化工进展 ›› 2022, Vol. 41 ›› Issue (11): 6099-6110.DOI: 10.16085/j.issn.1000-6613.2022-0035
收稿日期:
2022-01-05
修回日期:
2022-04-15
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
廖亚龙
作者简介:
刘庆丰(1996—),男,硕士研究生,从事资源化利用研究。E-mail: 2098653532@qq.com。
基金资助:
LIU Qingfeng(), LIAO Yalong(), WU Yue, XI Jiajun, JI Guangxiong
Received:
2022-01-05
Revised:
2022-04-15
Online:
2022-11-25
Published:
2022-11-28
Contact:
LIAO Yalong
摘要:
传统从黄铜矿中提取铜的方法主要采用火法冶金工艺,随着高品质的黄铜矿日渐减少,采用传统的火法冶金方法从低品位黄铜矿中经济、高效地提取铜不仅越来越难,而且会在过程中产生大量SO2等对环境和人体有害的气体。与火法工艺相比,湿法工艺从黄铜矿中提取铜具有能耗低、环境友好的优点,特别适宜低品位复杂多金属黄铜矿的处理,但存在浸出效率低的问题。本文综述和分析了近年来提高黄铜矿湿法浸出效率的研究现状,分析表明强化黄铜矿浸出的方法分为浸出前预处理活化和浸出过程中强化两类方法。预处理活化包括机械活化、热活化和微波活化工艺,能提高黄铜矿在浸出中的反应活性;浸出过程中强化包括添加黄铁矿、Ag离子、活性炭等助剂强化浸出,以及利用超声场、微波场及压力场进行外场强化等工艺方法。文中结合强化工艺的具体研究结果分析了各种强化工艺及方法的机理,比较了各种强化手段的优点、不足及存在的问题,展望了强化黄铜矿浸出的发展方向。结果表明,不论是预处理还是浸出过程强化,皆能有效提高黄铜矿的浸出效率,将预处理活化与过程强化相结合的工艺是强化黄铜矿浸出的有效方法。
中图分类号:
刘庆丰, 廖亚龙, 吴越, 郗家俊, 嵇广雄. 黄铜矿强化浸出研究进展[J]. 化工进展, 2022, 41(11): 6099-6110.
LIU Qingfeng, LIAO Yalong, WU Yue, XI Jiajun, JI Guangxiong. Research progress on enhancing leaching efficiency of chalcopyrite[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6099-6110.
1 | HU Junxian, TIAN Guocai, ZI Futing, et al. Leaching of chalcopyrite with hydrogen peroxide in 1-hexyl-3-methyl-imidazolium hydrogen sulfate ionic liquid aqueous solution[J]. Hydrometallurgy, 2017, 169: 1-8. |
2 | JONES R T. Electronic structures of the sulfide minerals sphalerite, wurtzite, pyrite, marcasite, and chalcopyrite[D]. Adelaide: University of South Australia, 2006. |
3 | NOURMOHAMADI H, ESRAFILI M D, AGHAZADEH V. DFT study of ferric ion interaction with passive layer on chalcopyrite surface: elemental sulfur, defective sulfur and replacement of M2+(M=Cu and Fe) ions[J]. Computational Condensed Matter, 2021, 26: e00536. |
4 | WU Shifa, YANG Congren, QIN Wenqing, et al. Sulfur composition on surface of chalcopyrite during its bioleaching at 50℃[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 4110-4118. |
5 | 侯丽敏, 闫笑, 乔超越, 等. 机械力-微波活化对稀土尾矿NH3-SCR脱硝性能的影响[J]. 化工进展, 2021, 40(10): 5818-5828. |
HOU Limin, YAN Xiao, QIAO Chaoyue, et al. Effect of mechanical force and microwave on the NH3-SCR denitration of rare earth tailings[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5818-5828. | |
6 | MUCSI G. A review on mechanical activation and mechanical alloying in stirred media mill[J]. Chemical Engineering Research and Design, 2019, 148: 460-474. |
7 | BASTURKCU H, ACARKAN N, GOCK E. The role of mechanical activation on atmospheric leaching of a lateritic nickel ore[J]. International Journal of Mineral Processing, 2017, 163: 1-8. |
8 | LI Zhao, CHEN Min, ZHANG Qiwu, et al. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes[J]. Waste Management, 2017, 60: 734-738. |
9 | KAMALI A R, KHAKI J V. Copper leaching from nanoparticles of chalcopyrite concentrate[J]. Russian Journal of Non-Ferrous Metals, 2008, 49(3): 138-143. |
10 | 王兵, 李育彪, 张世鹏, 等. 机械活化黄铜矿浸出动力学研究[J]. 中国矿业, 2018, 27(2): 136-140. |
WANG Bing, LI Yubiao, ZHANG Shipeng, et al. Effects of mechanical activation on chalcopyrite leaching kinetics[J]. China Mining Magazine, 2018, 27(2): 136-140. | |
11 | VAFAEIAN S, AHMADIAN M, REZAEI B. Sulphuric acid leaching of mechanically activated copper sulphidic concentrate[J]. Minerals Engineering, 2011, 24(15): 1713-1716. |
12 | LI Yubiao, YAO Yilun, WANG Bing, et al. New insights into chalcopyrite leaching enhanced by mechanical activation[J]. Hydrometallurgy, 2019, 189: 105131. |
13 | LI Yubiao, WANG Bing, XIAO Qing, et al. The mechanisms of improved chalcopyrite leaching due to mechanical activation[J]. Hydrometallurgy, 2017, 173: 149-155. |
14 | WATLING H R. Chalcopyrite hydrometallurgy at atmospheric pressure (I): review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options[J]. Hydrometallurgy, 2013, 140: 163-180. |
15 | ZHAO Suxing, WANG Gairong, YANG Hongying, et al. Agglomeration-aggregation and leaching properties of mechanically activated chalcopyrite[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(5): 1465-1474. |
16 | KHEZRI M, REZAI B, ABDOLLAHZADEH A A, et al. Investigation into the effect of mechanical activation on the leaching of chalcopyrite in a glycine medium[J]. Hydrometallurgy, 2021, 203: 105492. |
17 | 杜均, 李春, 袁绍军, 等. 钛铁矿机械活化-稀酸酸解反应耦合[J]. 化学反应工程与工艺, 2014, 30(4): 321-328. |
DU Jun, LI Chun, YUAN Shaojun, et al. A coupling process of mechanical activation and acid digestion of ilmenite[J]. Chemical Reaction Engineering and Technology, 2014, 30(4): 321-328. | |
18 | BALÁŽ P, ACHIMOVIČOVÁ M, BALÁŽ M, et al. Hallmarks of mechanochemistry: from nanoparticles to technology[J]. Chemical Society Reviews, 2013, 42(18): 7571. |
19 | KIZILCA M, COPUR M. The connection calcination and sulphation with the thermal behavior of chalcopyrite ore concentrate[J]. Pressacademia, 2017, 5(1): 214-223. |
20 | DANESHPAJOOH S, MOZDIANFARD M, EBRAHIMI H. Investigation of kinetics and mechanism of the sulfating roasting process of chalcopyrite concentrate for water-leaching[J]. Bulgarian Chemical Communications, 2018, 50: 310-318. |
21 | VELOSO T C, PAIVA P R P, SILVA C A, et al. Leaching of bornite produced from the sulfurization of chalcopyrite[J]. Metallurgical and Materials Transactions B, 2016, 47(3): 2005-2014. |
22 | 宋宁, 刘纯鹏. 黄铜矿加硫焙烧提铜新工艺[J]. 有色金属, 2005(2): 84-87. |
SONG Ning, LIU Chunpeng. A new technique to make copper removing iron from chalcopyrite[J]. Nonferrous Metals, 2005(2): 84-87. | |
23 | 何丹, 仲剑初, 王洪志, 等. 富硼渣钙化焙烧研究[J]. 化工矿物与加工, 2010, 39(6): 13-16. |
HE Dan, ZHONG Jianchu, WANG Hongzhi, et al. Study on roasting boron-rich-slag with calcium carbonate[J]. Industrial Minerals & Processing, 2010, 39(6): 13-16. | |
24 | GAN Min, FAN Xiaohui, CHEN Xuling, et al. Reaction mechanisms of low-grade molybdenum concentrate during calcification roasting process[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 3015-3023. |
25 | 蔡超君, 华一新, 梁铎强. 硫化铜精矿加碳酸钙焙烧表观动力学研究[J]. 有色金属(冶炼部分), 2004(3): 2-5, 12. |
CAI Chaojun, HUA Yixin, LIANG Duoqiang. Non-isothermal kinetics of roasting of copper sulfide concentrate in the presence of calcium carbonate[J]. Nonferrous Metals, 2004(3): 2-5, 12. | |
26 | LIAO Yalong, ZHOU Juan, HUANG Feirong, et al. Leaching kinetics of calcification roasting calcinate from multimetallic sulfide copper concentrate containing high content of lead and iron[J]. Separation and Purification Technology, 2015, 149: 190-196. |
27 | AKCIL A. A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine, Turkey[J]. Minerals Engineering, 2002, 15(12): 1193-1197. |
28 | WAN X B, SHI J J, TASKINEN P, et al. Extraction of copper from copper-bearing materials by sulfation roasting with SO2-O2 gas[J]. JOM, 2020, 72(10): 3436-3446. |
29 | MEDVEDEV A S, SO T, PTITSYN A M. Combined processing technology of the Udokan sulfide copper concentrate[J]. Russian Journal of Non-Ferrous Metals, 2012, 53(2): 125-128. |
30 | MEDVEDEV A S, TU S. Characteristics of electrochemical reactions accompanying chlorinating annealing of copper sulfide concentrates[J]. Russian Journal of Non-Ferrous Metals, 2013, 54(1): 1-4. |
31 | NYAMJARGAL L, BATDEMBEREL G, BURMAA G, et al. Effect of roasting temperature for copper leaching of sulfide concentrate by combined methods[J]. Open Journal of Applied Sciences, 2018, 8(12): 545-553. |
32 | 徐志峰, 李强, 王成彦. 复杂硫化铜矿热活化-加压浸出工艺[J]. 中国有色金属学报, 2010, 20(12): 2412-2418. |
XU Zhifeng, LI Qiang, WANG Chengyan. Heat activation pretreatment and pressure leaching of complex copper sulfide ores[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(12): 2412-2418. | |
33 | LIN Shunda, GAO Lei, YANG Yong, et al. Dielectric properties and high temperature thermochemical properties of the pyrolusite-pyrite mixture during reduction roasting[J]. Journal of Materials Research and Technology, 2020, 9(6): 13128-13136. |
34 | YANG Kun, LI Shiwei, ZHANG Libo, et al. Microwave roasting and leaching of an oxide-sulphide zinc ore[J]. Hydrometallurgy, 2016, 166: 243-251. |
35 | 张念炳, 黎志英, 乔晓静. 某高硫铝土矿固硫预处理效果[J]. 有色金属工程, 2012, 2(6): 46-48. |
ZHANG Nianbing, LI Zhiying, QIAO Xiaojing. Sulfur fixation pretreatment effect of a high sulfur bauxite[J]. Nonferrous Metals Engineering, 2012, 2(6): 46-48. | |
36 | LIU Chenhui, ZHU Xiongjin, ZHANG Mengping, et al. Microwave absorption and roasting characteristics of zinc sulfide concentrate[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(6): e2698. |
37 | GE Tao, CAI Chuanchuan, ZHANG Mingxu. Microwave absorption properties of organic sulfur compounds in coal: application of desulfurization[J]. Journal of Sulfur Chemistry, 2021, 42(3): 322-334. |
38 | 彭金辉, 刘纯鹏. 微波场中矿物及其化合物的升温特性[J]. 中国有色金属学报, 1997, 7(3): 50-51, 84. |
PENG Jinhui, LIU Chunpeng. Characteristics of temperature increase of minerals and compounds in microwave field[J]. Transactions of Nonferrous Metals Society of China, 1997, 7(3): 50-51, 84. | |
39 | 周娟, 廖亚龙, 李冰洁, 等. 多金属复杂硫化铜矿中有价金属的分离研究现状与进展[J]. 化工进展, 2015, 34(1): 252-257. |
ZHOU Juan, LIAO Yalong, LI Bingjie, et al. Valuable metals extraction from complex multi-metal copper sulfide ore[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 252-257. | |
40 | BAI Yunlong, WANG Wei, DONG Kaiwei, et al. Effect of microwave pretreatment on chalcopyrite dissolution in acid solution[J]. Journal of Materials Research and Technology, 2022, 16: 471-481. |
41 | WEI Wei, SHAO Zhushan, ZHANG Yuanyuan, et al. Fundamentals and applications of microwave energy in rock and concrete processing-A review[J]. Applied Thermal Engineering, 2019, 157: 113751. |
42 | 徐志峰, 李强, 王成彦. 复杂硫化铜精矿微波活化预处理-加压浸出工艺[J]. 过程工程学报, 2010, 10(2): 256-262. |
XU Zhifeng, LI Qiang, WANG Chengyan. Microwave activation pretreatment and pressure leaching of complex copper sulfide concentrate[J]. The Chinese Journal of Process Engineering, 2010, 10(2): 256-262. | |
43 | ZHAO Q H, ZHAO X B, ZHENG Y L, et al. Heating characteristics of igneous rock-forming minerals under microwave irradiation[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 135: 104519. |
44 | SCHMUHL R, SMIT J T, MARSH J H. The influence of microwave pre-treatment of the leach behaviour of disseminated sulphide ore[J]. Hydrometallurgy, 2011, 108(3/4): 157-164. |
45 | 路雨禾, 谢锋, 白云龙, 等. 微波活化预处理对黄铜矿加压浸出的影响[J]. 有色金属(冶炼部分), 2019(10): 1-5. |
LU Yuhe, XIE Feng, BAI Yunlong, et al. Effect of microwave activation treatment on pressure leaching behavior of chalcopyrite[J]. Nonferrous Metals (Extractive Metallurgy), 2019(10): 1-5. | |
46 | HUA Yixin, CAI Chaojun, CUI Yan. Microwave-enhanced roasting of copper sulfide concentrate in the presence of CaCO3 [J]. Separation and Purification Technology, 2006, 50(1): 22-29. |
47 | TURKMEN Y, KAYA E. Leaching of chalcopyrite concentrate in sulphuric acid with the aid of mechanical activation and microwave energy[J]. Asian Journal of Chemistry, 2010, 22(10): 8107-8116. |
48 | KAUR J, SCHOONEN M A. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles[J]. Geochimica et Cosmochimica Acta, 2017, 206: 364-378. |
49 | AHMADI A, RANJBAR M, SCHAFFIE M. Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems[J]. Minerals Engineering, 2012, 34: 11-18. |
50 | KOLEINI S M J, AGHAZADEH V, SANDSTRÖM Å. Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite[J]. Minerals Engineering, 2011, 24(5): 381-386. |
51 | ZHAO Hongbo, WANG Jun, GAN Xiaowen, et al. Role of pyrite in sulfuric acid leaching of chalcopyrite: an elimination of polysulfide by controlling redox potential[J]. Hydrometallurgy, 2016, 164: 159-165. |
52 | HONG Maoxin, HUANG Xiaotao, GAN Xiaowen, et al. The use of pyrite to control redox potential to enhance chalcopyrite bioleaching in the presence of Leptospirillum ferriphilum [J]. Minerals Engineering, 2021, 172: 107145. |
53 | GERICKE M, GOVENDER Y, PINCHES A. Tank bioleaching of low-grade chalcopyrite concentrates using redox control[J]. Hydrometallurgy, 2010, 104(3/4): 414-419. |
54 | TIAN Zuyuan, LI Haodong, WEI Qian, et al. Effects of redox potential on chalcopyrite leaching: an overview[J]. Minerals Engineering, 2021, 172: 107135. |
55 | HIROYOSHI N, MIKI H, HIRAJIMA T, et al. A model for ferrous-promoted chalcopyrite leaching[J]. Hydrometallurgy, 2000, 57(1): 31-38. |
56 | YANG Congren, JIAO Fen, QIN Wenqing. Leaching of chalcopyrite: an emphasis on effect of copper and iron ions[J]. Journal of Central South University, 2018, 25(10): 2380-2386. |
57 | BEVILAQUA D, LAHTI-TOMMILA H, GARCIA O JR, et al. Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22℃[J]. International Journal of Mineral Processing, 2014, 132: 1-7. |
58 | NIKOLOSKI A N, O’MALLEY G P, BAGAS S J. The effect of silver on the acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching (I): kinetics and reaction mechanisms[J]. Hydrometallurgy, 2017, 173: 258-270. |
59 | GHAHREMANINEZHAD A, RADZINSKI R, GHEORGHIU T, et al. A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution[J]. Hydrometallurgy, 2015, 155: 95-104. |
60 | LI Lin, SOLEYMANI M, GHAHREMAN A. New insights on the role of lattice-substituted silver in catalytic oxidation of chalcopyrite[J]. Electrochimica Acta, 2021, 369: 137652. |
61 | NAZARI G, DIXON D G, DREISINGER D B. The role of silver-enhanced pyrite in enhancing the electrical conductivity of sulfur product layer during chalcopyrite leaching in the Galvanox™ process[J]. Hydrometallurgy, 2012, 113/114: 177-184. |
62 | WANG Jun, LIAO Rui, TAO Lang, et al. A comprehensive utilization of silver-bearing solid wastes in chalcopyrite bioleaching[J]. Hydrometallurgy, 2017, 169: 152-157. |
63 | LIAO Rui, WANG Xingxing, YANG Baojun, et al. Catalytic effect of silver-bearing solid waste on chalcopyrite bioleaching: a kinetic study[J]. Journal of Central South University, 2020, 27(5): 1395-1403. |
64 | CÓRDOBA E M, MUÑOZ J A, BLÁZQUEZ M L, et al. Comparative kinetic study of the silver-catalyzed chalcopyrite leaching at 35 and 68℃[J]. International Journal of Mineral Processing, 2009, 92(3/4): 137-143. |
65 | ZHAO Hongbo, ZHANG Yisheng, SUN Menglin, et al. Catalytic mechanism of silver in the oxidative dissolution process of chalcopyrite: experiment and DFT calculation[J]. Hydrometallurgy, 2019, 187: 18-29. |
66 | KONADU K T, SAKAI R, MENDOZA D M, et al. Effect of carbonaceous matter on bioleaching of Cu from chalcopyrite ore[J]. Hydrometallurgy, 2020, 195: 105363. |
67 | SANTIAGO R C C, LADEIRA A C Q. Reduction of preg-robbing activity of carbonaceous gold ores with the utilization of surface blinding additives[J]. Minerals Engineering, 2019, 131: 313-320. |
68 | MA Yalong, LIU Hongchang, XIA Jinlan, et al. Relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic Archaea culture at 65℃[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1374-1384. |
69 | RASOULI S, MOJTAHEDI B, YOOZBASHIZADEH H. Oxidative leaching of chalcopyrite by cupric ion in chloride media[J]. Transactions of the Indian Institute of Metals, 2020, 73(4): 989-997. |
70 | YOO K, KIM S K, LEE J C, et al. Effect of chloride ions on leaching rate of chalcopyrite[J]. Minerals Engineering, 2010, 23(6): 471-477. |
71 | RUIZ-SÁNCHEZ Á, LAPIDUS G T. Study of chalcopyrite leaching from a copper concentrate with hydrogen peroxide in aqueous ethylene glycol media[J]. Hydrometallurgy, 2017, 169: 192-200. |
72 | TEHRANI M E H N, NADERI H, RASHCHI F. Electrochemical study and XPS analysis of chalcopyrite dissolution in sulfuric acid in the presence of ethylene glycol[J]. Electrochimica Acta, 2021, 369: 137663. |
73 | DAKUBO F, BAYGENTS J C, FARRELL J. Peroxodisulfate assisted leaching of chalcopyrite[J]. Hydrometallurgy, 2012, 121/122/123/124: 68-73. |
74 | WEISS E, SÁEZ C, GROENEN-SERRANO K, et al. Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes[J]. Journal of Applied Electrochemistry, 2008, 38(1): 93-100. |
75 | ZHANG Hao, WEI Dezhou, LIU Wengang, et al. Enhancement mechanism of polyoxyethylene nonyl phenyl ether on the bioleaching of chalcopyrite[J]. Minerals Engineering, 2021, 173: 107237. |
76 | KARTAL M, XIA F, RALPH D, et al. Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation[J]. Hydrometallurgy, 2020, 191: 105192. |
77 | REN Zihe, KRISHNAMOORTHY P, SANCHEZ P Z, et al. Catalytic effect of ethylene thiourea on the leaching of chalcopyrite[J]. Hydrometallurgy, 2020, 196: 105410. |
78 | SARASUA J A, RUBIO L R, ARANZABE E, et al. Energetic study of ultrasonic wettability enhancement[J]. Ultrasonics Sonochemistry, 2021, 79: 105768. |
79 | 薛娟琴, 毛维博, 卢曦, 等. 超声波辅助硫化镍矿氧化浸出动力学[J]. 中国有色金属学报, 2010, 20(5): 1013-1020. |
XUE Juanqin, MAO Weibo, LU Xi, et al. Dynamics of ultrasound-assisted oxidation leaching of nickel sulfide concentrate[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(5): 1013-1020. | |
80 | XIA Guanghua, LU Mang, SU Xiaoli, et al. Iron removal from Kaolin using thiourea assisted by ultrasonic wave[J]. Ultrasonics Sonochemistry, 2012, 19(1): 38-42. |
81 | XUE Juanqin, LU Xi, DU Yewei, et al. Ultrasonic-assisted oxidation leaching of nickel sulfide concentrate[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 948-953. |
82 | WANG J X, FARAJI F, GHAHREMAN A. Effect of ultrasound on the oxidative copper leaching from chalcopyrite in acidic ferric sulfate media[J]. Minerals, 2020, 10(7): 633. |
83 | YOON H S, KIM C J, CHUNG K W, et al. Ultrasonic-assisted leaching kinetics in aqueous FeCl3-HCl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite[J]. Korean Journal of Chemical Engineering, 2017, 34(6): 1748-1755. |
84 | ROOZE J, REBROV E V, SCHOUTEN J C, et al. Dissolved gas and ultrasonic cavitation-A review[J]. Ultrasonics Sonochemistry, 2013, 20(1): 1-11. |
85 | 王贻明, 吴爱祥, 艾纯明. 低品位硫化铜矿超声强化浸出实验与机理分析[J]. 中国有色金属学报, 2013, 23(7): 2019-2025. |
WANG Yiming, WU Aixiang, AI Chunming. Experiment and mechanism analysis on leaching process of low grade copper sulfide intensified by ultrasonic wave[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(7): 2019-2025. | |
86 | CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave material processing-A review[J]. AIChE Journal, 2012, 58(2): 330-363. |
87 | ONOL K, SARIDEDE M N. Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(3): 228-233. |
88 | WEN Tong, ZHAO Yunliang, XIAO Qihang, et al. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy[J]. Results in Physics, 2017, 7: 2594-2600. |
89 | DING Wei’an. Leaching behavior of complex copper sulphide concentrate with ferric chloride by microwave irradiation[J]. Rare Metals, 1997(2): 73-76. |
90 | 康石长, 赵云良, 温通, 等. 微波对黄铜矿浸出的强化作用与机理研究[J]. 金属矿山, 2017(1): 86-90. |
KANG Shichang, ZHAO Yunliang, WEN Tong, et al. Intensified leaching of chalcopyrite by microwave and its mechanism[J]. Metal Mine, 2017(1): 86-90. | |
91 | WEN Tong, ZHAO Yunliang, MA Qiulin, et al. Microwave improving copper extraction from chalcopyrite through modifying the surface structure[J]. Journal of Materials Research and Technology, 2020, 9(1): 263-270. |
92 | CHÁIDEZ J, PARGA J, VALENZUELA J, et al. Leaching chalcopyrite concentrate with oxygen and sulfuric acid using a low-pressure reactor[J]. Metals, 2019, 9(2): 189. |
93 | PADILLA R, RODRIGUEZ M, RUIZ M C. Sulfidation of chalcopyrite with elemental sulfur[J]. Metallurgical and Materials Transactions B, 2003, 34(1): 15-23. |
94 | SEQUEIRA C A C, SANTOS D M F, CHEN Y, et al. Chemical metathesis of chalcopyrite in acidic solutions[J]. Hydrometallurgy, 2008, 92(3/4): 135-140. |
95 | CÓRDOBA E M, MUÑOZ J A, BLÁZQUEZ M L, et al. Leaching of chalcopyrite with ferric ion (Ⅲ): effect of redox potential on the silver-catalyzed process[J]. Hydrometallurgy, 2008, 93(3/4): 97-105. |
96 | MCDONALD R G, MUIR D M. Pressure oxidation leaching of chalcopyrite (Ⅱ): comparison of medium temperature kinetics and products and effect of chloride ion[J]. Hydrometallurgy, 2007, 86(3/4): 206-220. |
97 | WANG Shijie. Copper leaching from chalcopyrite concentrates[J]. JOM, 2005, 57(7): 48-51. |
98 | 李超. 黄铜矿加压浸出行为研究[D]. 沈阳: 东北大学, 2015. |
LI Chao. Study on pressure leaching of chalcopyrite[D]. Shenyang: Northeastern University, 2015. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[3] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[4] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[5] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[6] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[7] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[8] | 王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[9] | 陈绍勤, 胡玲, 雷天涯, 王蓉, 舒建成, 陈梦君. 机械活化强化锌焙砂中锌的浸出[J]. 化工进展, 2023, 42(3): 1649-1658. |
[10] | 陈韶云, 周贤太, 纪红兵. 金属卟啉/碳纳米管仿生催化剂的制备及其在Baeyer-Villiger氧化反应中的催化机理[J]. 化工进展, 2023, 42(3): 1332-1340. |
[11] | 孙千千, 刘阵, 李瑞, 张溪, 杨明德, 吴玉龙. 低温水热耦合亚铁离子活化过硫酸盐提高剩余污泥的脱水性能[J]. 化工进展, 2023, 42(2): 595-602. |
[12] | 段一航, 高宁博, 全翠. 水热处理对含油污泥热解特性及动力学影响[J]. 化工进展, 2023, 42(2): 603-613. |
[13] | 陈钰, 刘冲, 邱于荟, 贲梓欣, 牟天成. 离子液体和低共熔溶剂绿色回收废旧锂离子电池的研究进展[J]. 化工进展, 2022, 41(S1): 485-496. |
[14] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[15] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |