化工进展 ›› 2022, Vol. 41 ›› Issue (9): 5037-5046.DOI: 10.16085/j.issn.1000-6613.2021-2246
收稿日期:
2021-11-02
修回日期:
2021-11-22
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
刘亚利
作者简介:
刘亚利(1982—),女,副教授,硕士生导师,研究方向为固体废弃物资源化和污水处理。E-mail:liuyali0418@163.com。
基金资助:
LIU Yali1(), ZHANG Hongwei1, KANG Xiaorong2
Received:
2021-11-02
Revised:
2021-11-22
Online:
2022-09-25
Published:
2022-09-27
Contact:
LIU Yali
摘要:
污泥厌氧消化对实现污水处理厂“碳减排”具有重要意义,然其产甲烷效率和工艺稳定性易受多种因素干扰。微塑料作为新兴污染物经污水处理后,约有99%富集在污泥中,对污泥厌氧消化过程产生影响。因此,本文重点总结了污水中微塑料的来源、性质及其在污水处理工艺中的归宿,详细阐述了聚苯乙烯(PS)、聚酰胺6(PA6)、聚氯乙烯(PVC)等常见微塑料对污泥增溶、水解、酸化和产甲烷阶段的影响,并从细胞结构、微生物群落、酶活性等角度进一步归纳了微塑料影响厌氧消化的机理。最后,在概括当前研究成果的基础上,提出应从系统工程研究(预处理技术、运行条件、反应器类型等)、微塑料及其浸出物的抑制机制(微塑料与胞外聚合物、细胞膜的作用、标志性辅酶和辅因子、特征微生物方面)、微塑料与污泥其他组分间的协同/抑制机理等方面开展深入研究,为污泥资源化利用提供理论基础和技术支持。
中图分类号:
刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046.
LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046.
国家/城市 | 污水处理 程度 | 污泥类型 | 微塑料浓度 /颗粒·g-1干污泥 | 参考文献 |
---|---|---|---|---|
中国北京 | 三级处理 | 脱水污泥 | 2.933~5.333 | [ |
中国南京 | 二级处理 | 初沉污泥 脱水污泥 | 6.31~16.62 13.06~29.66 | [ |
中国山东 | 二级处理 | 脱水污泥 | 30.7 | [ |
中国云南 | 二级处理 | 剩余污泥 | 7.70 | |
芬兰 | 三级处理 | 脱水污泥 | 1.867 | [ |
爱尔兰 | 二级处理 | 厌氧消化污泥 | 4.0 | [ |
脱水污泥 | 4.196~15.385 | |||
意大利 | 二级处理 | 回流污泥 | 22.7 | [ |
瑞典 | — | 脱水污泥 | 16.7±1.96 | [ |
德国 | — | 脱水污泥 | 1~24 | [ |
挪威 | — | 脱水污泥 | 1.701~19.837 | [ |
加拿大 温哥华 | — | 初沉污泥 二沉污泥 | 14.9 4.4 | [ |
表1 不同类型污泥中微塑料浓度
国家/城市 | 污水处理 程度 | 污泥类型 | 微塑料浓度 /颗粒·g-1干污泥 | 参考文献 |
---|---|---|---|---|
中国北京 | 三级处理 | 脱水污泥 | 2.933~5.333 | [ |
中国南京 | 二级处理 | 初沉污泥 脱水污泥 | 6.31~16.62 13.06~29.66 | [ |
中国山东 | 二级处理 | 脱水污泥 | 30.7 | [ |
中国云南 | 二级处理 | 剩余污泥 | 7.70 | |
芬兰 | 三级处理 | 脱水污泥 | 1.867 | [ |
爱尔兰 | 二级处理 | 厌氧消化污泥 | 4.0 | [ |
脱水污泥 | 4.196~15.385 | |||
意大利 | 二级处理 | 回流污泥 | 22.7 | [ |
瑞典 | — | 脱水污泥 | 16.7±1.96 | [ |
德国 | — | 脱水污泥 | 1~24 | [ |
挪威 | — | 脱水污泥 | 1.701~19.837 | [ |
加拿大 温哥华 | — | 初沉污泥 二沉污泥 | 14.9 4.4 | [ |
微塑料 | 温度 /℃ | 厌氧消化过程 | 试验方法 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|
种类 | 粒径 | 浓度 | 溶胞 | 水解 | 酸化 | 产甲烷 | |||
PVC | 1mm | 10颗粒/gTS | 37 | ↑ | — | ↑ | ↑(5.9%±0.1%) | 批次 | [ |
20~60颗粒/gTS | ↑ | ↓ | ↓ | ↓(90.6%~75.8%) | |||||
PVC | 30mg/gTS、cPAM | 35±1 | — | ↑ | ↑ | ↑(抑制从15.6%恢复至5.8%) | BMP、 半连续 | [ | |
PE | 40µm | 10~60颗粒/gTS | 37 | — | — | — | — | 批次 | [ |
100~200颗粒/gTS | — | ↓ (15%) | ↓ | ↓ (12.4%~27.5%) | |||||
PE | 40µm | 200颗粒/gTS | 37 | ↓(28.8%) | 连续试验 | ||||
PS | 80nm | 0.05~0.2g/L | 35 | — | — | 批次 | [ | ||
0.25g/L | ↓ | ↓(17.9%) | |||||||
PS | 5µm | 0.05~0.2g/L | 35 | 批次 | |||||
0.25g/L | ↓ | ↓(19.3%) | |||||||
PS | 54.8nm | 0.05~0.2g/L | 37 | ↓(4.7%~14.4%) | 批次 | [ | |||
PS | (50±6)nm | 0~1000g/L | ↓ | [ | |||||
PP | 5~50颗粒/gTS | ↓(58%) | UASB连续试验 | [ | |||||
PP | 50μm | 0.002~0.2g/gVS; 0.2g时 | 37±1 | 乙酸提高15.2% | 累积甲烷产量提高148.2% | 批次 | [ | ||
PA6 | 0.5~1.0mm | 5~10颗粒/gTS | 37 | — | — | ↑(23.5%) | ↑(4.84%~39.5%) | 生化甲烷 产量(BMP)测试 | [ |
PES | 200µm | 1~200颗粒/gTS (10颗粒/gTS最低) | — | ↓ | — | ↓(11.5%~4.9%) | 批次 | [ | |
污水厂(PE、PET、PS 和PP) | 24颗粒/gTS、25颗粒/gTS、7颗粒/gTS和5颗粒/gTS | 21±1 | ↓(蛋白11.2%,糖8%) | ↓(21.5%) | 碱调控抑制产甲烷 | 批次 | [ | ||
直接添加PE、PET、PS 和PP | 24颗粒/gTS、25颗粒/gTS、7颗粒/gTS和5颗粒/gTS | 21±1 | ↓(蛋白18.9%,糖15.1%) |
表2 微塑料对剩余污泥厌氧消化各阶段的影响
微塑料 | 温度 /℃ | 厌氧消化过程 | 试验方法 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|
种类 | 粒径 | 浓度 | 溶胞 | 水解 | 酸化 | 产甲烷 | |||
PVC | 1mm | 10颗粒/gTS | 37 | ↑ | — | ↑ | ↑(5.9%±0.1%) | 批次 | [ |
20~60颗粒/gTS | ↑ | ↓ | ↓ | ↓(90.6%~75.8%) | |||||
PVC | 30mg/gTS、cPAM | 35±1 | — | ↑ | ↑ | ↑(抑制从15.6%恢复至5.8%) | BMP、 半连续 | [ | |
PE | 40µm | 10~60颗粒/gTS | 37 | — | — | — | — | 批次 | [ |
100~200颗粒/gTS | — | ↓ (15%) | ↓ | ↓ (12.4%~27.5%) | |||||
PE | 40µm | 200颗粒/gTS | 37 | ↓(28.8%) | 连续试验 | ||||
PS | 80nm | 0.05~0.2g/L | 35 | — | — | 批次 | [ | ||
0.25g/L | ↓ | ↓(17.9%) | |||||||
PS | 5µm | 0.05~0.2g/L | 35 | 批次 | |||||
0.25g/L | ↓ | ↓(19.3%) | |||||||
PS | 54.8nm | 0.05~0.2g/L | 37 | ↓(4.7%~14.4%) | 批次 | [ | |||
PS | (50±6)nm | 0~1000g/L | ↓ | [ | |||||
PP | 5~50颗粒/gTS | ↓(58%) | UASB连续试验 | [ | |||||
PP | 50μm | 0.002~0.2g/gVS; 0.2g时 | 37±1 | 乙酸提高15.2% | 累积甲烷产量提高148.2% | 批次 | [ | ||
PA6 | 0.5~1.0mm | 5~10颗粒/gTS | 37 | — | — | ↑(23.5%) | ↑(4.84%~39.5%) | 生化甲烷 产量(BMP)测试 | [ |
PES | 200µm | 1~200颗粒/gTS (10颗粒/gTS最低) | — | ↓ | — | ↓(11.5%~4.9%) | 批次 | [ | |
污水厂(PE、PET、PS 和PP) | 24颗粒/gTS、25颗粒/gTS、7颗粒/gTS和5颗粒/gTS | 21±1 | ↓(蛋白11.2%,糖8%) | ↓(21.5%) | 碱调控抑制产甲烷 | 批次 | [ | ||
直接添加PE、PET、PS 和PP | 24颗粒/gTS、25颗粒/gTS、7颗粒/gTS和5颗粒/gTS | 21±1 | ↓(蛋白18.9%,糖15.1%) |
1 | 侯俊, 许晓雅, 程芳, 等. 微塑料与有机污染物的相互作用及环境行为研究进展[J]. 河海大学学报(自然科学版), 2020, 48(1): 22-28. |
HOU Jun, XU Xiaoya, CHENG Fang, et al. Research progress on interaction and environment behavior between microplastics and organic pollutants[J]. Journal of Hohai University (Natural Sciences), 2020, 48(1): 22-28. | |
2 | BRETAS ALVIM C, MENDOZA-ROCA J A, BES-PIÁ A. Wastewater treatment plant as microplastics release source—Quantification and identification techniques[J]. Journal of Environmental Management, 2020, 255: 109739. |
3 | LIU X N, YUAN W K, DI M X, et al. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China[J]. Chemical Engineering Journal, 2019, 362: 176-182. |
4 | 许霞, 侯青桐, 薛银刚, 等. 污水厂中微塑料的污染及迁移特征研究进展[J]. 中国环境科学, 2018, 38(11): 4393-4400. |
XU Xia, HOU Qingtong, XUE Yingang, et al. Research progress on the transference and pollution characteristics of microplastics in wastewater treatment plants[J]. China Environmental Science, 2018, 38(11): 4393-4400. | |
5 | 邢薇, 刘梦瑶, 李頔, 等. 污水处理厂中微塑料的去除效能与全流程分析——以北京某下沉式三级污水处理厂为例[J]. 中国环境科学, 2021, 41(3): 1140-1147. |
XING Wei, LIU Mengyao, LI Di, et al. Removal efficiency and whole process analysis of microplastics in a wastewater treatment plant: taking an underground tertiary wastewater treatment plant in Beijing as an example[J]. China Environmental Science, 2021, 41(3): 1140-1147. | |
6 | SUN J, DAI X H, WANG Q L, et al. Microplastics in wastewater treatment plants: detection, occurrence and removal[J]. Water Research, 2019, 152: 21-37. |
7 | HE Z W, YANG W J, REN Y X, et al. Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: a state-of-the-art review[J]. Bioresource Technology, 2021, 331: 125035. |
8 | DU W J, HUANG X D, ZHANG J M, et al. Enhancing methane production from anaerobic digestion of waste activated sludge with addition of sodium lauroyl sarcosinate[J]. Bioresource Technology, 2021, 336: 125321. |
9 | 陈思思, 杨殿海, 庞维海, 等. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J]. 化工进展, 2020, 39(4): 1511-1520. |
CHEN Sisi, YANG Dianhai, PANG Weihai, et al. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520. | |
10 | ZHANG M, WANG Y C. Impact of biochar supported nano zero-valent iron on anaerobic co-digestion of sewage sludge and food waste: methane production, performance stability and microbial community structure[J]. Bioresource Technology, 2021, 340: 125715. |
11 | 陈思思, 杨殿海, 庞维海, 等. 污泥中蛋白类物质厌氧转化影响因素及其促进策略研究进展[J]. 化工进展, 2020, 39(5): 1992-1999. |
CHEN Sisi, YANG Dianhai, PANG Weihai, et al. Advances in research on factors affecting anaerobic conversion of proteinaceous materials in sludge and their promotion strategies[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1992-1999. | |
12 | LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 2018, 237: 460-467. |
13 | QI K, LU N, ZHANG S Q, et al. Uptake of Pb(Ⅱ) onto microplastic-associated biofilms in freshwater: adsorption and combined toxicity in comparison to natural solid substrates[J]. Journal of Hazardous Materials, 2021, 411: 125115. |
14 | CHEN Y G, ZHANG Y, ZHANG Z Z. Occurrence, effects, and biodegradation of plastic additives in sludge anaerobic digestion: a review[J]. Environmental Pollution, 2021, 287: 117568. |
15 | ALI I, DING T D, PENG C S, et al. Micro-and nanoplastics in wastewater treatment plants: occurrence, removal, fate, impacts and remediation technologies—A critical review[J]. Chemical Engineering Journal, 2021, 423: 130205. |
16 | HATINOĞLU M D, SANIN F D. Sewage sludge as a source of microplastics in the environment: a review of occurrence and fate during sludge treatment[J]. Journal of Environmental Management, 2021, 295: 113028. |
17 | RAJU S, CARBERY M, KUTTYKATTIL A, et al. Transport and fate of microplastics in wastewater treatment plants: implications to environmental health[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(4): 637-653. |
18 | 康佩颖, 嵇斌, 卫婷, 等. 污水处理厂中微塑料的来源与分析方法[J]. 中国给水排水, 2020, 36(22): 29-36. |
KANG Peiying, JI Bin, WEI Ting, et al. Overview of sources and analysis methods of microplastics in wastewater[J]. China Water & Wastewater, 2020, 36(22): 29-36. | |
19 | YANG L B, LI K X, CUI S, et al. Removal of microplastics in municipal sewage from China’s largest water reclamation plant[J]. Water Research, 2019, 155: 175-181. |
20 | MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11): 5800-5808. |
21 | 郝晓地, 翟学棚, 吴远远, 等. 微塑料在污水处理过程中的演变与归宿[J]. 中国给水排水, 2019, 35(8): 20-26. |
HAO Xiaodi, ZHAI Xuepeng, WU Yuanyuan, et al. Evolution and fate of microplastics in sewage treatment[J]. China Water & Wastewater, 2019, 35(8): 20-26. | |
22 | TANG N, LIU X N, XING W. Microplastics in wastewater treatment plants of Wuhan, Central China: abundance, removal, and potential source in household wastewater[J]. Science of the Total Environment, 2020, 745: 141026. |
23 | 张楠, 来嘉熙, 高山雪, 等. 污水处理过程中微塑料的特性[J]. 应用化工, 2020, 49(6): 1508-1510, 1514. |
ZHANG Nan, LAI Jiaxi, GAO Shanxue, et al. Characteristics of microplastics in sewage treatment[J]. Applied Chemical Industry, 2020, 49(6): 1508-1510, 1514. | |
24 | LUO J Y, ZHANG Q, ZHAO J N, et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: a review[J]. Journal of Hazardous Materials, 2020, 383: 121176. |
25 | JIANG J H, WANG X W, REN H Y, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China[J]. Science of the Total Environment, 2020, 746: 141378. |
26 | IYARE P U, OUKI S K, BOND T. Microplastics removal in wastewater treatment plants: a critical review[J]. Environmental Science: Water Research & Technology, 2020, 6(10): 2664-2675. |
27 | 李小伟, 纪艳艳, 梅庆庆, 等. 污水处理厂污水和污泥中微塑料的研究展望[J]. 净水技术, 2019, 38(7): 13-22, 84. |
LI Xiaowei, JI Yanyan, MEI Qingqing, et al. Review of microplastics in wastewater and sludge of wastewater treatment plant[J]. Water Purification Technology, 2019, 38(7): 13-22, 84. | |
28 | GIES E A, LENOBLE J L, NOËL M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada[J]. Marine Pollution Bulletin, 2018, 133: 553-561. |
29 | HAMIDIAN A H, OZUMCHELOUEI E J, FEIZI F, et al. A review on the characteristics of microplastics in wastewater treatment plants: a source for toxic chemicals[J]. Journal of Cleaner Production, 2021, 295: 126480. |
30 | XU Q J, GAO Y Y, XU L, et al. Investigation of the microplastics profile in sludge from China’s largest water reclamation plant using a feasible isolation device[J]. Journal of Hazardous Materials, 2020, 388: 122067. |
31 | YUAN F, ZHAO H, SUN H B, et al. Investigation of microplastics in sludge from five wastewater treatment plants in Nanjing, China[J]. Journal of Environmental Management, 2022, 301: 113793. |
32 | TALVITIE J, MIKOLA A, SETÄLÄ O, et al. How well is microlitter purified from wastewater?—A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant[J]. Water Research, 2017, 109: 164-172. |
33 | MAHON A M, O’CONNELL B, HEALY M G, et al. Microplastics in sewage sludge: effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810-818. |
34 | MAGNI S, BINELLI A, PITTURA L, et al. The fate of microplastics in an Italian Wastewater Treatment Plant[J]. Science of the Total Environment, 2019, 652: 602-610. |
35 | 徐玉璐, 乔子茹, 储思琴, 等. 污泥资源化过程中新兴污染物的赋存与控制研究进展[J]. 环境工程, 2021, 39(9): 146-153. |
XU Yulu, QIAO Ziru, CHU Siqin, et al. Research progress on the occurrence and control of emerging pollutants in the process of sludge recycling[J]. Environmental Engineering, 2021, 39(9): 146-153. | |
36 | MINTENIG S M, INT-VEEN I, LÖDER M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108: 365-372. |
37 | LUSHER A, HURLEY R, VOGELSANG C, et al. Mapping microplastics in sludge[R]. Norwegian Institute for Water Research, 2018. |
38 | ROLSKY C, KELKAR V, DRIVER E, et al. Municipal sewage sludge as a source of microplastics in the environment[J]. Current Opinion in Environmental Science & Health, 2020, 14: 16-22. |
39 | HU Y L, GONG M Y, WANG J Y, et al. Current research trends on microplastic pollution from wastewater systems: a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(2): 207-230. |
40 | COLE M, LINDEQUE P K, FILEMAN E, et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets[J]. Environmental Science & Technology, 2016, 50(6): 3239-3246. |
41 | WEI W, HUANG Q S, SUN J, et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509-2517. |
42 | WEI W, HUANG Q S, SUN J, et al. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2019, 53(16): 9604-9613. |
43 | GONG R, TANG X, FAN C Z, et al. Effect of DEHP on SCFA production by anaerobic fermentation of waste activated sludge[J]. Advances in Polymer Technology, 2020(1): 1-12. |
44 | CHEN H B, TANG M G, YANG X, et al. Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge[J]. Chemical Engineering Journal, 2021, 408: 127251. |
45 | CHEN H B, ZENG X N, ZHOU Y Y, et al. Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 394: 122570. |
46 | 张静静, 赵明星, 李超, 等. 聚苯乙烯微塑料对厌氧消化产甲烷的影响研究[C]//2020 年全国有机固废处理与资源化利用高峰论坛. 2020: 32-38. |
ZHANG Jingjing, ZHAO Mingxing, LI Chao, et al. Evaluation the impact of polystyrene microplastics on the methane generation by anaerobic digestion[C]//2020 National Organic Solid Waste Treatment and Resource Utilization Summit Forum. 2020: 32-38. | |
47 | HOU G Y, ZHANG R, HAO X Y, et al. An exploration of the effect and interaction mechanism of bisphenol A on waste sludge hydrolysis with multi-spectra, isothermal titration microcalorimetry and molecule docking[J]. Journal of Hazardous Materials, 2017, 333: 32-41. |
48 | YANG H, ZHANG L, HOU G Y, et al. Insights into the effect and interaction mechanism of bisphenol S on lipids hydrolysis in sludge through multi-spectra, thermodynamics, and molecule docking analysis[J]. Environmental Science and Pollution Research, 2018, 25(8): 7834-7843. |
49 | JIANG X P, YAN Y Y, FENG L Y, et al. Bisphenol A alters volatile fatty acids accumulation during sludge anaerobic fermentation by affecting amino acid metabolism, material transport and carbohydrate-active enzymes[J]. Bioresource Technology, 2021, 323: 124588. |
50 | WEI W, ZHANG Y T, HUANG Q S, et al. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms[J]. Water Research, 2019, 163: 114881. |
51 | LIU Q, LI L, ZHAO X L, et al. An evaluation of the effects of nanoplastics on the removal of activated-sludge nutrients and production of short chain fatty acid[J]. Process Safety and Environmental Protection, 2021, 148: 1070-1076. |
52 | DUAN X, WANG X, DAI L R, et al. Simultaneous enhancement of nonylphenol biodegradation and short-chain fatty acids production in waste activated sludge under acidogenic conditions[J]. Science of the Total Environment, 2019, 651: 24-31. |
53 | ZHANG J J, ZHAO M X, LI C, et al. Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111095. |
54 | FENG Y, FENG L J, LIU S C, et al. Emerging investigator series: inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure[J]. Environmental Science: Water Research & Technology, 2018, 4(12): 1902-1911. |
55 | 江晓影, 刘泳汐, 秦艳, 等. 聚丙烯微塑料对污泥厌氧消化效能作用影响[J]. 中国环境科学, 2021, 41(5): 2252-2257. |
JIANG Xiaoying, LIU Yongxi, QIN Yan, et al. Effect of polypropylene microplastics on the performance of sludge anaerobic digestion[J]. China Environmental Science, 2021, 41(5): 2252-2257. | |
56 | PITTURA L, FOGLIA A, AKYOL Ç, et al. Microplastics in real wastewater treatment schemes: comparative assessment and relevant inhibition effects on anaerobic processes[J]. Chemosphere, 2021, 262: 128415. |
57 | WEI W, CHEN X, NI B J. Different pathways of microplastics entering the sludge treatment system distinctively affect anaerobic sludge fermentation processes[J]. Environmental Science & Technology, 2021, 55(16): 11274-11283. |
58 | FENG Y, DUAN J L, SUN X D, et al. Insights on the inhibition of anaerobic digestion performances under short-term exposure of metal-doped nanoplastics via Methanosarcina acetivorans[J]. Environmental Pollution, 2021, 275: 115755. |
59 | WANG J, LIU X H, DAI Y X, et al. Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil[J]. Science of the Total Environment, 2020, 741: 140463. |
60 | TANG X, ZHANG B W, FAN C Z, et al. The presence of cationic polyacrylamide attenuated the toxicity of polyvinyl chloride microplastics to anaerobic digestion of waste activated sludge[J]. Chemical Engineering Journal, 2022, 427: 131442. |
61 | FU S F, DING J N, ZHANG Y, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science of the Total Environment, 2018, 625: 64-70. |
62 | WEI W, HAO Q, CHEN Z J, et al. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research, 2020, 182: 116041. |
63 | LI L, GENG S X, LI Z Y, et al. Effect of microplastic on anaerobic digestion of wasted activated sludge[J]. Chemosphere, 2020, 247: 125874. |
64 | CHOI O, DENG K K, KIM N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth[J]. Water Research, 2008, 42(12): 3066-3074. |
65 | LIANG Z H, DAS A, HU Z Q. Bacterial response to a shock load of nanosilver in an activated sludge treatment system[J]. Water Research, 2010, 44(18): 5432-5438. |
66 | ZHANG Y T, WEI W, HUANG Q S, et al. Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics[J]. Water Research, 2020, 179: 115898. |
67 | ZHANG Z Q, CHEN Y G. Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review[J]. Chemical Engineering Journal, 2020, 382: 122955. |
68 | MOHAMMAD MIRSOLEIMANI AZIZI S, HAI F I, LU W J, et al. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion[J]. Bioresource Technology, 2021, 329: 124894. |
69 | 林旭萌, 宿程远, 吴淑敏, 等. 微塑料PES与2, 4-DCP复合污染对厌氧污泥胞外聚合物与微生物群落的影响[J]. 环境科学, 2021, 42(4): 1946-1955. |
LIN Xumeng, SU Chengyuan, WU Shumin, et al. Effects of PES and 2, 4-DCP on the extracellular polymeric substances and microbial community of anaerobic granular sludge[J]. Environmental Science, 2021, 42(4): 1946-1955. | |
70 | HERMABESSIERE L, DEHAUT A, PAUL-PONT I, et al. Occurrence and effects of plastic additives on marine environments and organisms: a review[J]. Chemosphere, 2017, 182: 781-793. |
71 | HAHLADAKIS J N, VELIS C A, WEBER R, et al. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. |
72 | SAMARAS V G, STASINAKIS A S, THOMAIDIS N S, et al. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2014, 162: 365-372. |
73 | WANG D, ZHAO J, ZENG G, et al. How does poly(hydroxyalkanoate) affect methane production from the anaerobic digestion of waste-activated sludge? [J]. Environmental Science & Technology, 2015, 49(20): 12253-12262. |
74 | YANG X J, NIE J M, WANG D, et al. Enhanced hydrolysis of waste activated sludge for methane production via anaerobic digestion under N2-nanobubble water addition[J]. Science of the Total Environment, 2019, 693: 133524. |
75 | 汪刚慧, 刘宏波, 郑志永, 等. 利用米曲霉发酵餐厨垃圾产水解酶促进污泥厌氧消化[J]. 环境工程学报, 2019, 13(5): 1175-1185. |
WANG Ganghui, LIU Hongbo, ZHENG Zhiyong, et al. Promoted sludge anaerobic digestion by the hydrolase produced from food waste fermentation with Aspergillus oryzae[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1175-1185. | |
76 | WANG X L, ZHAO J W, YANG Q, et al. Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion[J]. Bioresource Technology, 2017, 246: 234-241. |
77 | LI L, LIU D, LI Z, et al. Evaluation of microplastic polyvinylchloride and antibiotics tetracycline co-effect on the partial nitrification process[J]. Marine Pollution Bulletin, 2020, 160: 111671. |
78 | TANG L Q, SU C Y, CHEN Y, et al. Influence of biodegradable polybutylene succinate and non-biodegradable polyvinyl chloride microplastics on anammox sludge: performance evaluation, suppression effect and metagenomic analysis[J]. Journal of Hazardous Materials, 2021, 401: 123337. |
79 | HE Z W, YANG C X, TANG C C, et al. Response of anaerobic digestion of waste activated sludge to residual ferric ions[J]. Bioresource Technology, 2021, 322: 124536. |
80 | HEYER R, KOHRS F, REICHL U, et al. Metaproteomics of complex microbial communities in biogas plants[J]. Microbial Biotechnology, 2015, 8(5): 749-763. |
81 | PASSARIS I, GAELEN P, CORNELISSEN R, et al. Cofactor F430 as a biomarker for methanogenic activity: application to an anaerobic bioreactor system[J]. Applied Microbiology and Biotechnology, 2018, 102(3): 1191-1201. |
[1] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[2] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[3] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[4] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[7] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[8] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[9] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[10] | 程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968. |
[11] | 胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060. |
[12] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[13] | 孙千千, 刘阵, 李瑞, 张溪, 杨明德, 吴玉龙. 低温水热耦合亚铁离子活化过硫酸盐提高剩余污泥的脱水性能[J]. 化工进展, 2023, 42(2): 595-602. |
[14] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[15] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |