化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3816-3823.DOI: 10.16085/j.issn.1000-6613.2021-1715

• 生物与医药化工 • 上一篇    下一篇

流场对MEC生物阴极CO2还原性能与产物的影响

徐沛1(), 贾璇2, 王勇1, 亓雪娇1, 赵玉娇2, 李鸣晓1()   

  1. 1.中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012
    2.北京工商大学,国家环境保护食品链污染防治重点实验室,北京 100048
  • 收稿日期:2021-08-11 修回日期:2021-09-16 出版日期:2022-07-25 发布日期:2022-07-23
  • 通讯作者: 李鸣晓
  • 作者简介:徐沛(1997—),男,硕士研究生,研究方向为微生物电解池脱碳。E-mail: xupei19971003@163.com
  • 基金资助:
    国家重点研发计划(2019YFD1100304)

Effect of flow field on the CO2 reduction performance and products of MEC biocathode

XU Pei1(), JIA Xuan2, WANG Yong1, QI Xuejiao1, ZHAO Yujiao2, LI Mingxiao1()   

  1. 1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    2.State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
  • Received:2021-08-11 Revised:2021-09-16 Online:2022-07-25 Published:2022-07-23
  • Contact: LI Mingxiao

摘要:

针对微生物电解池 (microbial electrolysis cell,MEC)CO2还原过程阴极CO2还原速率低的问题,本文通过改变阴极室的流场环境,探究流场对生物阴极启动、运行、产物及功能微生物的影响,阐明MEC生物阴极CO2还原性能、产物转化、微生物群落对流场的响应关系。结果表明,流场不仅增强了生物阴极还原CO2能力(电子消耗量提高了10%,其中CO2产乙酸途径消耗电子量提高了30%),还使生物阴极的CO2还原途径由启动阶段的CO2还原产甲烷转变为运行阶段产乙酸。高通量分析表明,流场改变了生物阴极和阴极液的微生物群落结构,使阴极生物膜的嗜氢型产甲烷菌(Methanobacterium)向嗜乙酸型产甲烷菌(Methanosaeta)主导的群落演变。产乙酸菌群落(PetrimonasCandidatus_Caldatribacterium)丰度较对照组提高了3.8%,在CO2产乙酸过程中起到重要作用。本研究可为MEC还原CO2产乙酸的定向调控研究提供理论和技术支撑。

关键词: 微生物电解池, 生物阴极, CO2还原, 流场, 微生物群落

Abstract:

This study focused on the issue of low CO2 reduction rate on the biocathode in microbial electrolysis cells (MECs). By changing the flow field environment of cathode chamber, the effect of flow field on the start-up, operation, products transformation and functional microorganism on the biocathode were explored. Furthermore, the response of CO2-reduction biocathode performance of MEC to flow field was clarified. The results showed that the flow field enhanced the ability of CO2-reduction of biocathode (electronic consumption increased by 10%, of which CO2 to acetic acid pathway consumption increased by 30%), and changed the CO2 reduction pathway of biocathode (from methane production in the start-up stage to acetic acid production in the operation stage). The high-throughput analysis showed that the flow field changed the microbial community structure of the biocathode and catholyte, making the biocathode dominated by the hydrogenotrophic methanogens (Methanobacterium) to that by the acetoclastic methanogens (Methanosaeta).The abundance of acetogenic bacterial communities (Petrimonas, Candidatus_Caldatribacterium) increased by 3.8% compared with the control group, which played an important role in the process of CO2-reductionforacetic acid production. This research aims to provide theoretical and technical support for the directed regulation of MEC reduction of CO2 to produce acetic acid.

Key words: microbial electrolysis cell (MEC), biocathode, CO2 reduction, flow field, microbial community structure

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn