化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4894-4903.DOI: 10.16085/j.issn.1000-6613.2021-0374
收稿日期:
2021-02-23
修回日期:
2021-06-30
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
葛君杰,刘长鹏,邢巍
作者简介:
李金晟(1991—),男,博士,研究方向为燃料电池质子交换膜。E-mail:基金资助:
LI Jinsheng(), GE Junjie(
), LIU Changpeng(
), XING Wei(
)
Received:
2021-02-23
Revised:
2021-06-30
Online:
2021-09-05
Published:
2021-09-13
Contact:
GE Junjie,LIU Changpeng,XING Wei
摘要:
高温质子交换膜燃料电池具有反应动力学快、CO耐受性高等特点,但磷酸掺杂的高温质子交换膜因磷酸的流失和聚合物的降解等原因导致燃料电池的输出功率发生衰减。本文通过介绍聚苯并咪唑衍生物的高温质子交换膜、聚苯并咪唑的复合型质子交换膜、新型芳基聚合物的高温质子交换膜,阐明聚合物的主链结构、官能团结构以及复合填料对高温质子交换膜性能的影响。在近期的研究报道中,提高膜性能的主要策略包括提升自由体积、建立交联结构、嵌段共聚、复合掺杂(ILs、MOFs、PIMs、MOx)、阳离子官能团修饰等。文章指出,在未来的研究中应该加强对磷酸基高温质子交换膜质子传输通道结构的进一步理解,关注聚合物化学降解和物理性能衰败的原因,并开发更多的新型聚合物材料。
中图分类号:
李金晟, 葛君杰, 刘长鹏, 邢巍. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903.
LI Jinsheng, GE Junjie, LIU Changpeng, XING Wei. Review on high temperature proton exchange membranes for fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903.
1 | STAFFELL Iain, SCAMMAN Daniel, ABAD Anthony Velazquez, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12: 463-491. |
2 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分:关键材料[J]. 化工进展, 2020, 39(6): 2370-2389. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
3 | Energy Information Administration US. International energy outlook 2017[R]. 2017.www.eia.gov/ieo. |
4 | MARCINKOSKI Jason, SPENDELOW Jacob, WILSON Adria, et al. DOE hydrogen and fuel cells program record #15015: fuel cell system cost—2015[R]. DOE, 2015. https://www.hydrogen.energy.gov/pdfs/17007_fuel_cell_system_cost_2017.pdf. |
5 | XIAO M, GAO L, WANG Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. Journal of the American Chemical Society, 2019, 141(50): 19800-19806. |
6 | DUAN C X, LUO H C, LI J L, et al. A novel strategy to construct polybenzimidazole linked crosslinking networks for polymer electrolyte fuel cell applications[J]. Polymer, 2020, 201: 122555. |
7 | LI Q F, HE R H, GAO J A, et al. The CO poisoning effect in PEMFCs operational at temperatures up to 200℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1599-A1605. |
8 | HOGARTH W H J, DINIZ DA COSTA J C, LU G Q. Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells[J]. Journal of Power Sources, 2005, 142(1/2): 223-237. |
9 | LI Qingfeng, HE Ronghuan, JENSEN Jens Oluf, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃[J]. Chemistry of Materials, 2003, 15: 4896-4915. |
10 | SHAO Y Y, YIN G P, WANG Z B, et al. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges[J]. Journal of Power Sources, 2007, 167(2): 235-242. |
11 | KIM Sung-Kon, KIM Tae-Ho, JUNG Jung-Woo, et al. Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications[J]. Polymer, 2009, 50(15): 3495-3502. |
12 | HAIDER R, WEN Y, MA Z F, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187. |
13 | WANG Kaili, YANG Li, WEI Wenxuan, et al. Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2018, 549: 23-27. |
14 | VILČIAUSKAS L, TUCKERMAN M E, BESTER G, et al. The mechanism of proton conduction in phosphoric acid[J]. Nature Chemistry, 2012, 4(6): 461-466. |
15 | AILI D, YANG J S, JANKOVA K, et al. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides[J]. Journal of Materials Chemistry A, 2020, 8(26): 12854-12886. |
16 | WAINRIGHT J S, WANG J T, WENG D, et al. Acid-doped polybenzimidazoles: a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(7): L121-L123. |
17 | FANG J, LIN X, CAI D, et al. Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2016, 502: 29-36. |
18 | CHEN J C, HSIAO Y R, LIU Y C, et al. Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure prepared by sol-gel process and acid doping level adjustment for high temperature PEMFC application[J]. Polymer, 2019, 182: 121814. |
19 | YANG J S, XU Y X, ZHOU L, et al. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2013, 446: 318-325. |
20 | BERBER M R, NAKASHIMA N. Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions[J]. Journal of Membrane Science, 2019, 591: 117354. |
21 | NI J P, HU M S, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821. |
22 | LEYKIN A Y, ASKADSKII A A, VASILEV V G, et al. Dependence of some properties of phosphoric acid doped PBIs on their chemical structure[J]. Journal of Membrane Science, 2010, 347(1/2): 69-74. |
23 | DING L M, WANG Y H, WANG L H, et al. A simple and effective method of enhancing the proton conductivity of polybenzimidazole proton exchange membranes through protonated polymer during solvation[J]. Journal of Power Sources, 2020, 455: 227965. |
24 | SHIN D W, GUIVER M D, LEE Y M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chemical Reviews, 2017, 117(6): 4759-4805. |
25 | MAITY S, JANA T. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6851-6864. |
26 | PINGITORE A, HUANG F, QIAN G Q, et al. Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices[J]. ACS Applied Energy Materials, 2019, 2(3): 1720-1726. |
27 | WANG L, WU Y N, FANG M L, et al. Synthesis and preparation of branched block polybenzimidazole membranes with high proton conductivity and single-cell performance for use in high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2020, 602: 117981. |
28 | AILI D, CLEEMANN L N, LI Q F, et al. Thermal curing of PBI membranes for high temperature PEM fuel cells[J]. Journal of Materials Chemistry, 2012, 22(12): 5444-5453. |
29 | YANG J, AILI D, LI Q, et al. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications[J]. ChemSusChem, 2013, 6(2): 275-282. |
30 | WANG Chuangang, LI Zhongfang, SUN Peng, et al. Preparation and properties of covalently crosslinked polybenzimidazole high temperature proton exchange membranes doped with high sulfonated polyphosphazene[J]. Journal of the Electrochemical Society, 2020, 167: 104517. |
31 | KRISHNAN N N, JOSEPH D, DUONG N M H, et al. Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells[J]. Journal of Membrane Science, 2017, 544: 416-424. |
32 | NAMBI KRISHNAN N, KONOVALOVA A, AILI D, et al. Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells[J]. Journal of Membrane Science, 2019, 588: 117218. |
33 | LI X B, MA H W, WANG P, et al. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells[J]. Chemistry of Materials, 2020, 32(3): 1182-1191. |
34 | YE Y S, RICK J, HWANG B J. Ionic liquid polymer electrolytes[J]. J. Mater. Chem. A, 2013, 1(8): 2719-2743. |
35 | WANG X, WANG S, LIU C, et al. Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs[J]. Electrochimica Acta, 2018, 283: 691-698. |
36 | LIU F X, WANG S, CHEN H, et al. The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs[J]. Renewable Energy, 2021, 163: 1692-1700. |
37 | SKORIKOVA G, RAUBER D, AILI D, et al. Protic ionic liquids immobilized in phosphoric acid-doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200℃[J]. Journal of Membrane Science, 2020, 608: 118188. |
38 | ESCORIHUELA J, NARDUCCI R, COMPAÑ V, et al. Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications[J]. Advanced Materials Interfaces, 2018, 6(2): 1801146. |
39 | ESCORIHUELA J, SAHUQUILLO Ó, GARCÍA-BERNABÉ A, et al. Phosphoric acid doped polybenzimidazole (PBI)/zeolitic imidazolate framework composite membranes with significantly enhanced proton conductivity under low humidity conditions[J]. Nanomaterials, 2018, 8(10): E775. |
40 | CHEN J L, WANG L, WANG L. Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66)[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41350-41358. |
41 | WANG Y, MA X, GHANEM B S, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J]. Materials Today Nano, 2018, 3: 69-95. |
42 | WANG P, LIU Z, LI X, et al. Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes[J]. Chemical Communications, 2019, 55(46): 6491-6494. |
43 | PU H T, LIU L, CHANG Z H, et al. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2[J]. Electrochimica Acta, 2009, 54(28): 7536-7541. |
44 | ÖZDEMIR Y, ÜREGEN N, DEVRIM Y. Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2648-2657. |
45 | KRISHNAN N N, LEE S, GHORPADE R V, et al. Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell[J]. Journal of Membrane Science, 2018, 560: 11-20. |
46 | ZHANG X X, LIU Q T, XIA L, et al. Poly(2, 5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range[J]. Journal of Membrane Science, 2019, 574: 282-298. |
47 | MA W J, ZHAO C J, YANG J S, et al. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications[J]. Energy & Environmental Science, 2012, 5(6): 7617. |
48 | ZHANG N, WANG B L, ZHAO C J, et al. Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(34): 13996-14003. |
49 | YANG J S, WANG J, LIU C, et al. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes[J]. Journal of Membrane Science, 2015, 493: 80-87. |
50 | LEE K-S, SPENDELOW J S, Y-K CHOE, et al. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nature Energy, 2016, 1: 16120. |
51 | LEE Y M. Fuel cells: operating flexibly[J]. Nature Energy, 2016, 1: 16136. |
52 | TANG H Y, GENG K, HAO J K, et al. Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells[J]. Journal of Power Sources, 2020, 475: 228521. |
53 | ZHANG J J, ZHANG J, BAI H J, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019, 572: 496-503. |
54 | YANG J S, JIANG H X, WANG J, et al. Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2020, 480: 228859. |
55 | BAI H J, PENG H Q, XIANG Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443: 227219. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[4] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[7] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[8] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[9] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[10] | 高帷韬, 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚, 毛宗强. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
[11] | 张东, 张瑞, 张彬, 安周建, 雷彻. 基于质子交换膜燃料电池的冷热电联产系统研究进展[J]. 化工进展, 2022, 41(3): 1608-1621. |
[12] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[13] | 冯占雄, 汪云, 马强, 张创, 王诚. 连续管道微波技术制备Pt/C催化剂及其氧还原性能[J]. 化工进展, 2022, 41(12): 6377-6384. |
[14] | 杜新, 范进伟, 郭丽君, 王金龙. 用非均匀团聚体模型模拟燃料电池老化过程[J]. 化工进展, 2022, 41(11): 5755-5760. |
[15] | 姬峰, 郑博文, 罗若尹, 杜玮, 邓呈维, 杨声, 刘志强. 高温质子交换膜燃料电池电堆稳定性分析与优化[J]. 化工进展, 2022, 41(10): 5325-5331. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1445
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 661
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |