADSEYFI O, ZOLRIASATEIN A. A numerical study of the influence of gas diffusion layer porosity on cell performance of counter flow proton exchange membrane fuel cells[J]. Iranica Journal of Energy & Environment, 2013, 4(2): 126-129. |
32 | SUN H, LIU H T, GUO L J. PEM fuel cell performance and its two-phase mass transport[J]. Journal of Power Sources, 2005, 143(1/2): 125-135. |
33 | 诸葛伟林, 张扬军, 明平文, 等. 质子交换膜燃料电池三维气液两相流数值模拟[J]. 清华大学学报(自然科学版), 2006, 46(2): 252-256. |
ZHUGE Weilin, ZHANG Yangjun, MING Pingwen, et al. Numerical simulation of three dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(2): 252-256. | |
34 | MENG H, WANG C Y. Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(9): A1733. |
35 | YIOTIS A G, KAINOURGIAKIS M E, CHARALAMBOPOULOU G C, et al. Microscale characterisation of stochastically reconstructed carbon fiber-based gas diffusion layers; effects of anisotropy and resin content[J]. Journal of Power Sources, 2016, 320: 153-167. |
36 | GÖBEL M, GODEHARDT M, SCHLADITZ K. Multi-scale structural analysis of gas diffusion layers[J]. Journal of Power Sources, 2017, 355: 8-17. |
37 | ZHOU X, NIU Z Q, BAO Z M, et al. Two-phase flow in compressed gas diffusion layer: finite element and volume of fluid modeling[J]. Journal of Power Sources, 2019, 437: 226933. |
38 | 黄鸿, 黄鲲. 碳纤维复合材料与碳纤维纸生产工艺[J]. 中华纸业, 2014, 35(8): 6-12. |
HUANG Hong, HUANG Kun. Carbon fiber composite materials and carbon fibber paper technology[J]. China Pulp & Paper Industry, 2014, 35(8): 6-12. | |
39 | GHASEMI M, CHOI J, JU H. Performance analysis of Pt/TiO2/C catalyst using a multi-scale and two-phase proton exchange membrane fuel cell model[J]. Electrochimica Acta, 2021, 366: 137484. |
40 | TSAI L C, CHIN T K, LIU W S, et al. Fabrication of VN/TaC composites with dual functions of VN as a catalyst support and a cocatalyst for improved PEMFC performance[J]. ACS Applied Energy Materials, 2020, 3(12): 11610-11616. |
41 | LI J K, BRÜLLER S, SABARIRAJAN D C, et al. Designing the 3D architecture of PGM-free cathodes for H2/air proton exchange membrane fuel cells[J]. ACS Applied Energy Materials, 2019, 2(10): 7211-7222. |
42 | LIU Q T, LI Y C, ZHENG L R, et al. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells[J]. Advanced Energy Materials, 2020, 10(20): 2000689. |
43 | HE Y H, GUO H, HWANG S, et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells[J]. Advanced Materials, 2020, 32(46): 2003577. |
44 | KAMBE T, SAKAMOTO R, KUSAMOTO T, et al. Redox control and high conductivity of nickel bis (dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator[J]. Journal of the American Chemical Society, 2014, 136(41): 14357-14360. |
45 | LEE S H, KIM J, CHUNG D Y, et al. Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous structures?[J]. Journal of the American Chemical Society, 2019, 141(5): 2035-2045. |
46 | GUO J N, LI B J, ZHANG Q Y, et al. Highly accessible atomically dispersed Fe-Nx sites electrocatalyst for proton-exchange membrane fuel cell[J]. Advanced Science, 2021, 8(5): 2002249. |
47 | HOU Y Z, DENG H, PAN F W, et al. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell[J]. Applied Energy, 2019, 253: 113561. |
48 | EBRAHIMI S, ROSHANDEL R, VIJAYARAGHAVAN K. Power density optimization of PEMFC cathode with non-uniform catalyst layer by simplex method and numerical simulation[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22260-22273. |
49 | SABHARWAL M, PANT L M, PUTZ A, et al. Analysis of catalyst layer microstructures: from imaging to performance[J]. Fuel Cells, 2016, 16(6): 734-753. |
50 | BARREIROS SALVADO M, SCHOTT P, GUÉTAZ L, et al. Towards the understanding of transport limitations in a proton-exchange membrane fuel cell catalyst layer: performing agglomerate scale direct numerical simulations on electron-microscopy-based geometries[J]. Journal of Power Sources, 2021, 482: 228893. |
51 | DENG Y J, CHI B, TIAN X L, et al. g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(9): 5020-5030. |
52 | TONG L, WANG Y C, CHEN M X, et al. Hierarchically porous carbons as supports for fuel cell electrocatalysts with atomically dispersed Fe-Nx moieties[J]. Chemical Science, 2019, 10(35): 8236-8240. |
53 | SANDSTRÖM R, ANNAMALAI A, BOULANGER N, et al. Evaluation of fluorine and sulfonic acid co-functionalized graphene oxide membranes under hydrogen proton exchange membrane fuel cell conditions[J]. Sustainable Energy & Fuels, 2019, 3(7): 1790-1798. |
54 | KIM J Q, SO S, KIM H T, et al. Highly ordered ultrathin perfluorinated sulfonic acid ionomer membranes for vanadium redox flow battery[J]. ACS Energy Letters, 2021, 6(1): 184-192. |
55 | SAVAGE J, TSE Y L S, VOTH G A. Proton transport mechanism of perfluorosulfonic acid membranes[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17436-17445. |
56 | KWON S H, KANG H S, LEE J H, et al. Investigating the influence of the side-chain pendants of perfluorosulfonic acid membranes in a PEMFC by molecular dynamics simulations[J]. Materials Today Communications, 2019, 21: 100625. |
57 | JOURDANI M, MOUNIR H, MARJANI A E. Numerical simulation of the performance of proton exchange membrane fuel cell with different membrane geometries[J]. Journal of Mechanical Engineering and Sciences, 2017, 11(3): 2941-2951. |
58 | TSUKAMOTO T, AOKI T, KANESAKA H, et al. Three-dimensional numerical simulation of full-scale proton exchange membrane fuel cells at high current densities[J]. Journal of Power Sources, 2021, 488: 229412. |
59 | KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(21): 11239-11245. |
60 | KOH J K, JEON Y K, CHO Y, et al. A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J]. Journal of Materials Chemistry A, 2014, 2(23): 8652-8659. |
[1] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[3] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[4] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[5] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[6] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[7] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[8] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[9] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[10] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[11] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |