化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1341-1352.DOI: 10.16085/j.issn.1000-6613.2022-0952

• 工业催化 • 上一篇    下一篇

甲醇供氢体系铜锌双金属催化糠醛加氢转化

萧垚鑫1,2(), 张军2,3,4(), 胡升5, 单锐2,3,4, 袁浩然2,3,4(), 陈勇1,2,3,4   

  1. 1.华南农业大学生物质工程研究院,广东 广州 510642
    2.中国科学院广州能源研究所,广东 广州 510640
    3.中国科学院可再生能源重点实验室,广东 广州 510640
    4.广东省新能源和可再生能源研究开发与应用重点 实验室,广东 广州 510640
    5.中国科学技术大学工程科学学院,安徽 合肥 230026
  • 收稿日期:2022-05-23 修回日期:2022-11-22 出版日期:2023-03-15 发布日期:2023-04-10
  • 通讯作者: 袁浩然
  • 作者简介:萧垚鑫(1998—),男,硕士研究生,研究方向为生物质高值资源化利用。E-mail:2252164032@qq.com
    张军(1987—),男,博士,副研究员,研究方向为有机固废/农林废弃生物质高值资源化利用。E-mail:zhagnjun@ms.giec.ac.cn
  • 基金资助:
    国家自然科学基金面上项目(51976222);能源清洁利用国家重点实验室开放基金课题(ZJU-CEU2020023)

Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor

XIAO Yaoxin1,2(), ZHANG Jun2,3,4(), HU Sheng5, SHAN Rui2,3,4, YUAN Haoran2,3,4(), CHEN Yong1,2,3,4   

  1. 1.Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, Guangdong, China
    2.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, Guangdong, China
    3.CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    4.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
    5.School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2022-05-23 Revised:2022-11-22 Online:2023-03-15 Published:2023-04-10
  • Contact: YUAN Haoran

摘要:

以Cu(NO3)2·3H2O、Zn(NO3)2·6H2O为原料,采用共沉淀法合成了一系列铜锌双金属催化材料。通过电感耦合等离子体发射光谱(ICP-OES)、X射线衍射(XRD)、氮气等温吸附-脱附、扫描电子显微镜(SEM)、氨气程序升温脱附(NH3-TPD)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)、热重/差热分析(TG/DTA)等手段分析表征了催化剂物理化学特性。催化材料表征结果表明,载体Zn组分的引入显著改善了催化剂结构,形成了丰富的介孔结构和部分酸性位点。甲醇供氢体系糠醛加氢转化实验结果显示,合成的Cu-Zn双金属催化剂在甲醇重整产氢和糠醛加氢反应中表现出优异的活性,其中Cu/Zn摩尔比为0.6的CZ-0.60催化活性最高。当CZ-0.60用量为20mg,在160℃反应4h,糠醛完全转化,糠醇产率达89.7%;而在240℃反应8h,糠醛完全转化,2-甲基呋喃产率达26.3%。CZ-0.60在循环使用过程中仍表现出较好的催化活性,热重分析表明回用的CZ-0.60在750℃下具有良好的热稳定性能。基于上述研究结果,本文提出了甲醇供氢体系铜锌双金属催化糠醛加氢转化可能反应路径。

关键词: 糠醛, 甲醇, 催化加氢, 糠醇, 2-甲基呋喃

Abstract:

Using Cu(NO3)2·3H2O and Zn(NO3)2·6H2O as the precursors, we prepared a series of Cu-Zn catalysts by co-precipitation method. The physicochemical properties of the as-prepared Cu-Zn catalysts were characterized through inductively coupled plasma optical emission spectrometers (ICP-OES), X-ray diffraction (XRD), N2-adsorption/desorption, scanning electron microscopy (SEM), NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric/differential thermal analysis (TG/DTA), etc. The introduction of Zn prompted the formation of mesoporous structure and certain amounts of acid sites. The experimental results showed that the synthesized Cu-Zn catalysts exhibited excellent catalytic performance for methanol reforming and furfural hydrogenation, among which CZ-0.60 with Cu/Zn molar ratio of 0.6 gave the highest catalytic performance. The yield of furfuryl alcohol reached 89.7% with 100% furfural conversion at 160℃ for 4h, while that of 2-methylfuran reached 26.3% with complete furfural conversion at 240℃ for 8h. Moreover, CZ-0.60 still maintained good activity in recycling experiments, and showed good thermal stability below 750℃. Furthermore, the possible pathway for furfural hydrogenation using methanol as hydrogen donor over Cu-Zn was proposed.

Key words: furfural, methanol, catalytic hydrogenation, furfuryl alcohol, 2-methylfuran

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn