1 |
STAFFELL Iain, SCAMMAN Daniel, ABAD Anthony Velazquez, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12: 463-491.
|
2 |
王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分:关键材料[J]. 化工进展, 2020, 39(6): 2370-2389.
|
|
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389.
|
3 |
Energy Information Administration US. International energy outlook 2017[R]. 2017.www.eia.gov/ieo.
|
4 |
MARCINKOSKI Jason, SPENDELOW Jacob, WILSON Adria, et al. DOE hydrogen and fuel cells program record #15015: fuel cell system cost—2015[R]. DOE, 2015. https://www.hydrogen.energy.gov/pdfs/17007_fuel_cell_system_cost_2017.pdf.
|
5 |
XIAO M, GAO L, WANG Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. Journal of the American Chemical Society, 2019, 141(50): 19800-19806.
|
6 |
DUAN C X, LUO H C, LI J L, et al. A novel strategy to construct polybenzimidazole linked crosslinking networks for polymer electrolyte fuel cell applications[J]. Polymer, 2020, 201: 122555.
|
7 |
LI Q F, HE R H, GAO J A, et al. The CO poisoning effect in PEMFCs operational at temperatures up to 200℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1599-A1605.
|
8 |
HOGARTH W H J, DINIZ DA COSTA J C, LU G Q. Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells[J]. Journal of Power Sources, 2005, 142(1/2): 223-237.
|
9 |
LI Qingfeng, HE Ronghuan, JENSEN Jens Oluf, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃[J]. Chemistry of Materials, 2003, 15: 4896-4915.
|
10 |
SHAO Y Y, YIN G P, WANG Z B, et al. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges[J]. Journal of Power Sources, 2007, 167(2): 235-242.
|
11 |
KIM Sung-Kon, KIM Tae-Ho, JUNG Jung-Woo, et al. Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications[J]. Polymer, 2009, 50(15): 3495-3502.
|
12 |
HAIDER R, WEN Y, MA Z F, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187.
|
13 |
WANG Kaili, YANG Li, WEI Wenxuan, et al. Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2018, 549: 23-27.
|
14 |
VILČIAUSKAS L, TUCKERMAN M E, BESTER G, et al. The mechanism of proton conduction in phosphoric acid[J]. Nature Chemistry, 2012, 4(6): 461-466.
|
15 |
AILI D, YANG J S, JANKOVA K, et al. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides[J]. Journal of Materials Chemistry A, 2020, 8(26): 12854-12886.
|
16 |
WAINRIGHT J S, WANG J T, WENG D, et al. Acid-doped polybenzimidazoles: a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(7): L121-L123.
|
17 |
FANG J, LIN X, CAI D, et al. Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2016, 502: 29-36.
|
18 |
CHEN J C, HSIAO Y R, LIU Y C, et al. Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure prepared by sol-gel process and acid doping level adjustment for high temperature PEMFC application[J]. Polymer, 2019, 182: 121814.
|
19 |
YANG J S, XU Y X, ZHOU L, et al. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2013, 446: 318-325.
|
20 |
BERBER M R, NAKASHIMA N. Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions[J]. Journal of Membrane Science, 2019, 591: 117354.
|
21 |
NI J P, HU M S, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821.
|
22 |
LEYKIN A Y, ASKADSKII A A, VASILEV V G, et al. Dependence of some properties of phosphoric acid doped PBIs on their chemical structure[J]. Journal of Membrane Science, 2010, 347(1/2): 69-74.
|
23 |
DING L M, WANG Y H, WANG L H, et al. A simple and effective method of enhancing the proton conductivity of polybenzimidazole proton exchange membranes through protonated polymer during solvation[J]. Journal of Power Sources, 2020, 455: 227965.
|
24 |
SHIN D W, GUIVER M D, LEE Y M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chemical Reviews, 2017, 117(6): 4759-4805.
|
25 |
MAITY S, JANA T. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6851-6864.
|
26 |
PINGITORE A, HUANG F, QIAN G Q, et al. Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices[J]. ACS Applied Energy Materials, 2019, 2(3): 1720-1726.
|
27 |
WANG L, WU Y N, FANG M L, et al. Synthesis and preparation of branched block polybenzimidazole membranes with high proton conductivity and single-cell performance for use in high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2020, 602: 117981.
|
28 |
AILI D, CLEEMANN L N, LI Q F, et al. Thermal curing of PBI membranes for high temperature PEM fuel cells[J]. Journal of Materials Chemistry, 2012, 22(12): 5444-5453.
|
29 |
YANG J, AILI D, LI Q, et al. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications[J]. ChemSusChem, 2013, 6(2): 275-282.
|
30 |
WANG Chuangang, LI Zhongfang, SUN Peng, et al. Preparation and properties of covalently crosslinked polybenzimidazole high temperature proton exchange membranes doped with high sulfonated polyphosphazene[J]. Journal of the Electrochemical Society, 2020, 167: 104517.
|
31 |
KRISHNAN N N, JOSEPH D, DUONG N M H, et al. Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells[J]. Journal of Membrane Science, 2017, 544: 416-424.
|
32 |
NAMBI KRISHNAN N, KONOVALOVA A, AILI D, et al. Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells[J]. Journal of Membrane Science, 2019, 588: 117218.
|
33 |
LI X B, MA H W, WANG P, et al. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells[J]. Chemistry of Materials, 2020, 32(3): 1182-1191.
|
34 |
YE Y S, RICK J, HWANG B J. Ionic liquid polymer electrolytes[J]. J. Mater. Chem. A, 2013, 1(8): 2719-2743.
|
35 |
WANG X, WANG S, LIU C, et al. Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs[J]. Electrochimica Acta, 2018, 283: 691-698.
|
36 |
LIU F X, WANG S, CHEN H, et al. The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs[J]. Renewable Energy, 2021, 163: 1692-1700.
|
37 |
SKORIKOVA G, RAUBER D, AILI D, et al. Protic ionic liquids immobilized in phosphoric acid-doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200℃[J]. Journal of Membrane Science, 2020, 608: 118188.
|
38 |
ESCORIHUELA J, NARDUCCI R, COMPAÑ V, et al. Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications[J]. Advanced Materials Interfaces, 2018, 6(2): 1801146.
|
39 |
ESCORIHUELA J, SAHUQUILLO Ó, GARCÍA-BERNABÉ A, et al. Phosphoric acid doped polybenzimidazole (PBI)/zeolitic imidazolate framework composite membranes with significantly enhanced proton conductivity under low humidity conditions[J]. Nanomaterials, 2018, 8(10): E775.
|
40 |
CHEN J L, WANG L, WANG L. Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66)[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41350-41358.
|
41 |
WANG Y, MA X, GHANEM B S, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J]. Materials Today Nano, 2018, 3: 69-95.
|
42 |
WANG P, LIU Z, LI X, et al. Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes[J]. Chemical Communications, 2019, 55(46): 6491-6494.
|
43 |
PU H T, LIU L, CHANG Z H, et al. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2[J]. Electrochimica Acta, 2009, 54(28): 7536-7541.
|
44 |
ÖZDEMIR Y, ÜREGEN N, DEVRIM Y. Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2648-2657.
|
45 |
KRISHNAN N N, LEE S, GHORPADE R V, et al. Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell[J]. Journal of Membrane Science, 2018, 560: 11-20.
|
46 |
ZHANG X X, LIU Q T, XIA L, et al. Poly(2, 5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range[J]. Journal of Membrane Science, 2019, 574: 282-298.
|
47 |
MA W J, ZHAO C J, YANG J S, et al. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications[J]. Energy & Environmental Science, 2012, 5(6): 7617.
|
48 |
ZHANG N, WANG B L, ZHAO C J, et al. Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(34): 13996-14003.
|
49 |
YANG J S, WANG J, LIU C, et al. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes[J]. Journal of Membrane Science, 2015, 493: 80-87.
|
50 |
LEE K-S, SPENDELOW J S, Y-K CHOE, et al. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nature Energy, 2016, 1: 16120.
|
51 |
LEE Y M. Fuel cells: operating flexibly[J]. Nature Energy, 2016, 1: 16136.
|
52 |
TANG H Y, GENG K, HAO J K, et al. Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells[J]. Journal of Power Sources, 2020, 475: 228521.
|
53 |
ZHANG J J, ZHANG J, BAI H J, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019, 572: 496-503.
|
54 |
YANG J S, JIANG H X, WANG J, et al. Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2020, 480: 228859.
|
55 |
BAI H J, PENG H Q, XIANG Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443: 227219.
|