化工进展 ›› 2022, Vol. 41 ›› Issue (11): 6080-6098.DOI: 10.16085/j.issn.1000-6613.2022-0192
收稿日期:
2022-02-06
修回日期:
2022-03-17
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
马伟芳
作者简介:
张雅珊(1999—),女,硕士研究生,研究方向为环境污染控制。E-mail:2285661684@qq.com。
ZHANG Yashan1(), CHEN Zongyao2, MA Weifang1()
Received:
2022-02-06
Revised:
2022-03-17
Online:
2022-11-25
Published:
2022-11-28
Contact:
MA Weifang
摘要:
微塑料因轻薄、微小、易吸附等特点,在陆地出现后随水流进入大海,随气流暂时悬浮于空气中,随动植物、土壤活动等深入土壤内部,进入地下水中汇流入海,再因退潮、干湿沉降等原因从水、大气环境再次进入土壤;并有可能通过植物和水生动物食物链传递从而对人体健康产生潜在风险。本文通过计算微塑料的综合危害指数(污染负荷指数和潜在生态风险指数)得出结论:微塑料虽然对环境危害较大,但目前尚处在可接受的风险范围之内,然而如果人类仍不加节制,肆意生产和使用塑料,在80年后微塑料将给生态系统带来极大风险。目前由于技术限制很难集中有效地收集处理微塑料,微塑料在迁移过程中很难分解代谢,所以应重点从源头控制来减少微塑料的产生。同时,由于人们对微塑料的认知仍处于初级阶段,因而深入了解微塑料与污染物的联合作用和对生态环境的破坏作用,完善微塑料风险评价模型成为当前的首要任务。
中图分类号:
张雅珊, 陈宗耀, 马伟芳. 微塑料的迁移转化及其生态风险研究进展[J]. 化工进展, 2022, 41(11): 6080-6098.
ZHANG Yashan, CHEN Zongyao, MA Weifang. Research progress on the migration and transformation of microplastics and environmental risks[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6080-6098.
调查的国家或地区 | 类型 | 深度 | 提取方法 | 丰度/items·kg-1 | 颜色 | 主要形状 | 主要类别 | 参考文献 |
---|---|---|---|---|---|---|---|---|
哥伦比亚中部 加勒比海岸 | 海滩 | 5cm | 氯化钠浮选 | 557~2457 | — | 纤维(83%) | — | Rangel- Buitrago等[ |
中国台湾 | 海滩 | — | 氯化钠浮选 | 80~480 (DW) | 白色、透明、黑色、蓝色 | 纤维 (>95%) | PE、PP | Chen等[ |
中国江苏 | 农田 | — | 碘化钠浮选 | 420~1290 | 白色、蓝色、红色 | 纤维(65%) | PP、PE、PET | Li等[ |
中国武汉 | 蔬菜农田 | 5cm | 氯化锌浮选 | 320~12560 (DW) | 红色、黑色、绿色、蓝色、棕色、透明 | 微珠(48%) | PA、PP、PS、PE、PVC | Chen等[ |
中国长江 | 农业土壤 | 0~20cm、20~40cm、40~60cm、60~80cm | 氯化钠浮选 | 4.94~252.7 | 白色、蓝色、绿色、黑色、红色 | 碎片(49%) | PP、PE | Cao等[ |
智利 | 农业土壤 | 25cm | 氯化锌浮选 | 600~10400 | 透明、黑色、红色 | 纤维(97%) | — | Corradini等[ |
加拿大安大略 | 农业土壤 | 0~5cm、5~10cm、10~15cm | 密度分离(SI) | 25~298 | — | 纤维 | PP、PE、PET | Crossman等[ |
西班牙 | 蔬菜土壤 | 10cm | 离心后过滤 | 2116±1024 | — | — | — | Beriot等[ |
中国天津 | 校园草坪 | — | 氯化钠、碘化钠1∶1混合浮选 | 95(DW) | 白色、绿色 | 碎片 | PP | Han等[ |
中国上海 | 水稻与水产养殖土壤 | 10cm | 氯化钠浮选 | 10.3±2.2 | 白色、半透明、 黑色 | 纤维 | PE、PP、PVC | Lyu等[ |
中国陕西 毛乌素沙地 | 沙地、耕地、林地土壤 | 10cm | 纤维过滤器 | 1360~4960 | 黑色、透明、红色、黄色 | 纤维(39%) | PP、PE、PS、PVC、PET | Ding等[ |
中国杭州湾 | 农业土壤 | 10cm | 氯化钠浮选 | 503.3 | — | 碎片 | PE、PP、PA、PES | Zhou等[ |
表1 陆地微塑料的特征
调查的国家或地区 | 类型 | 深度 | 提取方法 | 丰度/items·kg-1 | 颜色 | 主要形状 | 主要类别 | 参考文献 |
---|---|---|---|---|---|---|---|---|
哥伦比亚中部 加勒比海岸 | 海滩 | 5cm | 氯化钠浮选 | 557~2457 | — | 纤维(83%) | — | Rangel- Buitrago等[ |
中国台湾 | 海滩 | — | 氯化钠浮选 | 80~480 (DW) | 白色、透明、黑色、蓝色 | 纤维 (>95%) | PE、PP | Chen等[ |
中国江苏 | 农田 | — | 碘化钠浮选 | 420~1290 | 白色、蓝色、红色 | 纤维(65%) | PP、PE、PET | Li等[ |
中国武汉 | 蔬菜农田 | 5cm | 氯化锌浮选 | 320~12560 (DW) | 红色、黑色、绿色、蓝色、棕色、透明 | 微珠(48%) | PA、PP、PS、PE、PVC | Chen等[ |
中国长江 | 农业土壤 | 0~20cm、20~40cm、40~60cm、60~80cm | 氯化钠浮选 | 4.94~252.7 | 白色、蓝色、绿色、黑色、红色 | 碎片(49%) | PP、PE | Cao等[ |
智利 | 农业土壤 | 25cm | 氯化锌浮选 | 600~10400 | 透明、黑色、红色 | 纤维(97%) | — | Corradini等[ |
加拿大安大略 | 农业土壤 | 0~5cm、5~10cm、10~15cm | 密度分离(SI) | 25~298 | — | 纤维 | PP、PE、PET | Crossman等[ |
西班牙 | 蔬菜土壤 | 10cm | 离心后过滤 | 2116±1024 | — | — | — | Beriot等[ |
中国天津 | 校园草坪 | — | 氯化钠、碘化钠1∶1混合浮选 | 95(DW) | 白色、绿色 | 碎片 | PP | Han等[ |
中国上海 | 水稻与水产养殖土壤 | 10cm | 氯化钠浮选 | 10.3±2.2 | 白色、半透明、 黑色 | 纤维 | PE、PP、PVC | Lyu等[ |
中国陕西 毛乌素沙地 | 沙地、耕地、林地土壤 | 10cm | 纤维过滤器 | 1360~4960 | 黑色、透明、红色、黄色 | 纤维(39%) | PP、PE、PS、PVC、PET | Ding等[ |
中国杭州湾 | 农业土壤 | 10cm | 氯化钠浮选 | 503.3 | — | 碎片 | PE、PP、PA、PES | Zhou等[ |
调查的国家或地区 | 取样设备 | 丰度/items·m-3 | 颜色 | 主要形状 | 主要类别 | 参考文献 |
---|---|---|---|---|---|---|
阿曼湾 | 诺斯顿拖网 | 0.49±0.43 | 白色、蓝色、红色 | 纤维(32.7%) | PE、PP | Aliabad等[ |
瑞典周边海域 | 曼塔拖网、原位过滤泵 | 0.04 | 半透明、黑色、蓝色 | 纤维 | PE、PP、PS、PA | Schönlau等[ |
中国渤海 | 曼塔拖网 | 0.35±0.13 | 白色、绿色、透明、黄色、黑色 | 线型(38%) | PE、PP、PS、PET | Zhang等[ |
茅尾海 | 不锈钢取样器、20μm过滤器 | 4500±100 | 白色、黄色、蓝色、绿色、红色、黑色 | 纤维 | PET、PP、PE | Zhu等[ |
胶州湾 | 不锈钢水枪 | 46±28 | 蓝色、黑色 | 纤维(77.14%) | PET、PP、PE、PA、PVAC | Zheng等[ |
中国北部湾红树林 | 钢水取样器 | 399~5531 | 白色、透明 | — | PP、PE | Li等[ |
北极 | 大容积泵、不锈钢过 滤器 | 95±85 | — | — | PA、PP、PES | Tekman等[ |
加龙河 | 曼塔拖网 | 0.15 | 白色、黑色、蓝色 | — | PE、PS、PP | Carvalho等[ |
中国宁波奉化江 | 不锈钢桶、不锈钢筛子 | 300~4000 | 透明、蓝色、黑色、白色 | 纤维 | PP、PE | Xu等[ |
中国山东威海 | 自制拖网、钢筛 | 5.9±3.5 | 透明、白色、黑色、黄色、红色、蓝色、绿色 | 碎片(45.4%) | PE、PP、PS | Zhang等[ |
中国青藏高原 | 集水器 | 856 | — | — | PP、PE、PS、PET | Liu等[ |
韩国 | 不锈钢取样器、潜水泵 | 1140±880 | — | 碎片(80%) | PP、PE、PA | Jung等[ |
表2 水环境中微塑料的特征
调查的国家或地区 | 取样设备 | 丰度/items·m-3 | 颜色 | 主要形状 | 主要类别 | 参考文献 |
---|---|---|---|---|---|---|
阿曼湾 | 诺斯顿拖网 | 0.49±0.43 | 白色、蓝色、红色 | 纤维(32.7%) | PE、PP | Aliabad等[ |
瑞典周边海域 | 曼塔拖网、原位过滤泵 | 0.04 | 半透明、黑色、蓝色 | 纤维 | PE、PP、PS、PA | Schönlau等[ |
中国渤海 | 曼塔拖网 | 0.35±0.13 | 白色、绿色、透明、黄色、黑色 | 线型(38%) | PE、PP、PS、PET | Zhang等[ |
茅尾海 | 不锈钢取样器、20μm过滤器 | 4500±100 | 白色、黄色、蓝色、绿色、红色、黑色 | 纤维 | PET、PP、PE | Zhu等[ |
胶州湾 | 不锈钢水枪 | 46±28 | 蓝色、黑色 | 纤维(77.14%) | PET、PP、PE、PA、PVAC | Zheng等[ |
中国北部湾红树林 | 钢水取样器 | 399~5531 | 白色、透明 | — | PP、PE | Li等[ |
北极 | 大容积泵、不锈钢过 滤器 | 95±85 | — | — | PA、PP、PES | Tekman等[ |
加龙河 | 曼塔拖网 | 0.15 | 白色、黑色、蓝色 | — | PE、PS、PP | Carvalho等[ |
中国宁波奉化江 | 不锈钢桶、不锈钢筛子 | 300~4000 | 透明、蓝色、黑色、白色 | 纤维 | PP、PE | Xu等[ |
中国山东威海 | 自制拖网、钢筛 | 5.9±3.5 | 透明、白色、黑色、黄色、红色、蓝色、绿色 | 碎片(45.4%) | PE、PP、PS | Zhang等[ |
中国青藏高原 | 集水器 | 856 | — | — | PP、PE、PS、PET | Liu等[ |
韩国 | 不锈钢取样器、潜水泵 | 1140±880 | — | 碎片(80%) | PP、PE、PA | Jung等[ |
调查的国家或地区 | 类型 | 取样方法 | 丰度 | 大小 | 主要形状 | 主要类别 | 参考文献 |
---|---|---|---|---|---|---|---|
德国汉堡 | 室外 | 利用散装采样器收集 沉降的微塑料 | 136.5~512items/ (m2·d) | 1000~5000μm | 碎片(95%) | EVAC、PTFE、PVA、PE | Klein等[ |
中国上海 | 室外 | 利用采样器主动吸收 空气及其中的颗粒物 | 0~4.18items/m3 | 23.07~9555μm | 纤维(67%) | PET、PE、PES、PAN、PAA、EVA、RY、EP | Liu等[ |
中国温州 | 室外 | 利用采样器主动吸收 空气及其中的颗粒物 | (188.7±84.8) items/m3 | 5~1794μm | 碎片(89.7%~96.3%) | PE、PS、PES | Liao等[ |
室内 | (1583.3±1180.6)items/m3 | 5~4665µm | 碎片(83.5%~94.2%) | PES、PA、 PP | |||
丹麦奥尔胡斯 | 室内 | 利用采样器主动吸收 空气及其中的颗粒物 | 9.3±5.8items/m3 | 11~370µm | 碎片(87%) | PE、PET、PP、PA | Vianello等[ |
伊朗阿萨鲁耶 | 室外 | 利用聚乙烯袋收集灰尘 | 3.75~13.5items/kg | 小于25µm; 大于100µm | 纤维 | — | Abbasi等[ |
印度钦奈 | 室外 | 通过收集灰尘来提取 微塑料 | 22.794±9.137 items/kg | — | 碎片(92.46%) | PVC、EVA、PE、PTFE | Patchaiyappan等[ |
英国亨伯地区 | 室内 | 将烧杯静置收集沉降的颗粒物 | 0~5412items/(m2·d) | 5~5000µm | 纤维(90%) | PET、PA、PP、PA、PAN、PMMA | Jenner等[ |
英国伦敦 | 室外 | 使用铝制雨量计收集 沉降颗粒物 | 575~1008items/(m2·d) | 纤维(905±641)μm;非纤维(164±167)μm | 纤维(92%) | PAN、PES、PA、PP、PVC、PE、PET、PS | Wright等[ |
澳大利亚维多利亚 | 室外 | 使用钢勺或平底锅收集路边灰尘 | 20.6~529.3items/kg | 80~4700μm | 纤维 | PP、PET | Su等[ |
澳大利亚 | 室内 | 利用采样器主动吸收 空气及其中的颗粒物 | (1.6±1.8)items/m3 | 19~3948μm | 纤维(87%) | — | O’Brien等[ |
表3 大气中微塑料的特征
调查的国家或地区 | 类型 | 取样方法 | 丰度 | 大小 | 主要形状 | 主要类别 | 参考文献 |
---|---|---|---|---|---|---|---|
德国汉堡 | 室外 | 利用散装采样器收集 沉降的微塑料 | 136.5~512items/ (m2·d) | 1000~5000μm | 碎片(95%) | EVAC、PTFE、PVA、PE | Klein等[ |
中国上海 | 室外 | 利用采样器主动吸收 空气及其中的颗粒物 | 0~4.18items/m3 | 23.07~9555μm | 纤维(67%) | PET、PE、PES、PAN、PAA、EVA、RY、EP | Liu等[ |
中国温州 | 室外 | 利用采样器主动吸收 空气及其中的颗粒物 | (188.7±84.8) items/m3 | 5~1794μm | 碎片(89.7%~96.3%) | PE、PS、PES | Liao等[ |
室内 | (1583.3±1180.6)items/m3 | 5~4665µm | 碎片(83.5%~94.2%) | PES、PA、 PP | |||
丹麦奥尔胡斯 | 室内 | 利用采样器主动吸收 空气及其中的颗粒物 | 9.3±5.8items/m3 | 11~370µm | 碎片(87%) | PE、PET、PP、PA | Vianello等[ |
伊朗阿萨鲁耶 | 室外 | 利用聚乙烯袋收集灰尘 | 3.75~13.5items/kg | 小于25µm; 大于100µm | 纤维 | — | Abbasi等[ |
印度钦奈 | 室外 | 通过收集灰尘来提取 微塑料 | 22.794±9.137 items/kg | — | 碎片(92.46%) | PVC、EVA、PE、PTFE | Patchaiyappan等[ |
英国亨伯地区 | 室内 | 将烧杯静置收集沉降的颗粒物 | 0~5412items/(m2·d) | 5~5000µm | 纤维(90%) | PET、PA、PP、PA、PAN、PMMA | Jenner等[ |
英国伦敦 | 室外 | 使用铝制雨量计收集 沉降颗粒物 | 575~1008items/(m2·d) | 纤维(905±641)μm;非纤维(164±167)μm | 纤维(92%) | PAN、PES、PA、PP、PVC、PE、PET、PS | Wright等[ |
澳大利亚维多利亚 | 室外 | 使用钢勺或平底锅收集路边灰尘 | 20.6~529.3items/kg | 80~4700μm | 纤维 | PP、PET | Su等[ |
澳大利亚 | 室内 | 利用采样器主动吸收 空气及其中的颗粒物 | (1.6±1.8)items/m3 | 19~3948μm | 纤维(87%) | — | O’Brien等[ |
图2 微塑料在生态环境中迁移过程①塑料制品经风化、紫外线照射分裂成微塑料进入大气;②微塑料从大气干沉降至陆地;③微塑料从大气湿沉降至陆地;④微塑料因风力、动物活动等因素从陆地进入大气环境;⑤微塑料从陆地或者河流向下迁移至地下水的过程;⑥微塑料因风力、人类活动等因素从陆地进入水环境;⑦微塑料因退潮、水流等因素从水环境输送到陆地环境;⑧微塑料随水流进入海洋;⑨水厂排放的废气、废水(含有微塑料)进入大气与河流;⑩汽车、马路、建筑物等产生的微塑料进入大气与陆地环境;⑪土壤中微塑料被植物根系吸收并顺着导管积累在植物叶片;⑫植物根系、微生物、水分渗透、微塑料自身重力等影响微塑料在土壤中的迁移;⑬微塑料被微生物降解;⑭微塑料因风力、生物携带等因素从水环境进入大气;⑮微塑料因沉降、风力等因素由大气转移至水环境中;⑯海上垃圾产生的微塑料在海面迁移;⑰化妆品、纺织品等顺着洗涤废水进入水厂;⑱被生物误食的微塑料,一部分积累在生物体内,一部分随粪便排出
聚合物 | Sn | 聚合物 | Sn |
---|---|---|---|
PE | 11 | ABS | 6552 |
PA | 47 | PUR | 7384 |
PP | 1 | PVAc | 1 |
PS | 30 | EVA | 9 |
PET | 4 | PMMA | 1021 |
PVC | 10551 | PAN | 11521 |
PC | 1177 |
表4 各微塑料的危害得分
聚合物 | Sn | 聚合物 | Sn |
---|---|---|---|
PE | 11 | ABS | 6552 |
PA | 47 | PUR | 7384 |
PP | 1 | PVAc | 1 |
PS | 30 | EVA | 9 |
PET | 4 | PMMA | 1021 |
PVC | 10551 | PAN | 11521 |
PC | 1177 |
HI | 危害等级 | PLIzone | 危害等级 | RI | 风险等级 |
---|---|---|---|---|---|
0~1 | Ⅰ | <10 | Ⅰ | <150 | 低 |
1~10 | Ⅱ | — | — | 150~300 | 中等 |
10~100 | Ⅲ | 10~20 | Ⅱ | 300~600 | 高度 |
100~1000 | Ⅳ | 20~30 | Ⅲ | 600~1200 | 危险 |
>1000 | Ⅴ | >30 | Ⅳ | >1200 | 极度危险 |
表5 风险评估等级表
HI | 危害等级 | PLIzone | 危害等级 | RI | 风险等级 |
---|---|---|---|---|---|
0~1 | Ⅰ | <10 | Ⅰ | <150 | 低 |
1~10 | Ⅱ | — | — | 150~300 | 中等 |
10~100 | Ⅲ | 10~20 | Ⅱ | 300~600 | 高度 |
100~1000 | Ⅳ | 20~30 | Ⅲ | 600~1200 | 危险 |
>1000 | Ⅴ | >30 | Ⅳ | >1200 | 极度危险 |
调查的国家或地区 | 丰度范围(均值)/items·kg-1 | 主要类别 | 参考文献 |
---|---|---|---|
中国台湾 | 80~480(200) | PE(45%)、PP(55%) | Chen等[ |
中国上海 | 8.1~12.5(10.3) | PE(61.4%)、PP(35.1%)、PVC(3.5%) | Lyu等[ |
中国江苏 | 420~1290(855) | PP(24%)、PE(43%)、PET(24%) | Li等[ |
中国武汉 | 320~12560(2020)(DW) | PA(32.5%)、PP(28.8%)、PS(16.9%)、PVC(1.9%)、PE(4.2%) | Chen等[ |
中国长江 | 4.94~252.7(37.32) | PP(65%)、PE(14%)、PA(2%)、PS(2%) | Cao等[ |
加拿大安大略 | 25~298(161.5) | PE(51.3%)、PP(24.2%)、PET(20.3%)、PS(4.2%) | Crossman等[ |
中国陕西毛乌素沙地 | 1360~4960(3295) | PP(53.1%)、PS(15.88%)、PE(24.85%)、PVC(5.51%)、PET(0.67%) | Ding等[ |
中国青藏高原 | 20~110(47.94) | PP(10%)、PA(26.25%)、PE(46.51%)、PS(7.5%) | Feng等[ |
中国广东贵屿 | 0~34100(9450) | PS(12.44%)、PP(11.98%) | Chai等[ |
中国武汉 | 2.2×104~6.9×105(2.2×105) | PE(36.1%)、PP(11.5%)、PS(8.9%)、PA(17.3%)、PVC(8.5%) | Zhou等[ |
中国北京 | 272~13752(4910.2) | PE(50.12%)、PP(41.25%) | Chen等[ |
瑞士 | 50~593(321.5) | PE(88%)、PS(3%)、PVC(2%)、PP(1%) | Scheurer等[ |
中国浙江 | 24.6~55.8(40.2) | PP(37.8%)、PAN(8.1%)、PA(2.7%) | Yang等[ |
智利 | 作物地:220~860(540) | PP(11.43%)、PS(11.43%)、PE(22.86%)、PVC(8.57%) | Corradini等[ |
牧场:180~660(420) | PE(30%)、PP(20%)、PVCV(10%) | ||
中国山东寿光 | 310~5698(1444) | PE(39.7%)、PU(1.7%)、PS(7.9%) | Yu等[ |
中国江西鹰潭 | 13.7~19.1(16.4) | PP(7.14%) | Yang等[ |
中国长江 | 230~9846(3877) | PA(32.2%)、PS(13.8%)、PVC(10.7%)、PE(10.1%)、PP(9.9%)、 PAN(5.7%)、PC(5.2%) | Zhou等[ |
毛里求斯 | 73.3~293.3(150.5) | PP(56.26%)、PA(28.71%)、PE(10.17%)、PS(2.7%)、EVA(2.16%) | Ragoobur等[ |
中国渤海、辽河、大辽河、大凌河、大庆河、福州河、柳沟河、兴城河、小凌河、熊岳河 | 20~1345(510) | PE(47%)、PA(1.4%)、PP(26%) | Xu等[ |
德国石勒苏益格- 荷尔斯泰因 | 0~217.8(3.7) | PE(87%)、PVC(3%)、PP(4%) | Harms等[ |
中国东南地区 | 8.3~5738.3(2 873.3) | PS(75.2%)、PP(11.7%)、PE(2.8%)、PET(3.4%) | Zhou等[ |
中国上海 | 71.53~97.97(84.75) | PE(43.43%)、PP(50.51%) | Liu等[ |
美国华盛顿 | 334~3068(1270) | PS(29%)、PP(4%)、PE(8%)、PET(3%) | Helcoski等[ |
中国青藏高原 | 0~260(48.55) | PE(55%)、PA(19.5%)、PP(7.5%)、PS(7%) | Feng等[ |
中国上海 | 136.6~256.7(196.65) | PP(40%)、PE(35.5%)、PET(6.7%)、PA(2.2%) | Liu等[ |
Muara Angke 野生动物 保护区 | 11.83~47.79(28.09) | PS(44.62%)、PP(29.23%)、PE(15.38%) | Cordova等[ |
中国河北、山东、陕西、 湖北、吉林 | 2783~6366(4496) | PE(20.88%)、PA(20.31%)、PET(12.51%)、PS(11.38%)、PP(10.82%)、PVC(7.84%) | Wang等[107] |
中国山东寿光 | 1000~3786(2384) | PA(6.79%)、PET(6.21%)、PE(16.17%)、PP(65.5%)、PS(1.17%)、PVC(0.83%)、EVA(3.08%) | Li等[ |
中国徐州 | 1300~3400(2350) | PA(19.22%)、PET(16.78%)、PE(18.9%)、PP(38%)、PS(0.85%)、 PVC(0.7%)、EVA(5.5%) | |
德国拉恩河 | 0.62~5.37(2.06) | PP(6%)、PA(5%)、PS(4%)、PET(3%) | Weber等[ |
中国滠水河 | 646~6940(3470) | PE(22.9%)、PS(17.1%)、PA(17.1%) | Liu等[ |
北极 | 252.72~1313.28(752.21) | PE(42.62%)、PP(27.34%)、PVC(14.37%) | Choudhary等[ |
越南 | 2527~3009(2800)(DW) | PE(40%)、PP(50%) | Le等[ |
英国泰晤士河 | 143~737(422.5) | PET(12.6%)、PP(4.5%)、PE(1.8%)、PS(0.9%)、PVC(0.9%) | Horton等[ |
印度内特拉瓦提河 | 26.61~205.06(84.45) | PE(83.57%)、PP(5%)、PET(7.14%)、 | Amrutha等[ |
湄南河 | 78~104(91) | PP(46.4%)、PE(25%)、PS(10%) | Ta等[ |
南非红树林 | 250~324(287) | PE(42.9%)、PP(28.6%)、PS(15.6%)、PA(3.9%)、PUR(1.3%) | Govender等[ |
越南红树林 | 31990~92560(62275) | PE(36.78%)、PET(23.47%)、PVC(12.62%)、PP(15.11%)、PS(6.3%) | Khuyen等[ |
挪威 | 20~1710(865)(DW) | PET(50%)、PP(18%)、PMMA(9%)、PA(1%) | Bronzo等[ |
表6 土壤中微塑料丰度 (t)
调查的国家或地区 | 丰度范围(均值)/items·kg-1 | 主要类别 | 参考文献 |
---|---|---|---|
中国台湾 | 80~480(200) | PE(45%)、PP(55%) | Chen等[ |
中国上海 | 8.1~12.5(10.3) | PE(61.4%)、PP(35.1%)、PVC(3.5%) | Lyu等[ |
中国江苏 | 420~1290(855) | PP(24%)、PE(43%)、PET(24%) | Li等[ |
中国武汉 | 320~12560(2020)(DW) | PA(32.5%)、PP(28.8%)、PS(16.9%)、PVC(1.9%)、PE(4.2%) | Chen等[ |
中国长江 | 4.94~252.7(37.32) | PP(65%)、PE(14%)、PA(2%)、PS(2%) | Cao等[ |
加拿大安大略 | 25~298(161.5) | PE(51.3%)、PP(24.2%)、PET(20.3%)、PS(4.2%) | Crossman等[ |
中国陕西毛乌素沙地 | 1360~4960(3295) | PP(53.1%)、PS(15.88%)、PE(24.85%)、PVC(5.51%)、PET(0.67%) | Ding等[ |
中国青藏高原 | 20~110(47.94) | PP(10%)、PA(26.25%)、PE(46.51%)、PS(7.5%) | Feng等[ |
中国广东贵屿 | 0~34100(9450) | PS(12.44%)、PP(11.98%) | Chai等[ |
中国武汉 | 2.2×104~6.9×105(2.2×105) | PE(36.1%)、PP(11.5%)、PS(8.9%)、PA(17.3%)、PVC(8.5%) | Zhou等[ |
中国北京 | 272~13752(4910.2) | PE(50.12%)、PP(41.25%) | Chen等[ |
瑞士 | 50~593(321.5) | PE(88%)、PS(3%)、PVC(2%)、PP(1%) | Scheurer等[ |
中国浙江 | 24.6~55.8(40.2) | PP(37.8%)、PAN(8.1%)、PA(2.7%) | Yang等[ |
智利 | 作物地:220~860(540) | PP(11.43%)、PS(11.43%)、PE(22.86%)、PVC(8.57%) | Corradini等[ |
牧场:180~660(420) | PE(30%)、PP(20%)、PVCV(10%) | ||
中国山东寿光 | 310~5698(1444) | PE(39.7%)、PU(1.7%)、PS(7.9%) | Yu等[ |
中国江西鹰潭 | 13.7~19.1(16.4) | PP(7.14%) | Yang等[ |
中国长江 | 230~9846(3877) | PA(32.2%)、PS(13.8%)、PVC(10.7%)、PE(10.1%)、PP(9.9%)、 PAN(5.7%)、PC(5.2%) | Zhou等[ |
毛里求斯 | 73.3~293.3(150.5) | PP(56.26%)、PA(28.71%)、PE(10.17%)、PS(2.7%)、EVA(2.16%) | Ragoobur等[ |
中国渤海、辽河、大辽河、大凌河、大庆河、福州河、柳沟河、兴城河、小凌河、熊岳河 | 20~1345(510) | PE(47%)、PA(1.4%)、PP(26%) | Xu等[ |
德国石勒苏益格- 荷尔斯泰因 | 0~217.8(3.7) | PE(87%)、PVC(3%)、PP(4%) | Harms等[ |
中国东南地区 | 8.3~5738.3(2 873.3) | PS(75.2%)、PP(11.7%)、PE(2.8%)、PET(3.4%) | Zhou等[ |
中国上海 | 71.53~97.97(84.75) | PE(43.43%)、PP(50.51%) | Liu等[ |
美国华盛顿 | 334~3068(1270) | PS(29%)、PP(4%)、PE(8%)、PET(3%) | Helcoski等[ |
中国青藏高原 | 0~260(48.55) | PE(55%)、PA(19.5%)、PP(7.5%)、PS(7%) | Feng等[ |
中国上海 | 136.6~256.7(196.65) | PP(40%)、PE(35.5%)、PET(6.7%)、PA(2.2%) | Liu等[ |
Muara Angke 野生动物 保护区 | 11.83~47.79(28.09) | PS(44.62%)、PP(29.23%)、PE(15.38%) | Cordova等[ |
中国河北、山东、陕西、 湖北、吉林 | 2783~6366(4496) | PE(20.88%)、PA(20.31%)、PET(12.51%)、PS(11.38%)、PP(10.82%)、PVC(7.84%) | Wang等[107] |
中国山东寿光 | 1000~3786(2384) | PA(6.79%)、PET(6.21%)、PE(16.17%)、PP(65.5%)、PS(1.17%)、PVC(0.83%)、EVA(3.08%) | Li等[ |
中国徐州 | 1300~3400(2350) | PA(19.22%)、PET(16.78%)、PE(18.9%)、PP(38%)、PS(0.85%)、 PVC(0.7%)、EVA(5.5%) | |
德国拉恩河 | 0.62~5.37(2.06) | PP(6%)、PA(5%)、PS(4%)、PET(3%) | Weber等[ |
中国滠水河 | 646~6940(3470) | PE(22.9%)、PS(17.1%)、PA(17.1%) | Liu等[ |
北极 | 252.72~1313.28(752.21) | PE(42.62%)、PP(27.34%)、PVC(14.37%) | Choudhary等[ |
越南 | 2527~3009(2800)(DW) | PE(40%)、PP(50%) | Le等[ |
英国泰晤士河 | 143~737(422.5) | PET(12.6%)、PP(4.5%)、PE(1.8%)、PS(0.9%)、PVC(0.9%) | Horton等[ |
印度内特拉瓦提河 | 26.61~205.06(84.45) | PE(83.57%)、PP(5%)、PET(7.14%)、 | Amrutha等[ |
湄南河 | 78~104(91) | PP(46.4%)、PE(25%)、PS(10%) | Ta等[ |
南非红树林 | 250~324(287) | PE(42.9%)、PP(28.6%)、PS(15.6%)、PA(3.9%)、PUR(1.3%) | Govender等[ |
越南红树林 | 31990~92560(62275) | PE(36.78%)、PET(23.47%)、PVC(12.62%)、PP(15.11%)、PS(6.3%) | Khuyen等[ |
挪威 | 20~1710(865)(DW) | PET(50%)、PP(18%)、PMMA(9%)、PA(1%) | Bronzo等[ |
调查的国家或地区 | 丰度范围(均值)/items·m-3 | 主要类别 | 参考文献 |
---|---|---|---|
阿曼湾 | 0.04~1.41(0.605) | PE(46%)、PP(23%)、PS(11%) | Aliabad等[ |
中国青藏高原 | 66.6~733.3(277.33) | PP(32.69%)、PE(29.81%)、PS(13.46%)、PET(9.62%) | Feng等[ |
中国渤海 | 0.02~0.96(0.35) | PE(43%)、PS(19%)、PP(34%)、PET(13%) | Zhang等[ |
中国北部湾红树林 | 399~5531(2965) | PP(20%~69.2%)、PE(15.4%~52.3%) | Li等[ |
中国茅尾海 | 1.2×103~10.1×103(4500) | PP(15%)、PA(3%)、PE(3%)、PS(1.5%)、PU(2%) | Zhu等[ |
中国胶州湾 | 20~120(46) | PET(56.25%)、PP(34.38%)、PE(3.13%)、PA(3.13%)、PVAC(3.11%) | Zheng等[ |
中国宁波奉化河 | 300~4000(1658.1) | PP(57%)、PE(35%) | Xu等[ |
中国威海 | 1.57~12(5.9) | PE(41%)、PP(36%)、PS(13%) | Zhang等[ |
加龙河 | 0~3.4(0.15) | PE(44.5%)、PS(30.1%)、PP(18.2%) | Carvalho等[ |
韩国 | 0.03×103~7.88×103(1140) | PP(35%)、PE(18%) | Jung等[ |
丹麦日德兰半岛 | 490~22894(11692) | PP(71.5%)、PE(9.1%)、PVC(7.4%)、PS(2.2%) | Liu等[ |
瑞典周边海域 | 0~10.5(0.04) | PP(21%)、PE(65%)、PS(2.5%) | Schönlau等[ |
中国青藏高原 | 247~2686(856) | PP(32.69%)、PE(29.81%)、PS(13.46%)、PET(9.62%) | Liu等[ |
中国上海 | 150 ~1350(400) | PP(68.4%)、PE(31.6%) | Lyu等[ |
北极 | 9~1287(95) | PA(39%)、PP(8%)、EVA(8%) | Tekman等[ |
中国武汉 | 1990~22000(10895) | PE(41.7%)、PP(31.3%)、PS(2.1%)、PET(20.7%)、PVC(4.2%) | Sang等[ |
中国秦淮 | 1244~23800(11017) | PP(31.47%)、PE(27.32%)、PET(11.73%)、PS(9.66%)、PVC(7.92%) | Yan等[ |
中国上海 | 80~7400(3740) | PES(27.7%)、PP(8.7%) | Luo等[ |
中国查干湖 | 50~24500(3610) | PA(14%)、PS(26%)、PP(56%)、PE(4%) | Yin等[ |
中国向海 | 50~900(290) | PP(18.9%)、PS(53.2%)、PE(4.2%)、PA(23.7%) | |
中国鄱阳湖 | 5000~34000(19500) | PP(38.5%)、PE(32.3%)、PVC(16.2%) | Yuan等[ |
中国马鞍山 | 100~800(400) | PP(18.8%)、PE(18.8%)、PS(9.4%)、PA(6.3%) | Zhang等[ |
中国茅洲河 | 3400~29000(14500) | PE(45%)、PP(12.5%)、PET(1%)、PA(0.5%)、PS(34.5%)、PVC(2%)、PU(0.5%) | Wu等[ |
中国东山湾 | 0.23~4.01(1.66) | PE(25.3%)、PP(27.8%)、PS(25.3%) | Pan等[ |
中国丹江口水库 | 467~15017(2594) | PP(44.9%)、PS(34.7%)、PE(20.3%) | Di 等[ |
调查的国家或地区 | 丰度范围(均值)/items·m-3 | 主要类别 | 参考文献 |
中国绍兴 | 2100~71000(6800) | PE(0.9%)、PP(6.5%) | Deng等[ |
玛纳斯河流域 | 18000~52000(35000) | PP(30.6%)、PET(19.4%)、PE(12.9%)、PVC(14.5%)、PS(14.5%)、PA(8.1%) | Wang等[ |
印度尼西亚 | 13.33~113.33(44.67) | PET(6.56%)、PE(25.41%)、PS(22.95%)、PP(22.13%)、PU(9.84%)、PA(2.46%) | Sulistyowati等[ |
中国珠江 | 8725~53250(19860) | PVC(26.2%)、PP(13.1%)、PE(10%) | Yan等[ |
韩国洛东江 | 293~4760(2526.5) | PP(41.8%)、PE(9.4%)、PA(5.8%)、PS(2.1%)、PU(1.4%)、PVC(1.1%) | Eo等[ |
中国张江河(上海) | 50~725(246) | PP(51.7%)、PE(23.1%)、PS(6.1%)、PET(5.3%) | Pan等[ |
丹麦奥尔胡斯 | 1.7~16.2(9.3) | PE(5%)、PP(1%) | Vianello等[ |
葡萄牙 | 58~1265(661.5) | PE(29.4%)、PS(8.8%)、PP(29.4%)、PET(8.8%) | Rodrigues等[ |
印度尼西亚 | 2570~9130(5850) | PA(9.5%) | Alam等[ |
印度内特拉瓦提河 | 56~2328(288) | PE(58.33%)、PET(28.57%)、PP(3.57%)、PVC(0.40%) | Amrutha等[ |
湄南河 | 15~145(80) | PP(44.45%)、PS(27.95%)、PE(20.75%) | Ta等[ |
德国特尔托运河 桑托斯湾 | 10~95800(47905) | PE(80%)、PP(12%)、PS(4.5%) | Schmidt等[ |
美国蒙大拿州 | 0~67500(1200) | PET(13%)、PA(4%)、PP(4%)、 | Barrows等[ |
北冰洋 | 0~18(9) | PET(70%)、PA(23%)、PVC(7%) | Kanhai等[ |
南非红树林 | 0~10.66(5.06) | PE(42.9%)、PP(28.6%)、PS(15.6%)、PA(3.9%)、PUR(1.3%) | Govender等[ |
越南红树林 | 1710~9420(5095) | PE(36.78%)、PET(23.47%)、PVC(12.62%)、PP(15.11%)、PS(6.3%) | Khuyen等[ |
表7 水体中微塑料丰度
调查的国家或地区 | 丰度范围(均值)/items·m-3 | 主要类别 | 参考文献 |
---|---|---|---|
阿曼湾 | 0.04~1.41(0.605) | PE(46%)、PP(23%)、PS(11%) | Aliabad等[ |
中国青藏高原 | 66.6~733.3(277.33) | PP(32.69%)、PE(29.81%)、PS(13.46%)、PET(9.62%) | Feng等[ |
中国渤海 | 0.02~0.96(0.35) | PE(43%)、PS(19%)、PP(34%)、PET(13%) | Zhang等[ |
中国北部湾红树林 | 399~5531(2965) | PP(20%~69.2%)、PE(15.4%~52.3%) | Li等[ |
中国茅尾海 | 1.2×103~10.1×103(4500) | PP(15%)、PA(3%)、PE(3%)、PS(1.5%)、PU(2%) | Zhu等[ |
中国胶州湾 | 20~120(46) | PET(56.25%)、PP(34.38%)、PE(3.13%)、PA(3.13%)、PVAC(3.11%) | Zheng等[ |
中国宁波奉化河 | 300~4000(1658.1) | PP(57%)、PE(35%) | Xu等[ |
中国威海 | 1.57~12(5.9) | PE(41%)、PP(36%)、PS(13%) | Zhang等[ |
加龙河 | 0~3.4(0.15) | PE(44.5%)、PS(30.1%)、PP(18.2%) | Carvalho等[ |
韩国 | 0.03×103~7.88×103(1140) | PP(35%)、PE(18%) | Jung等[ |
丹麦日德兰半岛 | 490~22894(11692) | PP(71.5%)、PE(9.1%)、PVC(7.4%)、PS(2.2%) | Liu等[ |
瑞典周边海域 | 0~10.5(0.04) | PP(21%)、PE(65%)、PS(2.5%) | Schönlau等[ |
中国青藏高原 | 247~2686(856) | PP(32.69%)、PE(29.81%)、PS(13.46%)、PET(9.62%) | Liu等[ |
中国上海 | 150 ~1350(400) | PP(68.4%)、PE(31.6%) | Lyu等[ |
北极 | 9~1287(95) | PA(39%)、PP(8%)、EVA(8%) | Tekman等[ |
中国武汉 | 1990~22000(10895) | PE(41.7%)、PP(31.3%)、PS(2.1%)、PET(20.7%)、PVC(4.2%) | Sang等[ |
中国秦淮 | 1244~23800(11017) | PP(31.47%)、PE(27.32%)、PET(11.73%)、PS(9.66%)、PVC(7.92%) | Yan等[ |
中国上海 | 80~7400(3740) | PES(27.7%)、PP(8.7%) | Luo等[ |
中国查干湖 | 50~24500(3610) | PA(14%)、PS(26%)、PP(56%)、PE(4%) | Yin等[ |
中国向海 | 50~900(290) | PP(18.9%)、PS(53.2%)、PE(4.2%)、PA(23.7%) | |
中国鄱阳湖 | 5000~34000(19500) | PP(38.5%)、PE(32.3%)、PVC(16.2%) | Yuan等[ |
中国马鞍山 | 100~800(400) | PP(18.8%)、PE(18.8%)、PS(9.4%)、PA(6.3%) | Zhang等[ |
中国茅洲河 | 3400~29000(14500) | PE(45%)、PP(12.5%)、PET(1%)、PA(0.5%)、PS(34.5%)、PVC(2%)、PU(0.5%) | Wu等[ |
中国东山湾 | 0.23~4.01(1.66) | PE(25.3%)、PP(27.8%)、PS(25.3%) | Pan等[ |
中国丹江口水库 | 467~15017(2594) | PP(44.9%)、PS(34.7%)、PE(20.3%) | Di 等[ |
调查的国家或地区 | 丰度范围(均值)/items·m-3 | 主要类别 | 参考文献 |
中国绍兴 | 2100~71000(6800) | PE(0.9%)、PP(6.5%) | Deng等[ |
玛纳斯河流域 | 18000~52000(35000) | PP(30.6%)、PET(19.4%)、PE(12.9%)、PVC(14.5%)、PS(14.5%)、PA(8.1%) | Wang等[ |
印度尼西亚 | 13.33~113.33(44.67) | PET(6.56%)、PE(25.41%)、PS(22.95%)、PP(22.13%)、PU(9.84%)、PA(2.46%) | Sulistyowati等[ |
中国珠江 | 8725~53250(19860) | PVC(26.2%)、PP(13.1%)、PE(10%) | Yan等[ |
韩国洛东江 | 293~4760(2526.5) | PP(41.8%)、PE(9.4%)、PA(5.8%)、PS(2.1%)、PU(1.4%)、PVC(1.1%) | Eo等[ |
中国张江河(上海) | 50~725(246) | PP(51.7%)、PE(23.1%)、PS(6.1%)、PET(5.3%) | Pan等[ |
丹麦奥尔胡斯 | 1.7~16.2(9.3) | PE(5%)、PP(1%) | Vianello等[ |
葡萄牙 | 58~1265(661.5) | PE(29.4%)、PS(8.8%)、PP(29.4%)、PET(8.8%) | Rodrigues等[ |
印度尼西亚 | 2570~9130(5850) | PA(9.5%) | Alam等[ |
印度内特拉瓦提河 | 56~2328(288) | PE(58.33%)、PET(28.57%)、PP(3.57%)、PVC(0.40%) | Amrutha等[ |
湄南河 | 15~145(80) | PP(44.45%)、PS(27.95%)、PE(20.75%) | Ta等[ |
德国特尔托运河 桑托斯湾 | 10~95800(47905) | PE(80%)、PP(12%)、PS(4.5%) | Schmidt等[ |
美国蒙大拿州 | 0~67500(1200) | PET(13%)、PA(4%)、PP(4%)、 | Barrows等[ |
北冰洋 | 0~18(9) | PET(70%)、PA(23%)、PVC(7%) | Kanhai等[ |
南非红树林 | 0~10.66(5.06) | PE(42.9%)、PP(28.6%)、PS(15.6%)、PA(3.9%)、PUR(1.3%) | Govender等[ |
越南红树林 | 1710~9420(5095) | PE(36.78%)、PET(23.47%)、PVC(12.62%)、PP(15.11%)、PS(6.3%) | Khuyen等[ |
调查的国家或地区 | 丰度范围(均值) | 主要类别 | 参考文献 |
---|---|---|---|
德国汉堡 | 136.5~512(324.25)items/(m2·d) | PE(48.8%) | Klein等[ |
中国温州 | 室外:103.9~273.5(188.7)items/m3 | PE(26.8%)、PS(17.8%)、PET(17.2%) | Liao等[ |
室内:402.7~2763.9(1583.3)items/m3 | PET(28.4%)、PA(20.54%)、PP(16.3%) | ||
中国上海 | 0~4.18(1.42)items/m3 | PE(25.93%)、PAN(11.11%)、EVA(3.7%)、PET(29.63%) | Liu等[ |
印度钦奈 | 1.7~40.8(22.794)items/kg | PVC(24%) | Patchaiyappan等[ |
英国亨伯 | 0~5412(1414)items/(m2·d) | PP(4%)、PMMA(3%)、PET(63%)、PE(3%)、PAN(3%)、 PA(6%) | Jenner等[ |
法国比利牛斯山 | 296~434(365)items/(m2·d) | PS(41%)、PE(32%)、PP(18%)、PVC(7%)、PET(2%) | Allen等[ |
英国伦敦 | 纤维:510~925(712)items/(m2·d) | PAN(67%)、PET(19%)、PA(9%) | Wright等[ |
非纤维:12~99(59)items/(m2·d) | PP(12.5%)、PVC(9.4%)、PE(12.5%)、PET)11.5%)、 PS(18.8%)、PUR(11.5%) | ||
西太平洋 | 0~1.37(0.01)items/m3 | PET(57%)、PS(12.3%) | Liu等[ |
中国烟台 | 纤维:1.38×105(69000)items/(m2·d) | PET(40%)、PVC(10%) | 周倩等[ |
中国烟台、大连、天津 | 35.7~391.4(172.47)items/(m2·d) | PET(36.9%)、PU(1.2%)、PP(2.9%)、PA(1.1%)、PVAC(0.1%) | 田媛等[ |
中国上海 | 9.94×104~6.52×105(3×105)items/(m2·d) | PET(51%)、PE(12%) | Liu等 [ |
丹麦奥尔胡斯 | 1.7~16.2(9.3)items/m3 | PE(6%)、PET(81%)、PP(2%)、PA(5%) | Vianello等[ |
中国上海华东师范大学 | 宿舍:2.1×103~2.9×104(15550)items/(m2·d) | PA(1%) | Zhang等[ |
办公室:600~4500(2550)items/(m2·d) | PA(2%)、PP(0.75%)、PS(0.75%) | ||
走廊:500~6000(3250)items/(m2·d) | PA(0.75%) | ||
中国东莞 | 175~313(244)items/(m2·d) | PE(14%)、PP(9%)、PS(4%) | Cai等[ |
中国珠江口 | 1.7~6.7(4.2)×10-2items/m3 | PP(13.3%)、PET(62.1%)、PA(11.8%) | Wang等[ |
东印度洋 | 0~10(4)×10-3items/m3 | PP(19.9%)、PET(39.8%) | |
南中国海 | 0~21(8)×10-3items/m3 | PP(50.2%)、PET(24.6%) | |
日本草津 | 0.1~5.3(2)items/m3 | PE(31.7%)、PP(18%)、PS(0.9%)、PET(1.7%)、PU(4.5%) | Yukioka等[ |
越南舰港 | 2.6~39.6(19.7)items/m3 | PE(45.3%)、PP(8.3%)、PS(10.1%)、PET(3.7%)、PU(0.58%) | |
尼泊尔加德满都 | 0.5~28.4(12.5)items/m3 | PE(51.25%)、PP(7.75%)、PS(0.67%)、PET(8.1%)、PU(1.4%) | |
澳大利亚维多利亚 | 20.6~529.3(222)items/kg | PET(26%)、PP(26%) | Su等[ |
调查的国家或地区 | 丰度范围(均值) | 主要类别 | 参考文献 |
美国加州南部沿海 | 2.4~26.8(11.05)items/m3 | PVC(5%)、PE(5%)、PC(3%)、PS(3%)、ABS(6%) | Gaston等[ |
美国新泽西州 | 1.29×104~2.56×104(19250)items/(m2·d) | PE(40%)、PET(26%)、PS(20%)、PP(7%)、PVC(7%) | Yao等[ |
中国南海 | 0.5~1.6(1.05)×10-2items/m3 | PET(62.82%)、PP(19.23%) | Li等[ |
波罗海南部 | 0~30(10)items/(m2·d) | 纤维(60%):PP(18%)、PVC(14%)、PE(14%) | Szewc等[ |
澳大利亚悉尼 | 纤维:22~6169(3095)items/(m2·d) | PE(25%)、PET(17%)、PP(15%)、PVC(16%) | Soltani等[ |
巴西圣保罗大学 | 7.18~33.05(20)items/m3 | PET(80.4%)、PA(5.6%) | Amato- Lourenco等[ |
伊朗 | 17200~37000(26400)items/kg | PS(26.5%)、PE(20.5%)、PP(38.2%)、PET(5.9%)、PVC(5.9%) | Abbasi等[ |
南海西北部 | 0.013~0.063(0.035)items/m3 | PET(29%)、PP(15%)、PE(13%)、PA(8%)、PS(10%)、 | Ding等[ |
爱尔兰 | 64~102(80)items/(m2·d) | PET(71%)、PAN(11%)、PE(11%)、PP(4%) | Roblin等[ |
意大利 | 0~7390(2320)items/m3 | PE(39%)、PET(17%)、PP(5%) | Parolini等[ |
太平洋 | 0.0046~0.046(0.027)items/m3 | PET(23%) | Ding等[ |
印度尼西亚 | 3~40(15)items/(m2·d) | PET(81.82%)、PE(7.58%)、PS(3.03%) | Purwiyanto等[ |
波罗的海 | 0~301(60)items/m3 | PC(35.5%)、PE(11.8%)、PET(5.3%)、PU(5.3%)、PA(2.6%) | Ferrero等[ |
表8 大气中微塑料丰度
调查的国家或地区 | 丰度范围(均值) | 主要类别 | 参考文献 |
---|---|---|---|
德国汉堡 | 136.5~512(324.25)items/(m2·d) | PE(48.8%) | Klein等[ |
中国温州 | 室外:103.9~273.5(188.7)items/m3 | PE(26.8%)、PS(17.8%)、PET(17.2%) | Liao等[ |
室内:402.7~2763.9(1583.3)items/m3 | PET(28.4%)、PA(20.54%)、PP(16.3%) | ||
中国上海 | 0~4.18(1.42)items/m3 | PE(25.93%)、PAN(11.11%)、EVA(3.7%)、PET(29.63%) | Liu等[ |
印度钦奈 | 1.7~40.8(22.794)items/kg | PVC(24%) | Patchaiyappan等[ |
英国亨伯 | 0~5412(1414)items/(m2·d) | PP(4%)、PMMA(3%)、PET(63%)、PE(3%)、PAN(3%)、 PA(6%) | Jenner等[ |
法国比利牛斯山 | 296~434(365)items/(m2·d) | PS(41%)、PE(32%)、PP(18%)、PVC(7%)、PET(2%) | Allen等[ |
英国伦敦 | 纤维:510~925(712)items/(m2·d) | PAN(67%)、PET(19%)、PA(9%) | Wright等[ |
非纤维:12~99(59)items/(m2·d) | PP(12.5%)、PVC(9.4%)、PE(12.5%)、PET)11.5%)、 PS(18.8%)、PUR(11.5%) | ||
西太平洋 | 0~1.37(0.01)items/m3 | PET(57%)、PS(12.3%) | Liu等[ |
中国烟台 | 纤维:1.38×105(69000)items/(m2·d) | PET(40%)、PVC(10%) | 周倩等[ |
中国烟台、大连、天津 | 35.7~391.4(172.47)items/(m2·d) | PET(36.9%)、PU(1.2%)、PP(2.9%)、PA(1.1%)、PVAC(0.1%) | 田媛等[ |
中国上海 | 9.94×104~6.52×105(3×105)items/(m2·d) | PET(51%)、PE(12%) | Liu等 [ |
丹麦奥尔胡斯 | 1.7~16.2(9.3)items/m3 | PE(6%)、PET(81%)、PP(2%)、PA(5%) | Vianello等[ |
中国上海华东师范大学 | 宿舍:2.1×103~2.9×104(15550)items/(m2·d) | PA(1%) | Zhang等[ |
办公室:600~4500(2550)items/(m2·d) | PA(2%)、PP(0.75%)、PS(0.75%) | ||
走廊:500~6000(3250)items/(m2·d) | PA(0.75%) | ||
中国东莞 | 175~313(244)items/(m2·d) | PE(14%)、PP(9%)、PS(4%) | Cai等[ |
中国珠江口 | 1.7~6.7(4.2)×10-2items/m3 | PP(13.3%)、PET(62.1%)、PA(11.8%) | Wang等[ |
东印度洋 | 0~10(4)×10-3items/m3 | PP(19.9%)、PET(39.8%) | |
南中国海 | 0~21(8)×10-3items/m3 | PP(50.2%)、PET(24.6%) | |
日本草津 | 0.1~5.3(2)items/m3 | PE(31.7%)、PP(18%)、PS(0.9%)、PET(1.7%)、PU(4.5%) | Yukioka等[ |
越南舰港 | 2.6~39.6(19.7)items/m3 | PE(45.3%)、PP(8.3%)、PS(10.1%)、PET(3.7%)、PU(0.58%) | |
尼泊尔加德满都 | 0.5~28.4(12.5)items/m3 | PE(51.25%)、PP(7.75%)、PS(0.67%)、PET(8.1%)、PU(1.4%) | |
澳大利亚维多利亚 | 20.6~529.3(222)items/kg | PET(26%)、PP(26%) | Su等[ |
调查的国家或地区 | 丰度范围(均值) | 主要类别 | 参考文献 |
美国加州南部沿海 | 2.4~26.8(11.05)items/m3 | PVC(5%)、PE(5%)、PC(3%)、PS(3%)、ABS(6%) | Gaston等[ |
美国新泽西州 | 1.29×104~2.56×104(19250)items/(m2·d) | PE(40%)、PET(26%)、PS(20%)、PP(7%)、PVC(7%) | Yao等[ |
中国南海 | 0.5~1.6(1.05)×10-2items/m3 | PET(62.82%)、PP(19.23%) | Li等[ |
波罗海南部 | 0~30(10)items/(m2·d) | 纤维(60%):PP(18%)、PVC(14%)、PE(14%) | Szewc等[ |
澳大利亚悉尼 | 纤维:22~6169(3095)items/(m2·d) | PE(25%)、PET(17%)、PP(15%)、PVC(16%) | Soltani等[ |
巴西圣保罗大学 | 7.18~33.05(20)items/m3 | PET(80.4%)、PA(5.6%) | Amato- Lourenco等[ |
伊朗 | 17200~37000(26400)items/kg | PS(26.5%)、PE(20.5%)、PP(38.2%)、PET(5.9%)、PVC(5.9%) | Abbasi等[ |
南海西北部 | 0.013~0.063(0.035)items/m3 | PET(29%)、PP(15%)、PE(13%)、PA(8%)、PS(10%)、 | Ding等[ |
爱尔兰 | 64~102(80)items/(m2·d) | PET(71%)、PAN(11%)、PE(11%)、PP(4%) | Roblin等[ |
意大利 | 0~7390(2320)items/m3 | PE(39%)、PET(17%)、PP(5%) | Parolini等[ |
太平洋 | 0.0046~0.046(0.027)items/m3 | PET(23%) | Ding等[ |
印度尼西亚 | 3~40(15)items/(m2·d) | PET(81.82%)、PE(7.58%)、PS(3.03%) | Purwiyanto等[ |
波罗的海 | 0~301(60)items/m3 | PC(35.5%)、PE(11.8%)、PET(5.3%)、PU(5.3%)、PA(2.6%) | Ferrero等[ |
环境 | HI | PLI | RI | |||||
---|---|---|---|---|---|---|---|---|
平均值 | 危险等级 | 平均值 | 负荷等级 | 平均值 | 风险等级 | |||
水 | 998.4 | Ⅳ | 0.60477 | Ⅰ | 0.00355~46055 | 中级 | ||
土 | 1088.6 | Ⅴ | 0.5114 | Ⅰ | 0.000697~119372 | 中级 | ||
大气 | ||||||||
/items·m-2·d-1 | 403.5 | Ⅳ | 0.3797 | Ⅰ | 0.010954~10616 | 中级 | ||
/items·m-3 | 35.6 | Ⅲ | 0.2383 | Ⅰ | 0.000247~1683 | |||
/items·kg-1 | 652.6 | Ⅳ | 0.2984 | Ⅰ | 0.05027~2912 |
表9 三相风险评价表(平均值)
环境 | HI | PLI | RI | |||||
---|---|---|---|---|---|---|---|---|
平均值 | 危险等级 | 平均值 | 负荷等级 | 平均值 | 风险等级 | |||
水 | 998.4 | Ⅳ | 0.60477 | Ⅰ | 0.00355~46055 | 中级 | ||
土 | 1088.6 | Ⅴ | 0.5114 | Ⅰ | 0.000697~119372 | 中级 | ||
大气 | ||||||||
/items·m-2·d-1 | 403.5 | Ⅳ | 0.3797 | Ⅰ | 0.010954~10616 | 中级 | ||
/items·m-3 | 35.6 | Ⅲ | 0.2383 | Ⅰ | 0.000247~1683 | |||
/items·kg-1 | 652.6 | Ⅳ | 0.2984 | Ⅰ | 0.05027~2912 |
环境 | HI | PLI | RI | |||||
---|---|---|---|---|---|---|---|---|
最高值 | 危险等级 | 最高值 | 负荷等级 | 最高值 | 风险等级 | |||
水 | 801.5 | Ⅳ | 1.00587 | I | 0.0076~123484 | 中级 | ||
土 | 600.23 | Ⅳ | 0.7512 | I | 0.000812~374397 | 中级 | ||
大气 | ||||||||
/items·m-2·d-1 | 265 | Ⅳ | 0.50174 | I | 0.02921~21233 | 中级 | ||
/items·m-3 | 82 | Ⅲ | 0.39356 | I | 0.000618~8441 | |||
/items·kg-1 | 650 | Ⅳ | 0.402 | I | 0.11986~4082 |
表10 三相风险评价表(最高值)
环境 | HI | PLI | RI | |||||
---|---|---|---|---|---|---|---|---|
最高值 | 危险等级 | 最高值 | 负荷等级 | 最高值 | 风险等级 | |||
水 | 801.5 | Ⅳ | 1.00587 | I | 0.0076~123484 | 中级 | ||
土 | 600.23 | Ⅳ | 0.7512 | I | 0.000812~374397 | 中级 | ||
大气 | ||||||||
/items·m-2·d-1 | 265 | Ⅳ | 0.50174 | I | 0.02921~21233 | 中级 | ||
/items·m-3 | 82 | Ⅲ | 0.39356 | I | 0.000618~8441 | |||
/items·kg-1 | 650 | Ⅳ | 0.402 | I | 0.11986~4082 |
环境 | HI | PLI | RI | |||||
---|---|---|---|---|---|---|---|---|
最高值 | 危险等级 | 最高值 | 负荷等级 | 最高值 | 风险等级 | |||
水 | 801.5 | Ⅳ | 7.11 | I | 0.3803~6174247 | 高度 | ||
土 | 600.23 | Ⅳ | 5.31 | I | 0.04058~18719841 | 高度 | ||
大气 | ||||||||
/items·m-2·d-1 | 265 | Ⅳ | 3.55 | I | 1.4606~1061640 | 高度 | ||
/items·m-3 | 82 | Ⅲ | 2.78 | I | 0.03093~422070 | |||
/items·kg-1 | 650 | Ⅳ | 2.84 | I | 5.993~204095 |
表11 2100年三相风险评价表(最高值)
环境 | HI | PLI | RI | |||||
---|---|---|---|---|---|---|---|---|
最高值 | 危险等级 | 最高值 | 负荷等级 | 最高值 | 风险等级 | |||
水 | 801.5 | Ⅳ | 7.11 | I | 0.3803~6174247 | 高度 | ||
土 | 600.23 | Ⅳ | 5.31 | I | 0.04058~18719841 | 高度 | ||
大气 | ||||||||
/items·m-2·d-1 | 265 | Ⅳ | 3.55 | I | 1.4606~1061640 | 高度 | ||
/items·m-3 | 82 | Ⅲ | 2.78 | I | 0.03093~422070 | |||
/items·kg-1 | 650 | Ⅳ | 2.84 | I | 5.993~204095 |
1 | Europe Plastics. The compelling facts about plastics—An analysis of plastics production, demand and recovery for 2006 in Europe[R/OL]. (2022-03-12). . |
2 | GEYER Roland, JAMBECK Jenna R, LAW Kara Lavender. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
3 | 塑料欧洲. 塑料——事实 2021[R/OL]. 2022-01-26.. |
Europe Plastics. Plastics —— the Facts 2021[R/OL]. 2022-01-26. . | |
4 | THOMPSON Richard C, OLSEN Ylva, MITCHELL Richard P, et al. Lost at sea: where is all the plastic? [J]. Science, 2004, 304(5672): 838. |
5 | AUTA H S, EMENIKE C U, FAUZIAH S H. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102: 165-176. |
6 | FAN Jianxin, ZOU Lan, DUAN Ting, et al. Occurrence and distribution of microplastics in surface water and sediments in China’s inland water systems: a critical review[J]. Journal of Cleaner Production, 2022, 331: 129968. |
7 | 惠进, 龙遥跃, 李紫莹, 等. 微塑料污染对浮游生物影响研究进展[J]. 应用生态学报, 2021, 32(7): 2633-2643. |
HUI Jin, LONG Yaoyue, LI Ziying, et al. Effects of microplastics pollution on plankton: a review[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2633-2643. | |
8 | 王琼杰, 张勇, 陈雨, 等. 水体中微塑料的环境影响行为研究进展[J]. 化工进展, 2020, 39(4): 1500-1510. |
WANG Qionjie, ZHANG Yong, CHEN Yu, et al. Research progress on environmental influence behavior of microplastics in water[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1500-1510. | |
9 | BARNES David K A, GALGANI Francois, THOMPSON Richard C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526): 1985-1998. |
10 | ZHANG Kai, SU Jing, XIONG Xiong, et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet Plateau, China[J]. Environmental Pollution, 2016, 219: 450-455. |
11 | JUNG Jae Woong, PARK June Woo, Soeun EO, et al. Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape[J]. Environmental Pollution (Barking, Essex: 1987), 2021, 270: 116217. |
12 | SHEN Maocai, ZHU Yuan, ZHANG Yaxin, et al. Micro(nano)plastics: unignorable vectors for organisms[J]. Marine Pollution Bulletin, 2019, 139: 328-331. |
13 | Oldamur HOLLÓCZKI, GEHRKE Sascha. Can nanoplastics alter cell membranes? [J]. Chemphyschem, 2020, 21(1): 9-12. |
14 | 李昇昇, 李良忠, 李敏, 等. 环境样品中微塑料及其结合污染物鉴别分析研究进展[J]. 环境化学, 2020, 39(4): 960-974. |
LI Shengsheng, LI Liangzhong, LI Min, et al. Study on identification of microplastics and the combined pollutants in environmental samples[J]. Environmental Chemistry, 2020, 39(4): 960-974. | |
15 | Nelson RANGEL-BUITRAGO, Harry ARROYO-OLARTE, TRILLERAS Jorge, et al. Microplastics pollution on Colombian Central Caribbean beaches[J]. Marine Pollution Bulletin, 2021, 170: 112685. |
16 | CHEN Meichi, CHEN Tehao. Spatial and seasonal distribution of microplastics on sandy beaches along the coast of the Hengchun Peninsula, Taiwan[J]. Marine Pollution Bulletin, 2020, 151: 110861. |
17 | LI Qinglan, WU Jiangtong, ZHAO Xiaopeng, et al. Separation and identification of microplastics from soil and sewage sludge[J]. Environmental Pollution, 2019, 254: 113076. |
18 | CHEN Yuling, LENG Yifei, LIU Xiaoning, et al. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China[J]. Environmental Pollution, 2020, 257: 113449. |
19 | CAO Lu, WU Di, LIU Peng, et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China[J]. Science of the Total Environment, 2021, 794: 148694. |
20 | CORRADINI F, MEZA P, EGUILUZ R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal[J]. Science of the Total Environment, 2019, 671: 411-420. |
21 | CROSSMAN J, HURLEY R R, FUTTER M, et al. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment[J]. Science of the Total Environment, 2020, 724: 138334. |
22 | BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics detected in sheep faeces and soil: a case study from the intensive vegetable farming in Southeast Spain[J]. Science of the Total Environment, 2021, 755: 142653. |
23 | HAN Xiaoxin, LU Xueqiang, VOGT R D. An optimized density-based approach for extracting microplastics from soil and sediment samples[J]. Environmental Pollution, 2019, 254: 113009. |
24 | Weiwei LYU, ZHOU Wenzong, LU Shibo, et al. Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652: 1209-1218. |
25 | DING Ling, WANG Xinglei, OUYANG Zhuozhi, et al. The occurrence of microplastic in Mu Us Sand Land soils in northwest China: different soil types, vegetation cover and restoration years[J]. Journal of Hazardous Materials, 2021, 403: 123982. |
26 | ZHOU Bianying, WANG Jiaqing, ZHANG Haibo, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388: 121814. |
27 | SUARIA Giuseppe, ACHTYPI Aikaterini, PEROLD Vonica, et al. Microfibers in oceanic surface waters: a global characterization[J]. Science Advances, 2020, 6(23): eaay8493. |
28 | JAMBECK Jenna R, GEYER Roland, WILCOX Chris, et al. Marine pollution. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. |
29 | ZHENG Yifan, LI Jingxi, CAO Wei, et al. Distribution characteristics of microplastics in the seawater and sediment: a case study in Jiaozhou Bay, China[J]. The Science of the Total Environment, 2019, 674: 27-35. |
30 | ZHANG Weiwei, ZHANG Shoufeng, ZHAO Qian, et al. Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China[J]. Marine Pollution Bulletin, 2020, 158: 111343. |
31 | ALIABAD M K, NASSIRI M, KOR K. Microplastics in the surface seawaters of chabahar bay, gulf of Oman (makran coasts)[J]. Marine Pollution Bulletin, 2019, 143: 125-133. |
32 | Christine SCHÖNLAU, KARLSSON Therese M, ROTANDER Anna, et al. Microplastics in sea-surface waters surrounding Sweden sampled by manta trawl and in situ pump[J]. Marine Pollution Bulletin, 2020, 153: 111019. |
33 | ZHU Jingmin, ZHANG Qiang, LI Yanping, et al. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China[J]. Science of the Total Environment, 2019, 658: 62-68. |
34 | LI Ruilong, ZHANG Shuaipeng, ZHANG Linlin, et al. Field study of the microplastic pollution in sea snails (Ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu Gulf[J]. Environmental Pollution, 2020, 263: 114368. |
35 | TEKMAN M B, WEKERLE C, LORENZ C, et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory[J]. Environmental Science & Technology, 2020, 54(7): 4079-4090. |
36 | DE CARVALHO A R, GARCIA F, RIEM-GALLIANO L, et al. Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic pollution in the Garonne River[J]. Science of the Total Environment, 2021, 769: 144479. |
37 | XU Yuyao, CHAN F K S, JOHNSON M, et al. Microplastic pollution in Chinese urban rivers: The influence of urban factors[J]. Resources, Conservation and Recycling, 2021, 173: 105686. |
38 | ZHANG Xiangnan, LI Shuqian, LIU Yuning, et al. Neglected microplastics pollution in the nearshore surface waters derived from coastal fishery activities in Weihai, China[J]. Science of the Total Environment, 2021, 768: 144484. |
39 | LIU Ruiping, DONG Ying, QUAN Guocang, et al. Microplastic pollution in surface water and sediments of Qinghai-Tibet Plateau: Current status and causes[J]. China Geology, 2021, 4(1): 178-184. |
40 | RECKERMANN Marcus. Climate impacts on the Baltic Sea: from science to policy: school of environmental research-organized by the Helmholtz-Zentrum Geesthacht[M]. Heidelberg: Springer, 2012. |
41 | TORRES-AGULLO A, KARANASIOU A, MORENO T, et al. Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic[J]. The Science of the Total Environment, 2021, 800: 149555. |
42 | LIAO Zhonglu, JI Xiaoliang, MA Yuan, et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China[J]. Journal of Hazardous Materials, 2021, 417: 126007. |
43 | KLEIN M, FISCHER E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J]. Science of the Total Environment, 2019, 685: 96-103. |
44 | LIU Kai, WANG Xiaohui, FANG Tao, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai[J]. Science of the Total Environment, 2019, 675: 462-471. |
45 | VIANELLO A, JENSEN R L, LIU Li, et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin[J]. Scientific Reports, 2019, 9: 8670. |
46 | ABBASI S, KESHAVARZI B, MOORE F, et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran[J]. Environmental Pollution, 2019, 244: 153-164. |
47 | PATCHAIYAPPAN A, DOWARAH K, ZAKI AHMED S, et al. Prevalence and characteristics of microplastics present in the street dust collected from Chennai metropolitan city, India[J]. Chemosphere, 2021, 269: 128757. |
48 | JENNER L C, SADOFSKY L R, DANOPOULOS E, et al. Household indoor microplastics within the Humber region (United Kingdom): quantification and chemical characterisation of particles present[J]. Atmospheric Environment, 2021, 259: 118512. |
49 | WRIGHT S L, ULKE J, FONT A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport[J]. Environment International, 2020, 136: 105411. |
50 | SU Lei, Bingxu NAN, CRAIG N J, et al. Temporal and spatial variations of microplastics in roadside dust from rural and urban Victoria, Australia: implications for diffuse pollution[J]. Chemosphere, 2020, 252: 126567. |
51 | O’BRIEN S, OKOFFO E D, O’BRIEN J W, et al. Airborne emissions of microplastic fibres from domestic laundry dryers[J]. Science of the Total Environment, 2020, 747: 141175. |
52 | FINKBEINER Matthias, INABA Atsushi, TAN Reginald, et al. The new international standards for life cycle assessment: ISO 14040 and ISO 14044[J]. The International Journal of Life Cycle Assessment, 2006, 11(2): 80-85. |
53 | 徐沛. 长江口邻近海域微塑料时空分布特征及生态风险评估初步研究[D]. 上海: 华东师范大学, 2019. |
XU Pei. Spatial and temporal distribution of microplastics and a preliminary study on ecological risk assessment of microplastics in the Changjiang Estuary and East China Sea[D]. Shanghai: East China Normal University, 2019. | |
54 | PRARAT Panida, HONGSAWAT Parnuch. Microplastic pollution in surface seawater and beach sand from the shore of Rayong Province, Thailand: distribution, characterization, and ecological risk assessment[J]. Marine Pollution Bulletin, 2022, 174: 113200. |
55 | WANG Gaoliang, LU Jianjiang, LI Wanjie, et al. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111477. |
60 | DERRAIK José G B. The pollution of the marine environment by plastic debris: a review[J]. Marine Pollution Bulletin, 2002, 44(9): 842-852. |
61 | GREGORY Murray R. Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified[J]. Marine Pollution Bulletin, 1996, 32(12): 867-871. |
62 | ALOMAR Carme, ESTARELLAS Fernando, DEUDERO Salud. Microplastics in the Mediterranean Sea: deposition in coastal shallow sediments, spatial variation and preferential grain size[J]. Marine Environmental Research, 2016, 115: 1-10. |
63 | CASTAÑEDA Rowshyra A, AVLIJAS Suncica, Anouk SIMARD M, et al. Microplastic pollution in St. Lawrence River sediments[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71(12): 1767-1771. |
64 | 康佩颖. 污水中微塑料的分析方法评价及其赋存特征研究[D]. 西安: 西安理工大学, 2021. |
KANG Peiying. Assessment of analysis methods and occurrence characteristics of microplastics in wasterwater[D]. Xi'an: Xi'an University of Technology, 2021. | |
65 | TALVITIE Julia, HEINONEN Mari, Jari-Pekka PÄÄKKÖNEN, et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2015, 72(9): 1495-1504. |
66 | WISNIOWSKA Ewa, Katarzyna MORACZEWSKA-MAJKUT, NOCON Witold. Efficiency of microplastics removal in selected wastewater treatment plants-preliminary studies[J]. Desalination and Water Treatment, 2018, 134: 316-323. |
67 | 滕佳. 莱州湾微塑料污染特征及其对典型双壳贝类生态毒性效应研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2021. |
TENG Jia. Microplastic pollution in Laizhou Bay and its ecotoxic effects on typical bivalves[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2021. | |
68 | GAO Ding, LI Xinyu, LIU Hongtao. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil[J]. The Science of the Total Environment, 2020, 742: 140355. |
69 | FORTE Maurizio, IACHETTA Giuseppina, TUSSELLINO Margherita, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J]. Toxicology in Vitro, 2016, 31: 126-136. |
70 | 王彤, 胡献刚, 周启星. 环境中微塑料的迁移分布、生物效应及分析方法的研究进展[J]. 科学通报, 2018, 63(4): 385-395. |
WANG Tong, HU Xiangang, ZHOU Qixing. The research progress in migration, distribution, biological effects and analytical methods of microplastics[J]. Chinese Science Bulletin, 2018, 63(4): 385-395. | |
71 | ALLEN Steve, ALLEN Deonie, PHOENIX Vernon R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344. |
72 | DRIS Rachid, GASPERI Johnny, SAAD Mohamed, et al. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. |
73 | ZHU Dong, BI Qingfang, XIANG Qian, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235: 150-154. |
74 | MAASS Stefanie, DAPHI Daniel, LEHMANN Anika, et al. Transport of microplastics by two collembolan species[J]. Environmental Pollution, 2017, 225: 456-459. |
75 | LI Lianzhen, LUO Yongming, LI Ruijie, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. |
76 | SCHWABL Philipp, Sebastian KÖPPEL, Philipp KÖNIGSHOFER, et al. Detection of various microplastics in human stool: a prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. |
77 | 李玥. 复合微塑料污染物对环境的毒性效应研究[J]. 西部皮革, 2021, 43(7): 146, 151. |
LI Yue. Study on the toxic effects of composite microplastic pollutants on the environment[J]. West Leather, 2021, 43(7): 146, 151. | |
78 | LITHNER Delilah, LARSSON Ake, Göran DAVE. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. The Science of the Total Environment, 2011, 409(18): 3309-3324. |
79 | TOMLINSON D L, WILSON J G, HARRIS C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgoländer Meeresuntersuchungen, 1980, 33(1/2/3/4): 566-575. |
80 | HAKANSON Lars. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. |
81 | PAN Zhong, LIU Qianlong, JIANG Ronggen, et al. Microplastic pollution and ecological risk assessment in an estuarine environment: the Dongshan Bay of China[J]. Chemosphere, 2021, 262: 127876. |
82 | XU Pei, PENG Guyu, SU Lei, et al. Microplastic risk assessment in surface waters: a case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2018, 133: 647-654. |
83 | YIN Kai, WANG Dongxu, ZHAO Hongjing, et al. Microplastics pollution and risk assessment in water bodies of two nature reserves in Jilin Province: correlation analysis with the degree of human activity[J]. The Science of the Total Environment, 2021, 799: 149390. |
84 | NEELAVANNAN Kannaiyan, Indra Sekhar SEN, LONE Aasif Mohmad, et al. Microplastics in the high-altitude Himalayas: assessment of microplastic contamination in freshwater lake sediments, Northwest Himalaya (India)[J]. Chemosphere, 2022, 290: 133354. |
85 | LAJU R L, JAYANTHI M, Immaculate JEYASANTA K, et al. Spatial and vertical distribution of microplastics and their ecological risk in an Indian freshwater lake ecosystem[J]. Science of the Total Environment, 2022, 820: 153337. |
86 | RANJANI M, VEERASINGAM S, VENKATACHALAPATHY R, et al. Assessment of potential ecological risk of microplastics in the coastal sediments of India: a meta-analysis[J]. Marine Pollution Bulletin, 2021, 163: 111969. |
87 | PATTERSON Jamila, Immaculate JEYASANTA K, LAJU R L, et al. Microplastic in the coral reef environments of the Gulf of Mannar, India- characteristics, distributions, sources and ecological risks[J]. Environmental Pollution, 2022, 298: 118848. |
88 | FENG Sansan, LU Hongwei, TIAN Peipei, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739: 140087. |
89 | CHAI Bingwen, WEI Qiang, SHE Yingzhe, et al. Soil microplastic pollution in an e-waste dismantling zone of China[J]. Waste Management, 2020, 118: 291-301. |
90 | ZHOU Yanfei, LIU Xiaoning, WANG Jun. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. Science of the Total Environment, 2019, 694: 133798. |
91 | CHEN Yixiang, WU Yihang, MA Jin, et al. Microplastics pollution in the soil mulched by dust-proof nets: a case study in Beijing, China[J]. Environmental Pollution, 2021, 275: 116600. |
92 | SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52(6): 3591-3598. |
93 | YANG Jie, LI Lianzhen, LI Ruijie, et al. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: a field study[J]. Environmental Pollution, 2021, 289: 117943. |
94 | CORRADINI F, CASADO F, LEIVA V, et al. Microplastics occurrence and frequency in soils under different land uses on a regional scale[J]. Science of the Total Environment, 2021, 752: 141917. |
95 | YU Lu, ZHANG Jiaodi, LIU Yang, et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China[J]. Science of the Total Environment, 2021, 756: 143860. |
96 | YANG Jie, LI Ruijie, ZHOU Qian, et al. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure[J]. Environmental Pollution, 2021, 272: 116028. |
97 | ZHOU Yanfei, HE Gang, JIANG Xiaoliang, et al. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density[J]. Journal of Hazardous Materials, 2021, 411: 125178. |
98 | RAGOOBUR D, HUERTA-LWANGA E, SOMAROO G D. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius[J]. Science of the Total Environment, 2021, 798: 149326. |
99 | XU Li, HAN Lihua, LI Jing, et al. Missing relationship between meso- and microplastics in adjacent soils and sediments[J]. Journal of Hazardous Materials, 2022, 424: 127234. |
100 | HARMS I K, DIEKÖTTER T, TROEGEL S, et al. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany[J]. Science of the Total Environment, 2021, 758: 143615. |
101 | ZHOU Qian, TU Chen, FU Chuancheng, et al. Characteristics and distribution of microplastics in the coastal mangrove sediments of China[J]. Science of the Total Environment, 2020, 703: 134807. |
102 | LIU Mengting, LU Shibo, SONG Yang, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242: 855-862. |
103 | HELCOSKI R, YONKOS L T, SANCHEZ A, et al. Wetland soil microplastics are negatively related to vegetation cover and stem density[J]. Environmental Pollution, 2020, 256: 113391. |
104 | FENG Sansan, LU Hongwei, LIU Yunlong. The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: different land use and mulching time in facility agriculture[J]. Environmental Pollution, 2021, 279: 116939. |
105 | LIU Mengting, SONG Yang, LU Shibo, et al. A method for extracting soil microplastics through circulation of sodium bromide solutions[J]. Science of the Total Environment, 2019, 691: 341-347. |
106 | CORDOVA M R, ULUMUDDIN Y I, PURBONEGORO T, et al. Characterization of microplastics in mangrove sediment of muara angke wildlife reserve, Indonesia[J]. Marine Pollution Bulletin, 2021, 163: 112012. |
107 | WANG Jiao, LI Jiayao, LIU Sitong, et al. Distinct microplastic distributions in soils of different land-use types: a case study of Chinese farmlands[J]. Environmental Pollution, 2021, 269: 116199. |
108 | LI Qinglan, ZENG Anrong, JIANG Xin, et al. Are microplastics correlated to phthalates in facility agriculture soil?[J]. Journal of Hazardous Materials, 2021, 412: 125164. |
109 | WEBER C J, OPP C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes[J]. Environmental Pollution, 2020, 267: 115390. |
110 | LIU Xiaoning, TANG Na, YANG Wanggan, et al. Microplastics pollution in the soils of various land-use types along Sheshui River Basin of Central China[J]. Science of the Total Environment, 2022, 806: 150620. |
111 | CHOUDHARY S, NEELAVANAN K, SAALIM S M. Microplastics in the surface sediments of Krossfjord-Kongsfjord system, Svalbard, Arctic[J]. Marine Pollution Bulletin, 2022, 176: 113452. |
112 | LE N DA, HOANG T T H, DUONG T T, et al. First observation of microplastics in surface sediment of some aquaculture ponds in Hanoi City, Vietnam[J]. Journal of Hazardous Materials Advances, 2022, 6: 100061. |
113 | HORTON A A, SVENDSEN C, WILLIAMS R J, et al. Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification[J]. Marine Pollution Bulletin, 2017, 114(1): 218-226. |
114 | AMRUTHA K, WARRIER A K. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India[J]. Science of the Total Environment, 2020, 739: 140377. |
115 | TA A T, BABEL S. Microplastic contamination on the lower Chao Phraya: abundance, characteristic and interaction with heavy metals[J]. Chemosphere, 2020, 257: 127234. |
116 | GOVENDER J, NAIDOO T, RAJKARAN A, et al. Towards characterising microplastic abundance, typology and retention in mangrove-dominated estuaries[J]. Water, 2020, 12(10): 2802. |
56 | Yolanda PICÓ, SOURSOU Vasiliki, ALFARHAN Ahmed H, et al. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian Cities and assessment of their ecological risk[J]. Journal of Hazardous Materials, 2021, 416: 125747. |
57 | 周筱田, 赵雯璐, 李铁军, 等. 浙江省近岸海域表层水体中微塑料分布与组成特征[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 371-379. |
ZHOU Xiaotian, ZHAO Wenlu, LI Tiejun, et al. Distribution and composition characteristics of microplastics in the coastal surface seawaters of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 371-379. | |
58 | ABAYOMI Oyebamiji Abib, RANGE Pedro, AL-GHOUTI Mohammad A, et al. Microplastics in coastal environments of the Arabian Gulf[J]. Marine Pollution Bulletin, 2017, 124(1): 181-188. |
59 | SHAW David G, DAY Robert H. Colour-and form-dependent loss of plastic micro-debris from the North Pacific Ocean[J]. Marine Pollution Bulletin, 1994, 28(1): 39-43. |
117 | KHUYEN V T K, LE D V, FISCHER A R, et al. Comparison of microplastic pollution in beach sediment and seawater at UNESCO can gio mangrove biosphere reserve[J]. Global Challenges, 2021, 5(11): 2100044. |
118 | BRONZO L, LUSHER A L, SCHØYEN M, et al. Accumulation and distribution of microplastics in coastal sediments from the inner Oslofjord, Norway[J]. Marine Pollution Bulletin, 2021, 173: 113076. |
119 | LIU Fan, OLESEN K B, BORREGAARD A R, et al. Microplastics in urban and highway stormwater retention ponds[J]. Science of the Total Environment, 2019, 671: 992-1000. |
120 | SANG Wenjiao, CHEN Zhiyi, MEI Longjie, et al. The abundance and characteristics of microplastics in rainwater pipelines in Wuhan, China[J]. Science of the Total Environment, 2021, 755: 142606. |
121 | YAN Zhenhua, CHEN Yufang, BAO Xuhui, et al. Microplastic pollution in an urbanized river affected by water diversion: combining with active biomonitoring[J]. Journal of Hazardous Materials, 2021, 417: 126058. |
122 | LUO Wenya, SU Lei, CRAIG N J, et al. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters[J]. Environmental Pollution, 2019, 246: 174-182. |
123 | YUAN Wenke, LIU Xiaoning, WANG Wenfeng, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. |
124 | ZHANG Dongdong, CUI Yaozong, ZHOU Hanghai, et al. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China[J]. Science of the Total Environment, 2020, 703: 134768. |
125 | WU Pengfei, TANG Yuanyuan, DANG Miao, et al. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science of the Total Environment, 2020, 717: 135187. |
126 | PAN Zhong, LIU Qianlong, JIANG Ronggen, et al. Microplastic pollution and ecological risk assessment in an estuarine environment: the Dongshan Bay of China[J]. Chemosphere, 2021, 262: 127876. |
127 | DENG Hua, WEI Ren, LUO Wenya, et al. Microplastic pollution in water and sediment in a textile industrial area[J]. Environmental Pollution, 2020, 258: 113658. |
128 | WANG Gaoliang, LU Jianjiang, TONG Yanbin, et al. Occurrence and pollution characteristics of microplastics in surface water of the Manas River Basin, China[J]. Science of the Total Environment, 2020, 710: 136099. |
129 | SULISTYOWATI L, NURHASANAH, RIANI E, et al. The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia[J]. Chemosphere, 2022, 291: 133071. |
130 | YAN Muting, NIE Huayue, XU Kaihang, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River Estuary, China[J]. Chemosphere, 2019, 217: 879-886. |
131 | EO S, HONG S H, SONG Y K, et al. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea[J]. Water Research, 2019, 160: 228-237. |
132 | PAN Zhong, SUN Yan, LIU Qianlong, et al. Riverine microplastic pollution matters: a case study in the Zhangjiang River of Southeastern China[J]. Marine Pollution Bulletin, 2020, 159: 111516. |
133 | RODRIGUES M O, ABRANTES N, GONÇALVES F J M, et al. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal)[J]. Science of the Total Environment, 2018, 633: 1549-1559. |
134 | ALAM F C, SEMBIRING E, MUNTALIF B S, et al. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia)[J]. Chemosphere, 2019, 224: 637-645. |
135 | SCHMIDT L K, BOCHOW M, IMHOF H K, et al. Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy—Study of an urban watercourse traversing the city of Berlin, Germany[J]. Environmental Pollution, 2018, 239: 579-589. |
136 | BARROWS A P W, CHRISTIANSEN K S, BODE E T, et al. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river[J]. Water Research, 2018, 147: 382-392. |
137 | KANHAI L D K, GARDFELDT K, KRUMPEN T, et al. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean[J]. Scientific Reports, 2020, 10: 5004. |
138 | LIU Kai, WU Tianning, WANG Xiaohui, et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere[J]. Environmental Science & Technology, 2019, 53(18): 10612-10619. |
139 | 周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异[J]. 科学通报, 2017, 62(33): 3902-3909. |
ZHOU Qian, TIAN Chongguo, LUO Yongming. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere[J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909. | |
140 | 田媛, 涂晨, 周倩, 等. 环渤海海岸大气微塑料污染时空分布特征与表面形貌[J]. 环境科学学报, 2020, 40(4): 1401-1409. |
TIAN Yuan, TU Chen, ZHOU Qian, et al. The temporal and spatial distribution and surface morphology of atmospheric microplastics around the Bohai Sea[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1401-1409. | |
141 | LIU Kai, WANG Xiaohui, WEI Nian, et al. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: implications for human health[J]. Environment International, 2019, 132: 105127. |
142 | ZHANG Qun, ZHAO Yaping, DU Fangni, et al. Microplastic fallout in different indoor environments[J]. Environmental Science & Technology, 2020, 54(11): 6530-6539. |
143 | CAI Liqi, WANG Jundong, PENG Jinping, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan City, China: preliminary research and first evidence[J]. Environmental Science and Pollution Research International, 2017, 24(32): 24928-24935. |
144 | WANG Xiaohui, LI Changjun, LIU Kai, et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source[J]. Journal of Hazardous Materials, 2020, 389: 121846. |
145 | YUKIOKA S, TANAKA S, NABETANI Y, et al. Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal)[J]. Environmental Pollution, 2020, 256: 113447. |
146 | GASTON E, WOO M, STEELE C, et al. Microplastics differ between indoor and outdoor air masses: insights from multiple microscopy methodologies[J]. Applied Spectroscopy, 2020, 74(9): 1079-1098. |
147 | YAO Ying, GLAMOCLIJA M, MURPHY A, et al. Characterization of microplastics in indoor and ambient air in northern New Jersey[J]. Environmental Research, 2022, 207: 112142. |
148 | LI Changjun, WANG Xiaohui, ZHU Lixin, et al. Enhanced impacts evaluation of Typhoon Sinlaku (2020) on atmospheric microplastics in South China Sea during the East Asian Summer Monsoon[J]. Science of the Total Environment, 2022, 806: 150767. |
149 | SZEWC K, GRACA B, DOŁĘGA A. Atmospheric deposition of microplastics in the coastal zone: characteristics and relationship with meteorological factors[J]. Science of the Total Environment, 2021, 761: 143272. |
150 | SOLTANI N S, TAYLOR M P, WILSON S P. Quantification and exposure assessment of microplastics in Australian indoor house dust[J]. Environmental Pollution, 2021, 283: 117064. |
151 | AMATO-LOURENÇO L F, DE SOUZA XAVIER COSTA N, DANTAS K C, et al. Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America[J]. Environmental Pollution, 2022, 292: 118299. |
152 | ABBASI S, TURNER A. Dry and wet deposition of microplastics in a semi-arid region (Shiraz, Iran)[J]. Science of the Total Environment, 2021, 786: 147358. |
153 | DING Yongcheng, ZOU Xinqing, WANG Chenglong, et al. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall[J]. Atmospheric Environment, 2021, 253: 118389. |
154 | ROBLIN B, RYAN M, VREUGDENHIL A, et al. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland)[J]. Environmental Science & Technology, 2020, 54(18): 11100-11108. |
155 | PAROLINI M, ANTONIOLI D, BORGOGNO F, et al. Microplastic contamination in snow from western Italian Alps[J]. International Journal of Environmental Research and Public Health, 2021, 18(2): 768. |
156 | DING Jinfeng, SUN Chengjun, HE Changfei, et al. Atmospheric microplastics in the northwestern Pacific Ocean: distribution, source, and deposition[J]. Science of the Total Environment, 2022, 829: 154337. |
157 | PURWIYANTO A I S, PRARTONO T, RIANI E, et al. The deposition of atmospheric microplastics in Jakarta-Indonesia: the coastal urban area[J]. Marine Pollution Bulletin, 2022, 174: 113195. |
158 | FERRERO L, SCIBETTA L, MARKUSZEWSKI P, et al. Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: an emerging role of air-sea interaction?[J]. Science of the Total Environment, 2022, 824: 153709. |
159 | EVERAERT Gert, VAN CAUWENBERGHE Lisbeth, DE RIJCKE Maarten, et al. Risk assessment of microplastics in the ocean: modelling approach and first conclusions[J]. Environmental Pollution, 2018, 242: 1930-1938. |
160 | PHAM Thuy-Hanh, Huu-Tuan DO, Lan-Anh Phan THI, et al. Global challenges in microplastics: from fundamental understanding to advanced degradations toward sustainable strategies[J]. Chemosphere, 2021, 267: 129275. |
161 | ARPIA Arjay A, CHEN Wei-Hsin, UBANDO Aristotle T, et al. Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: a state-of-the-art review[J]. Journal of Hazardous Materials, 2021, 418: 126381. |
162 | 李昕玥, 刘卓苗, 薛润泽, 等. 典型塑料的生物降解及其降解机理[J]. 科学通报, 2021, 66(20): 2573-2589. |
LI Xinyue, LIU Zhuomiao, XUE Runze, et al. Biodegradation of typical plastics and its mechanisms[J]. Chinese Science Bulletin, 2021, 66(20): 2573-2589. | |
163 | NABI Iqra, BACHA Aziz Ur Rahim, LI Kejian, et al. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film[J]. iScience, 2020, 23(7): 101326. |
164 | LLORENTE-GARCÍA Brenda Estefanía, HERNÁNDEZ-LÓPEZ Juan Manuel, ZALDÍVAR-CADENA Antonio Alberto, et al. First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N-TiO2 coating: effect of size and shape of microplastics[J]. Coatings, 2020, 10(7): 658. |
165 | ARIZA-TARAZONA Maria Camila, VILLARREAL-CHIU Juan Francisco, HERNÁNDEZ-LÓPEZ Juan Manuel, et al. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: effect of pH and temperature in the photocatalytic degradation process[J]. Journal of Hazardous Materials, 2020, 395: 122632. |
166 | CHEN Wanting, JIN Kai, WANG Nien Hwa Linda. Use of supercritical water for the liquefaction of polypropylene into oil[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3749-3758. |
167 | 重大突破—中科院研发成功海水降解塑料[J]. 绿色包装, 2021(1): 86-87. |
Major breakthrough—Chinese Academy of Sciences successfully developed seawater degradable plastic[J]. Green Packaging, 2021(1): 86-87. | |
168 | LIU Xiaoning, YUAN Wenke, DI Mingxiao, et al. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China[J]. Chemical Engineering Journal, 2019, 362: 176-182. |
169 | 贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9): 4105-4112. |
JIA Qilong, CHEN Hao, ZHAO Xin, et al. Removal of microplastics by different treatment processes in Shanghai large municipal wastewater treatment plants[J]. Environmental Science, 2019, 40(9): 4105-4112. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[3] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[4] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[5] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[6] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[7] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[8] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[9] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[10] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[11] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[12] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[13] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[14] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[15] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |