化工进展 ›› 2023, Vol. 42 ›› Issue (2): 1051-1060.DOI: 10.16085/j.issn.1000-6613.2022-0723
收稿日期:
2022-04-21
修回日期:
2022-08-25
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
陈滢
作者简介:
胡璇(1999—),女,硕士研究生,研究方向为水污染控制。E-mail:573430300@qq.com。
基金资助:
Received:
2022-04-21
Revised:
2022-08-25
Online:
2023-02-25
Published:
2023-03-13
Contact:
CHEN Ying
摘要:
聚酯纤维是污水处理厂中微塑料的一个重要来源,但聚酯纤维对废水生物处理的影响尚不清楚。本研究采用实验室规模序批式反应器(sequencing batch reactor,SBR)处理模拟洗衣废水,考察不同浓度(0、10mg/L、1000mg/L),长1mm、直径20µm的聚酯纤维微塑料对反应器性能和微生物群落结构的响应。结果表明,聚酯纤维微塑料在污泥中不断积累,但反应器的处理性能未受到明显影响,具有较高的净化能力。同时,聚酯纤维微塑料的持续暴露使得污泥的沉降性能变差,并抑制了胞外聚合物(extracellular polymeric substances,EPS)的分泌。高浓度聚酯纤维微塑料胁迫下,污泥微生物群落的丰度和多样性增加。独岛菌属(Dokdonella)是活性污泥中相对丰度最高的脱氮菌属,随着聚酯纤维微塑料浓度的增加,反硝化菌属相对丰度也增加。本研究表明,在一定时期内丝状类聚酯纤维微塑料对污水生物处理性能的影响不显著,但对污泥微生物群落有一定的选择性。
中图分类号:
胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060.
HU Xuan, CHEN Ying. Effects of exposure of polyester fiber microplastics on activated sludge system performance and microbial community structure[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1051-1060.
SBR反应器 | pH | COD /mg·L-1 | COD去除率 /% | TN /mg·L-1 | TN去除率 /% | NH4+-N /mg·L-1 | NH4+-N去除率 /% | NO3--N /mg·L-1 | NO2--N /mg·L-1 |
---|---|---|---|---|---|---|---|---|---|
CK | 7.6±0.15 | 30.0±7.39 | 85.3±3.65 | 13.1±1.44 | 55.7±4.54 | 0.19±0.38 | 99.4±1.21 | 13.0±1.33 | 0.05±0.05 |
S1 | 7.7±0.13 | 33.4±8.15 | 83.6±3.99 | 13.2±1.32 | 55.4±4.08 | 0.14±0.25 | 99.6±0.77 | 13.0±1.26 | 0.05±0.06 |
S2 | 7.8±0.15 | 36.8±8.63 | 82.0±4.22 | 12.5±1.71 | 58.1±5.24 | 0.92±1.02 | 97.0±3.18 | 12.6±1.86 | 0.12±0.14 |
表1 出水水质参数
SBR反应器 | pH | COD /mg·L-1 | COD去除率 /% | TN /mg·L-1 | TN去除率 /% | NH4+-N /mg·L-1 | NH4+-N去除率 /% | NO3--N /mg·L-1 | NO2--N /mg·L-1 |
---|---|---|---|---|---|---|---|---|---|
CK | 7.6±0.15 | 30.0±7.39 | 85.3±3.65 | 13.1±1.44 | 55.7±4.54 | 0.19±0.38 | 99.4±1.21 | 13.0±1.33 | 0.05±0.05 |
S1 | 7.7±0.13 | 33.4±8.15 | 83.6±3.99 | 13.2±1.32 | 55.4±4.08 | 0.14±0.25 | 99.6±0.77 | 13.0±1.26 | 0.05±0.06 |
S2 | 7.8±0.15 | 36.8±8.63 | 82.0±4.22 | 12.5±1.71 | 58.1±5.24 | 0.92±1.02 | 97.0±3.18 | 12.6±1.86 | 0.12±0.14 |
样品 | Ace | Chao 1 | Shannon | Simpson | 覆盖率 |
---|---|---|---|---|---|
CK | 780.11 | 769.44 | 2.95 | 0.23 | 0.99 |
S1 | 776.40 | 765.46 | 3.05 | 0.20 | 0.99 |
S2 | 806.64 | 795.42 | 3.07 | 0.21 | 0.99 |
表2 PET对活性污泥微生物群落结构多样性的影响
样品 | Ace | Chao 1 | Shannon | Simpson | 覆盖率 |
---|---|---|---|---|---|
CK | 780.11 | 769.44 | 2.95 | 0.23 | 0.99 |
S1 | 776.40 | 765.46 | 3.05 | 0.20 | 0.99 |
S2 | 806.64 | 795.42 | 3.07 | 0.21 | 0.99 |
1 | Prabhat Kumar RAI, LEE Jechan, BROWN Richard J C, et al. Micro- and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies[J]. Journal of Cleaner Production, 2021, 291: 125240. |
2 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. | |
3 | MENG Y, KELLY F J, WRIGHT S L. Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective[J]. Environmental Pollution, 2020, 256: 113445. |
4 | WANG Jundong, TAN Zhi, PENG Jinping, et al. The behaviors of microplastics in the marine environment[J]. Marine Environmental Research, 2016, 113: 7-17. |
5 | TIAN Yujie, CHEN Zhuo, ZHANG Jiayao, et al. An innovative evaluation method based on polymer mass detection to evaluate the contribution of microfibers from laundry process to municipal wastewater[J]. Journal of Hazardous Materials, 2021, 407: 124861. |
6 | WAN B Z, KAO C Y, CHENG W H. Kinetics of depolymerization of poly(ethylene terephthalate) in a potassium hydroxide solution[J]. Industrial & Engineering Chemistry Research, 2001, 40(2): 509-514. |
7 | Xuemin LYU, DONG Qian, ZUO Zhiqiang, et al. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies[J]. Journal of Cleaner Production, 2019, 225: 579-586. |
8 | Imran ALI, DING Tengda, PENG Changsheng, et al. Micro- and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies—A critical review[J]. Chemical Engineering Journal, 2021, 423: 130205. |
9 | LIN Xumeng, SU Chengyuan, DENG Xue, et al. Influence of polyether sulfone microplastics and bisphenol A on anaerobic granular sludge: Performance evaluation and microbial community characterization[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111318. |
10 | BRETAS ALVIM C, CASTELLUCCIO S, FERRER-POLONIO E, et al. Effect of polyethylene microplastics on activated sludge process— Accumulation in the sludge and influence on the process and on biomass characteristics[J]. Process Safety and Environmental Protection, 2021, 148: 536-547. |
11 | FENG Lijuan, WANG Jingjing, LIU Shuchang, et al. Role of extracellular polymeric substances in the acute inhibition of activated sludge by polystyrene nanoparticles[J]. Environmental Pollution, 2018, 238: 859-865. |
12 | MASON Sherri A, GARNEAU Danielle, SUTTON Rebecca, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 2016, 218: 1045-1054. |
13 | MA Yini, HUANG Anna, CAO Siqi, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water[J]. Environmental Pollution, 2016, 219: 166-173. |
14 | MCCORMICK Amanda, HOELLEIN Timothy J, MASON Sherri A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 2014, 48(20): 11863-11871. |
15 | HARTLINE Niko L, BRUCE Nicholas J, KARBA Stephanie N, et al. Microfiber masses recovered from conventional machine washing of new or aged garments[J]. Environmental Science & Technology, 2016, 50(21): 11532-11538. |
16 | 操家顺, 赵宇杰, 薛朝霞, 等. 吸附-催化材料的制备及对生活洗衣废水的处理[J]. 水处理技术, 2019, 45(5): 116-120. |
CAO Jiashun, ZHAO Yujie, XUE Zhaoxia, et al. Preparation of adsorption-catalytic material and its performance on laundry wastewater treatment[J]. Technology of Water Treatment, 2019, 45(5): 116-120. | |
17 | 国家环境保护总局,水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
STATE Environmental Protection Administration. Water and wastewater monitoring and analysis methods[M]. Beijing: China Environmental Science Press, 2002. | |
18 | WANG He, LI Xiufen, WANG Xinhua, et al. Insight into the distribution of metallic elements in membrane bioreactor: Influence of operational temperature and role of extracellular polymeric substances[J]. Journal of Environmental Sciences, 2019, 76: 111-120. |
19 | FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. |
20 | XU Jiaping, SUN Yuxiao, LIU Yi, et al. In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone[J]. Science of the Total Environment, 2019, 695: 133825. |
21 | WANG Qiongjie, ZHANG Yong, WANGJIN Xiaoxue, et al. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation[J]. Journal of Environmental Sciences, 2020, 87: 272-280. |
22 | TANG Taotao, CHEN Ying, LIU Min, et al. Effect of pH on the performance of hydrogen production by dark fermentation coupled denitrification[J]. Environmental Research, 2022, 208: 112663. |
23 | ZHAO Lijian, SU Chengyuan, LIU Weihong, et al. Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110070. |
24 | KALČÍKOVÁ G, ALIČ B, SKALAR T, et al. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater[J]. Chemosphere, 2017, 188: 25-31. |
25 | FU Shanfei, DING Jiannan, ZHANG Yun, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science of the Total Environment, 2018, 625: 64-70. |
26 | GREEN Dannielle Senga, BOOTS Bas, O'CONNOR Nessa E, et al. Microplastics affect the ecological functioning of an important biogenic habitat[J]. Environmental Science & Technology, 2017, 51(1): 68-77. |
27 | LIU Huan, ZHOU Xu, DING Wanqing, et al. Do microplastics affect biological wastewater treatment performance? implications from bacterial activity experiments[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20097-20101. |
28 | DAI Huihui, GAO Jingfeng, WANG Zhiqi, et al. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system[J]. Journal of Cleaner Production, 2020, 256: 120402. |
29 | LI Lu, SONG Kang, YEERKEN Senbati, et al. Effect evaluation of microplastics on activated sludge nitrification and denitrification[J]. Science of the Total Environment, 2020, 707: 135953. |
30 | WEI Wei, HUANG Qisu, SUN Jing, et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509-2517. |
31 | EDO C, GONZÁLEZ-PLEITER M, LEGANÉS F, et al. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge[J]. Environmental Pollution, 2020, 259: 113837. |
32 | CORRADINI Fabio, MEZA Pablo, EGUILUZ Raúl, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal[J]. Science of the Total Environment, 2019, 671: 411-420. |
33 | MICHIELSSEN Marlies R, MICHIELSSEN Elien R, NI Jonathan, et al. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed[J]. Environmental Science: Water Research & Technology, 2016, 2(6): 1064-1073. |
34 | QUAN Xiangchun, CEN Yan, LU Fang, et al. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community[J]. The Science of the Total Environment, 2015, 506/507: 226-233. |
35 | ZOU Jinte, TAO Yaqiang, LI Jun, et al. Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater[J]. Bioresource Technology, 2018, 247: 776-783. |
36 | WANG Zhiqi, GAO Jingfeng, LI Dingchang, et al. Co-occurrence of microplastics and triclosan inhibited nitrification function and enriched antibiotic resistance genes in nitrifying sludge[J]. Journal of Hazardous Materials, 2020, 399: 123049. |
37 | SHENG Guoping, YU Hanqing, LI Xiaoyan. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. |
38 | LAGARDE Fabienne, OLIVIER Ophélie, ZANELLA Marie, et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type[J]. Environmental Pollution, 2016, 215: 331-339. |
39 | 史文超, 桂梦瑶, 杜俊逸, 等. 典型微塑料对好氧反硝化菌群脱氮特性及反硝化相关基因的影响[J]. 环境工程学报, 2021, 15(4): 1333-1343. |
SHI Wenchao, GUI Mengyao, DU Junyi, et al. Effects of typical microplastics on the denitrification characteristics and denitrification related genes of aerobic denitrifying bacteria[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1333-1343. | |
40 | QIN Ronghua, SU Chengyuan, LIU Weihong, et al. Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge[J]. Bioresource Technology, 2020, 302: 122827. |
41 | LI Chengtao, CUI Qian, LI Yan, et al. Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation[J]. Journal of Hazardous Materials, 2022, 429: 128353. |
42 | NGUYEN Luong N, COMMAULT Audrey S, JOHIR Md Abu Hasan, et al. Application of a novel molecular technique to characterise the effect of settling on microbial community composition of activated sludge[J]. Journal of Environmental Management, 2019, 251: 109594. |
43 | IANNACONE Francesca, DI CAPUA Francesco, GRANATA Francesco, et al. Simultaneous nitrification, denitrification and phosphorus removal in a continuous-flow moving bed biofilm reactor alternating microaerobic and aerobic conditions[J]. Bioresource Technology, 2020, 310: 123453. |
44 | WEI Wei, ZHANG Yuting, HUANG Qisu, et al. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms[J]. Water Research, 2019, 163: 114881. |
45 | LIU Yingrui, WEI Dong, XU Weiying, et al. Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: System evaluation and community structure[J]. Bioresource Technology, 2019, 288: 121504. |
46 | Amani A AL ALI, NADDEO Vincenzo, HASAN Shadi W, et al. Correlation between bacterial community structure and performance efficiency of a full-scale wastewater treatment plant[J]. Journal of Water Process Engineering, 2020, 37: 101472. |
47 | WANG Hongyu, HE Qiulai, CHEN Dan, et al. Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10829-10837. |
48 | JIA Liping, JIANG Binhui, HUANG Fei, et al. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system[J]. Bioresource Technology, 2019, 294: 122140. |
49 | REN X, TANG J, LIU X, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil[J]. Environmental Pollution, 2020, 256: 113347. |
50 | 曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265. |
ZENG Wei, ZHANG Limin, WANG Anqi, et al. Community structures and population dynamics of nitrifying bacteria in activated sludges of wastewater treatment plants[J]. China Environmental Science, 2015, 35(11): 3257-3265. | |
51 | 夏岚, 李遵龙, 郑朋. 荧光原位杂交法研究氧化沟内微生物群落分布特征[J]. 化工进展, 2012, 31(S2): 203-207. |
XIA Lan, LI Zunlong, ZHENG Peng. Characteristics of distribution of microbial community in oxidation ditch using fluorescence in situ hybridization[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 203-207. | |
52 | XIA Siqing, SHI Yan, FU Yigang, et al. DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical-biological flocculation and chemical coagulation systems[J]. Applied Microbiology and Biotechnology, 2005, 69(1): 99-105. |
53 | LI Mengqi, ZHANG Jian, LIANG Shuang, et al. Novel magnetic coupling constructed wetland for nitrogen removal: enhancing performance and responses of plants and microbial communities[J]. Science of the Total Environment, 2022, 819: 152040. |
54 | LIU Tao, HE Xiaolu, JIA Guangyue, et al. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater[J]. Chemosphere, 2020, 247: 125831. |
55 | Watanabe K, Kitamura T, Ogata Y, et al. Flavobacterium ammonificans sp. nov. and Flavobacterium ammoniigenes sp. nov., ammonifying bacteria isolated from surface river water[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(3): DOI: 10.1099/ijsem.0.005307. |
56 | MA Weiwei, HAN Yuxing, XU Chunyan, et al. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition[J]. Bioresource Technology, 2018, 251: 303-310. |
57 | PAN Chao, XU Dongdong, DONG Ziyang, et al. Effect of temperature decrease on anammox granular sludge: Shock and adaptation[J]. The Science of the Total Environment, 2021, 798: 149242. |
58 | LING S D, SINCLAIR M, LEVI C J, et al. Ubiquity of microplastics in coastal seafloor sediments[J]. Marine Pollution Bulletin, 2017, 121(1/2): 104-110. |
59 | ZHAO Jianwei, YUAN Qingjiang, SUN Yingjie, et al. Effect of fluoxetine on enhanced biological phosphorus removal using a sequencing batch reactor[J]. Bioresource Technology, 2021, 320: 124396. |
[1] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[2] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[3] | 徐沛, 贾璇, 王勇, 亓雪娇, 赵玉娇, 李鸣晓. 流场对MEC生物阴极CO2还原性能与产物的影响[J]. 化工进展, 2022, 41(7): 3816-3823. |
[4] | 陈加波, 周鑫, 李旭. 以活性污泥为接种污泥厌氧氨氧化工艺的快速启动及脱氮效能[J]. 化工进展, 2022, 41(7): 3900-3907. |
[5] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[6] | 汪宇光, 张星星, 王超超, 夏云康, 王垚, 周澄, 吴翼伶, 吴鹏, 徐乐中. 反硝化除磷+短程反硝化厌氧氨氧化工艺的深度脱氮除磷效能[J]. 化工进展, 2022, 41(4): 2191-2201. |
[7] | 敬双怡, 刘超, 蔡怡婷, 李卫平, 于玲红, 侯娜. 低温下磁性载体强化MBBR硝化性能及微生物群落分析[J]. 化工进展, 2022, 41(4): 2180-2190. |
[8] | 李冬, 高飞雁, 解一博, 李柱, 张杰. 有机负荷波动频次对好氧颗粒污泥的影响[J]. 化工进展, 2022, 41(12): 6680-6688. |
[9] | 陈国栋, 刘海成, 孟无霜, 尤雨, 张皓, 曹梦茹. 微塑料老化的人工干预及理化特性表征研究进展[J]. 化工进展, 2022, 41(12): 6443-6453. |
[10] | 杨景瑞, 王莹, 陈虎, 吕永康. 氧浓度对调节NO x 氧化度协同CABR法脱硝性能及菌群结构的影响[J]. 化工进展, 2022, 41(11): 6139-6148. |
[11] | 张雅珊, 陈宗耀, 马伟芳. 微塑料的迁移转化及其生态风险研究进展[J]. 化工进展, 2022, 41(11): 6080-6098. |
[12] | 李鑫, 朱易春, 连军锋, 秦欣欣, 田帅. 低强度超声波对ABR处理低浓度污水效果及污泥特性的影响[J]. 化工进展, 2021, 40(11): 6401-6408. |
[13] | 张兰河, 袁镇涛, 赵浩杰, 赵君田, 祝艺宁, 陈子成, 贾艳萍, 田书磊. 外加电流对AO工艺缺氧区脱氮效率与污泥絮凝的影响[J]. 化工进展, 2021, 40(11): 6369-6377. |
[14] | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
[15] | 任黎晔,朱易春,张光明,连军锋,章璋,李鑫,黄书昌,田帅,袁佳彬. 低强度超声波对短程硝化污泥的影响[J]. 化工进展, 2020, 39(4): 1591-1596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |