1 |
RENZ M, MEUNIER B. 100 years of Baeyer-villiger oxidations[J]. European Journal of Organic Chemistry, 1999, (4): 737-750.
|
2 |
李子辉, 蒋晶, 金章勇, 等. 生物可降解PCL/PLA开孔发泡材料制备及吸油性能[J]. 化工学报, 2020, 71(12): 5842-5853.
|
|
LI Zihui, JIANG Jing, JIN Zhangyong, et al. Preparation and oil absorption performance of biodegradable PCL/PLA open-cell foam material[J]. CIESC Journal, 2020, 71(12): 5842-5853.
|
3 |
BATISTE D C, MEYERSOHN M S, WATTS A, et al. Efficient polymerization of methyl-ε-caprolactone mixtures to access sustainable aliphatic polyesters[J]. Macromolecules, 2020, 53(5): 1795-1808.
|
4 |
ROSA R P, FERREIRA F V, SARAVIA A P K, et al. A combined computational and experimental study on the polymerization of ε-caprolactone[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13387-13395.
|
5 |
CHÁVEZ G, HATTI-KAUL R, SHELDON R A, et al. Baeyer-Villiger oxidation with peracid generated in situ by CaLB-CLEA catalyzed perhydrolysis[J]. Journal of Molecular Catalysis B: enzymatic, 2013, 89: 67-72.
|
6 |
XIAO Guansheng, GAO Xi, YAN Weiting, et al. Baeyer-Villiger oxidation of cyclohexanone by hydrogen peroxide with Fe3O4@GO as catalyst under solvent free conditions[J]. Catalysis Letters, 2019, 149(7): 1765-1771.
|
7 |
OLSZÓWKA J E, KARCZ R, NAPRUSZEWSKA B D, et al. Effect of MgAl hydrotalcite crystallinity on catalytic Baeyer-Villiger oxidation of cyclohexanone with H2O2/acetonitrile[J]. Catalysis Communications, 2018, 107: 48-52.
|
8 |
ILOVAISKY A I, MERKULOVA V M, VIL’ V, et al. Regioselective baeyer-villiger oxidation of steroidal ketones to lactones using BF3/H2O2 [J].European Journal of Organic Chemistry, 2020, 3: 402-405.
|
9 |
DE GONZALO G, ALCÁNTARA A. Multienzymatic processes involving baeyer-villiger monooxygenases[J]. Catalysts, 2021, 11: 605.
|
10 |
LI Peilin, MA Yunjian, LI Yongru, et al. Cascade synthesis from cyclohexane to ε-caprolactone by visible-light-driven photocatalysis combined with whole-cell biological oxidation[J]. ChemBioChem, 2020, 21(13): 1852-1855.
|
11 |
SOLÉ J, BRUMMUND J, CAMINAL G, et al. Enzymatic synthesis of trimethyl-ε-caprolactone: process intensification and demonstration on a 100 L scale[J]. Organic Process Research & Development, 2019, 23(11): 2336-2344.
|
12 |
LIU Chunhua, WANG Zhuo, XIAO Liyun, et al. Acid/base-co-catalyzed formal baeyer-villiger oxidation reaction of ketones: using molecular oxygen as the oxidant[J]. Organic Letters, 2018, 20(16): 4862-4866.
|
13 |
FILATOV M, RECKIEN W, PEYERIMHOFF S D, et al. What are the reasons for the kinetic stability of a mixture of H2 and O2? [J]. The Journal of Physical Chemistry A, 2000, 104(51): 12014-12020.
|
14 |
JIANG Qing, SHENG Wenbing, GUO Xiangdong, et al. Metalloporphyrin-catalyzed aerobic oxidation of 2-methoxy-4-methylphenol as a route to vanillin[J]. Journal of Molecular Catalysis A: Chemical, 2013, 373: 121-126.
|
15 |
ADAM F, OOI W T. Selective oxidation of benzyl alcohol to benzaldehyde over Co-metalloporphyrin supported on silica nanoparticles[J]. Applied Catalysis A: General, 2012, 445/446: 252-260.
|
16 |
ZHOU Xiantai, JI Hongbing. Manganese porphyrin immobilized on montmorillonite: a highly efficient and reusable catalyst for the aerobic epoxidation of olefins under ambient conditions[J]. Journal of Porphyrins and Phthalocyanines, 2012, 16(9): 1032-1039.
|
17 |
ZHOU Xiantai, REN Gangli, JI Hongbing. Kinetic and mechanism of the aqueous selective oxidation of sulfides to sulfoxides: insight into the cytochrome P450-like oxidative metabolic process[J]. Journal of Porphyrins and Phthalocyanines, 2013, 17: 1104-1112.
|
18 |
LIU W, GROVES J T. Manganese porphyrins catalyze selective C-H bond halogenations[J]. Journal of the American Chemical Society, 2010, 132(37): 12847-12849.
|
19 |
ZHOU Xiantai, JI Hongbing, YUAN Qiulan. Baeyer-Villiger oxidation of ketones catalyzed by iron(Ⅲ) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen[J]. Journal of Porphyrins and Phthalocyanines, 2008, 12(2): 94-100.
|
20 |
LAN Hongyun, ZHOU Xiantai, JI Hongbing. Remarkable differences between benzaldehyde and isobutyraldehyde as coreductant in the performance toward the iron(Ⅲ) porphyrins-catalyzed aerobic Baeyer-Villiger oxidation of cyclohexanone, kinetic and mechanistic features[J]. Tetrahedron, 2013, 69(21): 4241-4246.
|
21 |
CHEN Shaoyun, ZHOU Xiantai, LI Yang, et al. Biomimetic Baeyer-Villiger oxidation of ketones with SnO2 as cocatalyst, features in activating carbonyl group of substrates[J]. Chemical Engineering Journal, 2014, 241: 138-144.
|
22 |
NABAE Y, ROKUBUICHI H, MIKUNI M, et al. Catalysis by carbon materials for the aerobic baeyer–villiger oxidation in the presence of aldehydes[J]. ACS Catalysis, 2013, 3(2): 230-236.
|
23 |
MARKITON M, BONCEL S, JANAS D, et al. Highly active nanobiocatalyst from lipase noncovalently immobilized on multiwalled carbon nanotubes for baeyer-villiger synthesis of lactones[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1685-1691.
|
24 |
SZELWICKA A, ZAWADZKI P, SITKO M, et al. Continuous flow chemo-enzymatic baeyer-villiger oxidation with superactive and extra-stable enzyme/carbon nanotube catalyst: an efficient upgrade from batch to flow[J]. Organic Process Research & Development, 2019, 23(7): 1386-1395.
|
25 |
CAI Zhihui, LIU Duo, HUANG Jiangnan, et al. Solvent-free production of ε-caprolactone from oxidation of cyclohexanone catalyzed by nitrogen-doped carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2037-2044.
|
26 |
MAITY S, RAM F, DHAR B B. Phosphorous-doped graphitic material as a solid acid catalyst for microwave-assisted synthesis of β-ketoenamines and baeyer-villiger oxidation[J]. ACS Omega, 2020, 5(26): 15962-15972.
|
27 |
XING Chen, TAN Rong, HAO Pengbo, et al. Graphene oxide supported chlorostannate (Ⅳ) ionic liquid: Brønsted-Lewis acidic combined catalyst for highly efficient Baeyer-Villiger oxidation in water[J]. Molecular Catalysis, 2017, 433: 37-47.
|
28 |
CHEN Shaoyun, ZHOU Xiantai, WANG Jiexiang, et al. Promoting the aerobic Baeyer-Villiger oxidation of ketones over carboxylic multi-walled carbon nanotubes[J]. Molecular Catalysis, 2017, 438: 152-158.
|
29 |
PEREIRA M M, DIAS L D, CALVETE M J. Metalloporphyrins: bioinspired oxidation catalysts[J].ACS Catalysis, 2018, 8(11): 10784-10808.
|
30 |
DAS S K, SUBBAIYAN N K, D’SOUZA F, et al. Formation and photoinduced properties of zinc porphyrin-SWCNT and zinc phthalocyanine-SWCNT nanohybrids using diameter sorted nanotubes assembled via metal-ligand coordination and π-π stacking[J]. Journal of Porphyrins and Phthalocyanines, 2011, 15(9/10): 1033-1043.
|
31 |
WANG Cun, YUAN Ruo, CHAI Yaqin, et al. Non-covalent iron(Ⅲ)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite[J]. Electrochimica Acta, 2012, 62: 109-115.
|
32 |
CHITTA R, SANDANAYAKA A, SCHUMACHER A, et al. Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer[J]. Journal of Physical Chemistry C, 2007, 111: 6947-6955.
|
33 |
BANERJEE I, MONDAL D, MARTIN J, et al. Photoactivated antimicrobial activity of carbon nanotube-porphyrin conjugates[J]. Langmuir, 2010, 26(22): 17369-17374.
|
34 |
LI Yang, ZHOU Xiantai, JI Hongbing. Cocatalytic effect of cobalt acetate on aerobic cyclohexene oxidation catalyzed by manganese porphyrin[J]. Catalysis Communications, 2012, 27: 169-173.
|
35 |
LAN Hongyun, ZHOU Xiantai, JI Hongbing. Remarkable differences between benzaldehyde and isobutyraldehyde as coreductant in the performance toward the iron(Ⅲ) porphyrins-catalyzed aerobic Baeyer-Villiger oxidation of cyclohexanone, kinetic and mechanistic features[J]. Tetrahedron, 2013, 69(21): 4241-4246.
|
36 |
JANZEN E G, BLACKBURN B J. Detection and identification of short-lived free radicals by an electron spin resonance trapping technique[J]. Journal of the American Chemical Society, 1968, 90(21): 5909-5910.
|
37 |
BERLINER L J, KHRAMTSOV V, FUJII H, et al. Unique in vivo applications of spin traps[J]. Free Radical Biology and Medicine, 2001, 30(5): 489-499.
|
38 |
JANZEN E G, LIN C R, HINTON R D. Spontaneous free-radical formation in reactions of m-chloroperbenzoic acid with C-phenyl-N-tert-butylnitrone (PBN) and 3- or 4-substituted PBN’s[J]. The Journal of Organic Chemistry, 1992, 57(6): 1633-1635.
|
39 |
LEISCH H, MORLEY K, LAU P C K. Baeyer-Villiger monooxygenases: more than just green chemistry[J]. Chemical Reviews, 2011, 111(7): 4165-4222.
|
40 |
YACHNIN B J, SPRULES T, MCEVOY M B, et al. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation[J]. Journal of the American Chemical Society, 2012, 134(18): 7788-7795.
|