1 |
符冠云, 赵吉诗, 龚娟, 等. 2019年国内外氢能发展形势回顾及展望[J]. 中国能源, 2020, 42(3): 30-33.
|
|
FU Guanyun, ZHAO Jishi, GONG Juan, et al. Review of the development of hydrogen energy at home and abroad in 2019 and outlook for 2020[J]. Energy of China, 2020, 42(3): 30-33.
|
2 |
OZDEN A, SHAHGALDI S, LI X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74: 50-102.
|
3 |
焦魁, 王博文, 杜青. 质子交换膜燃料电池水热管理[M]. 北京: 科学出版社, 2020.
|
|
JIAO Kui, WANG Bowen, DU Qing. Proton exchange membrane fuel cell hydrothermal management[M]. Beijing: Science Press, 2020.
|
4 |
PAN W T, WANG P H, CHEN X L, et al. Combined effects of flow channel configuration and operating conditions on PEM fuel cell performance[J]. Energy Conversion and management, 2020, 220: 113046.
|
5 |
PARK S, LEE J W, POPOV B N. A review of gas diffusion layer in PEM fuel cells: materials and designs[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5850-5865.
|
6 |
毛林昌, 金俊宏, 杨胜林, 等. 多孔纳米碳纤维作为质子交换膜燃料电池微孔层的性能[J]. 化工进展, 2020, 39(10): 3995-4001.
|
|
MAO Linchang, JIN Junhong, YANG Shenglin, et al. Performance of porous carbon nanofibers as microporous layer for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3995-4001.
|
7 |
罗马吉, 张鑫, 罗志平, 等. 微孔层对质子交换膜燃料电池水传输的影响[J]. 华中科技大学学报(自然科学版), 2010, 38(7): 36-39.
|
|
LUO Maji, ZHANG Xin, LUO Zhiping, et al. Effects of micro-porous layer on the water transport of PEMFC[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(7): 36-39.
|
8 |
YANG Y G, ZHOU X Y, LI B, et al. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4259-4282.
|
9 |
SADEGHIFAR H, DJILALI N, BAHRAMI M. Effect of polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: modeling and experiments[J]. Journal of Power Sources, 2014, 248: 632-641.
|
10 |
KIM T, LEE S, PARK H. A study of water transport as a function of the micro-porous layer arrangement in PEMFCs[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8631-8643.
|
11 |
WEBER A Z, NEWMAN J. Effects of microporous layers in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(4): A677.
|
12 |
ANTONACCI P, CHEVALIER S, LEE J, et al. Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16494-16502.
|
13 |
BLANCO M, WILKINSON D P. Investigation of the effect of microporous layers on water management in a proton exchange membrane fuel cell using novel diagnostic methods[J]. International Journal of Hydrogen Energy, 2014, 39(29): 16390-16404.
|
14 |
LI B, XIE M, JI H, et al. Optimization of cathode microporous layer materials for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14674-14686.
|
15 |
李超明, 康敬欣, 刘勇. 质子交换膜燃料电池微孔层研究进展[J]. 化工新型材料, 2020, 48(9): 256-259.
|
|
LI Chaoming, KANG Jingxin, LIU Yong. Research progress on MPL of proton exchange membrane fuel cell[J]. New Chemical Materials, 2020, 48(9): 256-259.
|
16 |
YAN W M, WU D K, WANG X D, et al. Optimal microporous layer for proton exchange membrane fuel cell[J]. Journal of Power Sources, 2010, 195(17): 5731-5734.
|
17 |
FAN C C, CHANG M H. Improving proton exchange membrane fuel cell performance with carbon nanotubes as the material of cathode microporous layer[J]. International Journal of Energy Research, 2016, 40(2): 181-188.
|
18 |
XU F, ZHANG H Y, HO D, et al. Investigation of catalyst ink dispersion using small angle X-ray and small angle neutron scattering[J]. ECS Transactions, 2019, 33(1): 1335-1345.
|
19 |
GALLO STAMPINO P, CRISTIANI C, DOTELLI G, et al. Effect of different substrates, inks composition and rheology on coating deposition of microporous layer (MPL) for PEM-FCs[J]. Catalysis Today, 2009, 147: S30-S35.
|
20 |
LATORRATA S, STAMPINO P G, AMICI E, et al. Effect of rheology controller agent addition to micro-porous layers on PEMFC performances[J]. Solid State Ionics, 2012, 216: 73-77.
|
21 |
TAKAHASHI S, MASHIO T, HORIBE N, et al. Analysis of the microstructure formation process and its influence on the performance of polymer electrolyte fuel-cell catalyst layers[J]. ChemElectroChem, 2015, 2(10): 1560-1567.
|
22 |
PAN W T, CHEN Z K, YAO D S, et al. Microstructure and macroscopic rheology of microporous layer nanoinks for PEM fuel cells[J]. Chemical Engineering Science, 2021, 246: 117001.
|
23 |
LONG C M, NASCARELLA M A, VALBERG P A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions[J]. Environmental Pollution, 2013, 181: 271-286.
|
24 |
KHANDAVALLI S, PARK J H, KARIUKI N N, et al. Rheological investigation on the microstructure of fuel cell catalyst inks[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43610-43622.
|
25 |
张宇. 纳米颗粒增强气液传质的实验和模型研究[D]. 北京: 清华大学, 2016.
|
|
ZHANG Yu. Experimental and model study of gas-liquid mass transfer enhancement by nanoparticles[D]. Beijing: Tsinghua University, 2016.
|
26 |
张胜寒, 韩晓雪. 纳米颗粒表面修饰对纳米流体黏度的影响[J]. 科学技术与工程, 2018, 18(21): 168-174.
|
|
ZHANG Shenghan, HAN Xiaoxue. Effect of different surface properties of nanoparticles on the viscosity of nanofluids[J]. Science Technology and Engineering, 2018, 18(21): 168-174.
|
27 |
吴瑞娟. 中性墨水稳定性影响因素研究[D]. 太原: 太原理工大学, 2014.
|
|
WU Ruijuan. The study on the factors of stability of gel ink[D]. Taiyuan: Taiyuan University of Technology, 2014.
|
28 |
AOKI Y, HATANO A, WATANABE H. Rheology of carbon black suspensions. I. Three types of viscoelastic behavior[J]. Rheologica Acta, 2003, 42(3): 209-216.
|
29 |
SOBOLEVA T, ZHAO X, MALEK K, et al. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers[J]. ACS Applied Materials & Interfaces, 2010, 2(2): 375-384.
|
30 |
SOCHI T. Non-Newtonian flow in porous media[J]. Polymer, 2010, 51(22): 5007-5023.
|
31 |
NEGI A S, OSUJI C O. New insights on fumed colloidal rheology—shear thickening and vorticity-aligned structures in flocculating dispersions[J]. Rheologica Acta, 2009, 48(8): 871-881.
|
32 |
AOKI Y, CO A, LEAL G L, et al. Rheology of carbon black suspensions: effect of carbon black structure[C]//AIP Conference Proceedings. Monterey, 2008.
|
33 |
郭宇蓉. 锂电池浆料搅拌与涂布工艺的仿真及实验研究[D]. 太原: 太原科技大学, 2019.
|
|
GUO Yurong. Simulation and experimental study on stirring and coating process of lithium battery slurry[D]. Taiyuan: Taiyuan University of Science and Technology, 2019.
|
34 |
KUMANO N, KUDO K, AKIMOTO Y, et al. Influence of ionomer adsorption on agglomerate structures in high-solid catalyst inks[J]. Carbon, 2020, 169: 429-439.
|