化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1608-1621.DOI: 10.16085/j.issn.1000-6613.2021-1740
张东1,2(), 张瑞1,2, 张彬1,2, 安周建1, 雷彻1
收稿日期:
2021-08-13
修回日期:
2021-11-23
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
张东
作者简介:
张东,博士,副教授,硕士生导师,研究方向为基于可再生能源的冷热电联产系统。E-mail: 基金资助:
ZHANG Dong1,2(), ZHANG Rui1,2, ZHANG Bin1,2, AN Zhoujian1, LEI Che1
Received:
2021-08-13
Revised:
2021-11-23
Online:
2022-03-23
Published:
2022-03-28
Contact:
ZHANG Dong
摘要:
将质子交换膜燃料电池应用于冷热电联产系统中,可有效提高系统效率,实现冷热电供能的可持续发展。本文介绍了基于质子交换膜燃料电池的冷热电联产系统的数学建模、运行策略、能源管理、多维评价、系统优化理论与应用等方面的研究进展。根据现有研究,从能源禀赋、供需整合与多尺度建模、多能互补供能、系统评价体系、系统集成优化多方面指明未来该系统的研究可从多尺度建模、源网荷储深度融合、完善系统评价体系以及系统优化与实时调控等方面进行,为得到更为全面高效稳定的质子交换膜燃料电池冷热电联供系统提供新思路。
中图分类号:
张东, 张瑞, 张彬, 安周建, 雷彻. 基于质子交换膜燃料电池的冷热电联产系统研究进展[J]. 化工进展, 2022, 41(3): 1608-1621.
ZHANG Dong, ZHANG Rui, ZHANG Bin, AN Zhoujian, LEI Che. Research progress of combined cooling-heat-and-power systems based on PEMFC[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1608-1621.
1 | 吴大为, 王如竹. 分布式能源定义及其与冷热电联产关系的探讨[J]. 制冷与空调, 2005, 5(5): 1-6. |
WU Dawei, WANG Ruzhu. Definition of distributed energy resources and discussion on its relationship with cchp[J]. Refrigeration and Air Conditioning, 2005, 5(5): 1-6. | |
2 | 中国国家能源局. 国家能源局举行新闻发布会介绍2021年上半年能源经济形势等情况[EB/OL]. [2021-07-27]. . |
The National Energy Administration of China, The National Energy Administration held a press conference to introduce the energy and economic situation in the first half of 2021[EB/OL]. [2021-07-27]. . | |
3 | 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083. |
SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083. | |
4 | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224. |
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224. | |
5 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477. | |
6 | OZAWA A, KUDOH Y. Performance of residential fuel-cell-combined heat and power systems for various household types in Japan[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15412-15422. |
7 | 弗朗诺·巴尔伯(FRANO Barbir. PEM燃料电池: 理论与实践[M]. 李东红, 连晓峰等译.北京: 机械工业出版社, 2016: 357. |
FRANO Barbir. PEM fuel cells: theory and practice[M]. LI Donghong, LIAN Xiaofeng, et al trans. Beijing: China Machine Press, 2016: 357. | |
8 | 任学佑. 质子交换膜燃料电池的研究进展[J]. 中国工程科学, 2005, 7(1): 86-94. |
REN Xueyou. Research progress in proton exchange membrane fuel cell[J]. Engineering Science, 2005, 7(1): 86-94. | |
9 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分: 关键材料[J]. 化工进展, 2020, 39(6): 2370-2389. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells (I): Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
10 | ZULIANI N, TACCANI R. Microcogeneration system based on HTPEM fuel cell fueled with natural gas: performance analysis[J]. Applied Energy, 2012, 97: 802-808. |
11 | ARSALIS A, NIELSEN M P, KÆR S K. Modeling and off-design performance of a 1kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households[J]. Energy, 2011, 36(2): 993-1002. |
12 | ERSÖZ A, SAYAR A. A process simulation study of a newly designed fuel processing system for a high temperature PEM fuel cell unit[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14469-14482. |
13 | 揭伟平. PEMFC堆电效率与PEMFC-温差热机电热联供的实验研究[D]. 天津: 天津大学, 2007. |
Weiping JIE. Experimental investigation on power efficiency of PEMFC stack and on combined power and heat supply of PEMFC-thermal engine[D]. Tianjin: Tianjin University, 2007. | |
14 | 焦魁, 王博文, 杜青. 质子交换膜燃料电池水热管理[M]. 北京: 科学出版社, 2020: 337. |
JIAO Kui, WANG Bowen, DU Qing. Hydrothermal management of proton exchange membrane fuel cell[M]. Beijing: Science Press, 2020: 337. | |
15 | CHANG H W, XU X X, SHEN J, et al. Performance analysis of a micro-combined heating and power system with PEM fuel cell as a prime mover for a typical household in North China[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24965-24976. |
16 | ARSALIS A. A comprehensive review of fuel cell-based micro-combined-heat-and-power systems[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 391-414. |
17 | FACCI A L, UBERTINI S. Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios[J]. Applied Energy, 2018, 216: 60-72. |
18 | BUDAK Y, DEVRIM Y. Investigation of micro-combined heat and power application of PEM fuel cell systems[J]. Energy Conversion and Management, 2018, 160: 486-494. |
19 | 张兴梅, 赵玺灵, 段常贵. 质子交换膜燃料电池系统性能模拟[J]. 煤气与热力, 2009, 29(3): 31-35. |
ZHANG Xingmei, ZHAO Xiling, DUAN Changgui. Performance simulation of proton exchange membrane fuel cell system[J]. Gas & Heat, 2009, 29(3): 31-35. | |
20 | 解东来, 叶根银, 费广平. 小型天然气制氢与PEMFC热电联产技术进展[J]. 煤气与热力, 2008, 28(8): 8-11. |
XIE Donglai, YE Genyin, FEI Guangping. Progress in combined heat and power generation by integration of small-scale hydrogen production from natural gas with PEM fuel cell[J]. Gas & Heat, 2008, 28(8): 8-11. | |
21 | 毕文心, 苑翔, 赵飞, 等. 关于燃料电池在建筑领域发展的相关研究[J]. 节能, 2019, 38(2): 142-144. |
BI Wenxin, YUAN Xiang, ZHAO Fei, et al. Research on the development of fuel cells in the field of construction[J]. Energy Conservation, 2019, 38(2): 142-144. | |
22 | 毛宗强. 日本第六届国际氢能与燃料电池展[J]. 电源技术, 2010, 34(4): 321-323. |
MAO Zongqiang. The 6th International hydrogen energy and fuel cell exhibition in Japan[J]. Chinese Journal of Power Sources, 2010, 34(4): 321-323. | |
23 | LIU Y, HAN J T, YOU H L. Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29700-29710. |
24 | AUTHAYANUN S, HACKER V. Energy and exergy analyses of a stand-alone HT-PEMFC based trigeneration system for residential applications[J]. Energy Conversion and Management, 2018, 160: 230-242. |
25 | BORNAPOUR M, HOOSHMAND R A, KHODABAKHSHIAN A, et al. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement[J]. Energy Conversion and Management, 2017, 150: 725-741. |
26 | FORESTI S, MANZOLINI G. Application of membrane reactor and PEMFC-based micro-CHP system in off-grid applications[J]. Fuel Cells, 2019, 19(3): 244-255. |
27 | GUO X R, ZHANG H C, ZHAO J P, et al. Performance evaluation of an integrated high-temperature proton exchange membrane fuel cell and absorption cycle system for power and heating/cooling cogeneration[J]. Energy Conversion and Management, 2019, 181: 292-301. |
28 | JIN Y H, SUN L, SHEN J. Thermal economic analysis of hybrid open-cathode hydrogen fuel cell and heat pump cogeneration[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29692-29699. |
29 | KWAN T H, WU X F, YAO Q H. Performance comparison of several heat pump technologies for fuel cell micro-CHP integration using a multi-objective optimisation approach[J]. Applied Thermal Engineering, 2019, 160: 114002. |
30 | LI H Q, LIANG F, GUO P X, et al. Study on the biomass-based SOFC and ground source heat pump coupling cogeneration system[J]. Applied Thermal Engineering, 2020, 165: 114527. |
31 | CHANG H W, WAN Z M, ZHENG Y, et al. Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system[J]. Applied Energy, 2017, 204: 446-458. |
32 | 张涛, 韩吉田, 于泽庭, 等. 太阳能耦合燃料电池联供系统余热回收的运行参数模拟研究[J]. 农业工程学报, 2019, 35(12): 239-247. |
ZHANG Tao, HAN Jitian, YU Zeting, et al. Simulation of operation parameters for waste heat recovery of solar coupled fuel cell cogeneration system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 239-247. | |
33 | 何丽美, 王开科, 曹岗林, 等. 采用可逆质子交换膜燃料电池/膨胀机的综合能源系统性能研究[J]. 西安交通大学学报, 2020, 54(3): 97-105. |
HE Limei, WANG Kaike, CAO Ganglin, et al. Integrated energy system based on reversible proton exchange membrane fuel cell and expander[J]. Journal of Xi’an Jiaotong University, 2020, 54(3): 97-105. | |
34 | 邓锐. PEMFC与溴化锂制冷系统冷热电联供最优运行研究[D]. 武汉: 武汉理工大学, 2013. |
DENG Rui. Research on optimal operation of a CCHP system composed of PEMFC&Lithium bromide refrigerator[D]. Wuhan: Wuhan University of Technology, 2013. | |
35 | CHEN X, GONG G C, WAN Z M, et al. Performance study of a dual power source residential CCHP system based on PEMFC and PTSC[J]. Energy Conversion and Management, 2016, 119: 163-176. |
36 | NAVARRO GIMÉNEZ S, HERRERO DURÁ J M, BLASCO FERRAGUD F X, et al. Control-oriented modeling of the cooling process of a PEMFC-based—CHP system[J]. IEEE Access, 2019, 7: 95620-95642. |
37 | JO A, OH K, LEE J, et al. Modeling and analysis of a 5kWe HT-PEMFC system for residential heat and power generation[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1698-1714. |
38 | GHOLAMIAN E, ZARE V, MOUSAVI S M. Integration of biomass gasification with a solid oxide fuel cell in a combined cooling, heating and power system: a thermodynamic and environmental analysis[J]. International Journal of Hydrogen Energy, 2016, 41(44): 20396-20406. |
39 | LOTOTSKYY M, NYALLANG NYAMSI S, PASUPATHI S, et al. A concept of combined cooling, heating and power system utilising solar power and based on reversible solid oxide fuel cell and metal hydrides[J]. International Journal of Hydrogen Energy, 2018, 43(40): 18650-18663. |
40 | MORADI M, MEHRPOOYA M. Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower[J]. Energy, 2017, 130: 530-543. |
41 | SORACE M, GANDIGLIO M, SANTARELLI M. Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump[J]. Energy, 2017, 120: 262-275. |
42 | JING R, WANG M, BRANDON N, et al. Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China[J]. Energy, 2017, 141: 273-289. |
43 | ABDOLLAHI HAGHGHI M, SHAMSAIEE M, GHAZANFARI HOLAGH S, et al. Thermodynamic, exergoeconomic, and environmental evaluation of a new multi-generation system driven by a molten carbonate fuel cell for production of cooling, heating, electricity, and freshwater[J]. Energy Conversion and Management, 2019, 199: 112040. |
44 | 黄玉洁. 基于PV-PEMFC-Battery的家用热电联供系统的研究[D]. 杭州: 杭州电子科技大学, 2016. |
HUANG Yujie. The research of a CHP system based on PV-PEMFC-battery[D]. Hangzhou: Hangzhou Dianzi University, 2016. | |
45 | 李晓嫣, 陈维荣, 刘志祥, 等. 基于热水温度的家庭PEMFC-CHP系统运行策略研究[J]. 电源技术, 2015, 39(3): 491-493, 501. |
LI Xiaoyan, CHEN Weirong, LIU Zhixiang, et al. Study of PEMFC-CHP system based on hot-water temperature for residential applications[J]. Chinese Journal of Power Sources, 2015, 39(3): 491-493, 501. | |
46 | LORETI G, FACCI A L, BAFFO I, et al. Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells[J]. Applied Energy, 2019, 235: 747-760. |
47 | MEHRPOOYA M, SADEGHZADEH M, RAHIMI A, et al. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology—A building application[J]. Energy Conversion and Management, 2019, 198: 111767. |
48 | 李晓嫣, 陈维荣, 刘志祥, 等. 家用燃料电池热电联供系统的建模与仿真[J]. 电源技术, 2014, 38(12): 2274-2277. |
LI Xiaoyan, CHEN Weirong, LIU Zhixiang, et al. Modeling and simulation of PEMEC-based CHP systems for residential application[J]. Chinese Journal of Power Sources, 2014, 38(12): 2274-2277. | |
49 | 李晓嫣. 千瓦级燃料电池热电联产系统及其制氢系统模拟[J]. 通信电源技术, 2018, 35(5): 35-37, 40. |
LI Xiaoyan. Simulation of fuel cell based micro-CHP system and its H2 generation unit[J]. Telecom Power Technology, 2018, 35(5): 35-37, 40. | |
50 | KORSGAARD A R, NIELSEN M P, KÆR S K. Part one: a novel model of HTPEM-based micro-combined heat and power fuel cell system[J]. International Journal of Hydrogen Energy, 2008, 33(7): 1909-1920. |
51 | KORSGAARD A R, NIELSEN M P, KÆR S K. Part two: control of a novel HTPEM-based micro combined heat and power fuel cell system[J]. International Journal of Hydrogen Energy, 2008, 33(7): 1921-1931. |
52 | 徐祥祥. 基于燃料电池的微型冷热电联供系统研究[D]. 武汉: 华中科技大学, 2019. |
XU Xiangxiang. Performance analysis of micro-combined cooling, heating and power system based on PEMFC[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
53 | ASENSIO F J, MARTÍN J I SAN, ZAMORA I, et al. Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies[J]. Applied Energy, 2018, 211: 413-430. |
54 | RANGEL-HERNANDEZ V, TORRES C, ZALETA-AGUILAR A, et al. The exergy costs of electrical power, cooling, and waste heat from a hybrid system based on a solid oxide fuel cell and an absorption refrigeration system[J]. Energies, 2019, 12(18): 3476. |
55 | DORER V, WEBER R, WEBER A. Performance assessment of fuel cell micro-cogeneration systems for residential buildings[J]. Energy and Buildings, 2005, 37(11): 1132-1146. |
56 | ARSALIS A, NIELSEN M P, KÆR S K. Application of an improved operational strategy on a PBI fuel cell-based residential system for Danish single-family households[J]. Applied Thermal Engineering, 2013, 50(1): 704-713. |
57 | KWAN T H, SHEN Y T, YAO Q H. An energy management strategy for supplying combined heat and power by the fuel cell thermoelectric hybrid system[J]. Applied Energy, 2019, 251: 113318. |
58 | 张兴梅, 赵玺灵, 段常贵. 质子交换膜燃料电池建筑热电联供系统研究[J]. 煤气与热力, 2011, 31(1): 51-56. |
ZHANG Xingmei, ZHAO Xiling, DUAN Changgui. Study on building heat and power cogeneration system based on PEMFC[J]. Gas & Heat, 2011, 31(1): 51-56. | |
59 | 李晓嫣. 家用燃料电池热电联供系统的建模与仿真[D]. 成都: 西南交通大学, 2014. |
LI Xiaoyan. Modeling and simulation of fuel cell-based CHP system for residential application[D]. Chengdu: Southwest Jiaotong University, 2014. | |
60 | 赵洪波, 刘杰, 马彪, 等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150. |
ZHAO Hongbo, LIU Jie, MA Biao, et al. Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC Journal, 2020, 71(5): 2139-2150. | |
61 | KANG J-W, SHIN H. Analytical study of tri-generation system integrated with thermal management using HT-PEMFC stack[J]. Energies, 2019, 12(16): 3145. |
62 | CHEN X, LIU Q, XU J H, et al. Thermodynamic study of a hybrid PEMFC-solar energy multi-generation system combined with SOEC and dual Rankine cycle[J]. Energy Conversion and Management, 2020, 226: 113512. |
63 | CAO Y, WU Y J, FU L J, et al. Multi-objective optimization of a PEMFC based CCHP system by meta-heuristics[J]. Energy Reports, 2019, 5: 1551-1559. |
64 | EBRAHIMI-MOGHADAM A, MOGHADAM A J, FARZANEH-GORD M, et al. Proposal and assessment of a novel combined heat and power system: energy, exergy, environmental and economic analysis[J]. Energy Conversion and Management, 2020, 204: 112307. |
65 | CHAHARTAGHI M, KHARKESHI B A. Performance analysis of a combined cooling, heating and power system with PEM fuel cell as a prime mover[J]. Applied Thermal Engineering, 2018, 128: 805-817. |
66 | KWAN T H, YAO Q H. Exergetic and temperature analysis of a fuel cell-thermoelectric device hybrid system for the combined heat and power application[J]. Energy Conversion and Management, 2018, 173: 1-14. |
67 | AHMADI S, GHAEBI H, SHOKRI A. A comprehensive thermodynamic analysis of a novel CHP system based on SOFC and APC cycles[J]. Energy, 2019, 186: 115899. |
68 | ZHU X Y, ZHAN X Y, LIANG H, et al. The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects[J]. Renewable Energy, 2020, 146: 2700-2715. |
69 | LIU H, SUI J, HAN W, et al. Operation strategy of interconnected combined cooling, heating, and power systems based on exergoeconomic analysis[J]. Journal of Cleaner Production, 2020, 245: 118822. |
70 | WANG J J, CHEN Y Z, LIOR N. Exergo-economic analysis method and optimization of a novel photovoltaic/thermal solar-assisted hybrid combined cooling, heating and power system[J]. Energy Conversion and Management, 2019, 199: 111945. |
71 | SUI S, RASHEED R, LI Q L, et al. Technoeconomic modelling and environmental assessment of a modern PEMFC CHP system: a case study of an eco-house at University of Nottingham[J]. Environmental Science and Pollution Research, 2019, 26(29): 29883-29895. |
72 | CHEN X, ZHOU H W, LI W B, et al. Multi-criteria assessment and optimization study on 5kW PEMFC based residential CCHP system[J]. Energy Conversion and Management, 2018, 160: 384-395. |
73 | CHU Xiaolin, YANG Dong, LI Jia. Sustainability assessment of combined cooling, heating, and power systems under carbon emission regulations[J]. Sustainability, 2019, 11(21): 5917. |
74 | RAMADHANI F, HUSSAIN M A, MOKHLIS H. A comprehensive review and technical guideline for optimal design and operations of fuel cell-based cogeneration systems[J]. Processes, 2019, 7(12): 950. |
75 | FIROUZMAKAN P, HOOSHMAND R A, BORNAPOUR M, et al. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 355-368. |
76 | MILCAREK R J, AHN J, ZHANG J S. Review and analysis of fuel cell-based, micro-cogeneration for residential applications: current state and future opportunities[J]. Science and Technology for the Built Environment, 2017, 23(8): 1224-1243. |
77 | ELMER T, WORALL M, WU S Y, et al. Fuel cell technology for domestic built environment applications: state of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 913-931. |
78 | ELLAMLA H R, STAFFELL I, BUJLO P, et al. Current status of fuel cell based combined heat and power systems for residential sector[J]. Journal of Power Sources, 2015, 293: 312-328. |
79 | MENG Q, SU C X, NIU H F, et al. Optimal impacts of combined fuel-cell/CHP/battery and power microgrid with real-time energy management[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-24. |
80 | ASENSIO F J, MARTÍN J I SAN, ZAMORA I, et al. Fuel cell-based CHP system modelling using Artificial Neural Networks aimed at developing techno-economic efficiency maximization control systems[J]. Energy, 2017, 123: 585-593. |
81 | LI F, SUN B, ZHANG C H, et al. A hybrid optimization-based scheduling strategy for combined cooling, heating, and power system with thermal energy storage[J]. Energy, 2019, 188: 115948. |
82 | HAGHIGHAT MAMAGHANI A, NAJAFI B, CASALEGNO A, et al. Long-term economic analysis and optimization of an HT-PEM fuel cell based micro combined heat and power plant[J]. Applied Thermal Engineering, 2016, 99: 1201-1211. |
83 | BORNAPOUR M, HOOSHMAND R A, PARASTEGARI M. An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids[J]. Renewable Energy, 2019, 130: 1049-1066. |
84 | KESHAVARZZADEH A H, AHMADI P, SAFAEI M R. Assessment and optimization of an integrated energy system with electrolysis and fuel cells for electricity, cooling and hydrogen production using various optimization techniques[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21379-21396. |
85 | MALIK M Z, MUSHARAVATI F, KHANMOHAMMADI S, et al. Design and comparative exergy and exergo-economic analyses of a novel integrated Kalina cycle improved with fuel cell and thermoelectric module[J]. Energy Conversion and Management, 2020, 220: 113081. |
86 | YANG Y, ZHANG H, YAN P, et al. Multi-objective optimization for efficient modeling and improvement of the high temperature PEM fuel cell based micro-CHP system[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6970-6981. |
87 | BEHZADI A, ARABKOOHSAR A, GHOLAMIAN E. Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic Rankine cycle/thermoelectric generator using different gasification agents[J]. Energy, 2020, 201: 117640. |
88 | GUO X K, YAN X G, JERMSITTIPARSERT K. Using the modified mayfly algorithm for optimizing the component size and operation strategy of a high temperature PEMFC-powered CCHP[J]. Energy Reports, 2021, 7: 1234-1245. |
89 | LI Z X, KHANMOHAMMADI S, KHANMOHAMMADI S, et al. 3-E analysis and optimization of an organic Rankine flash cycle integrated with a PEM fuel cell and geothermal energy[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2168-2185. |
90 | YUAN Z, WANG W Q, WANG H Y, et al. Improved butterfly optimization algorithm for CCHP driven by PEMFC[J]. Applied Thermal Engineering, 2020, 173: 114766. |
91 | SUN X K, WANG G L, XU L Y, et al. Optimal performance of a combined heat-power system with a proton exchange membrane fuel cell using a developed marine predators algorithm[J]. Journal of Cleaner Production, 2021, 284: 124776. |
92 | 张平文. 多尺度建模及计算方法[C]//中国科学院《技术科学论坛》学术报告会论文集. 北京: 中国科学院, 2002: 91-96. |
ZHANG Pinwen. Multiscale modeling and calculation method[C]// Proceedings of the Symposium on science and Technology Forum of the Chinese Academy of Sciences, Beijing: Chinese Academy of Science, 2002: 91-96. |
[1] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[11] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[12] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[13] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[14] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[15] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |