化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4872-4881.DOI: 10.16085/j.issn.1000-6613.2022-2009
收稿日期:
2022-10-27
修回日期:
2023-01-09
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
肖本益
作者简介:
陈翔宇(1998—),男,博士研究生,主要研究方向为污泥资源化。E-mail:xychen1_st@rcees.ac.cn。
基金资助:
CHEN Xiangyu1,2(), BIAN Chunlin3, XIAO Benyi1,2()
Received:
2022-10-27
Revised:
2023-01-09
Online:
2023-09-15
Published:
2023-09-28
Contact:
XIAO Benyi
摘要:
温度分级厌氧消化(TPAD)由高温前相和中温后相组成,是近些年来一种实现有机废弃物高效能源化处理的新型厌氧消化工艺,它结合了中温厌氧消化与高温厌氧消化各自反应的优点,有效地提高了有机废弃物的厌氧消化效率,具有广阔的应用前景,是近些年来有机废弃物厌氧消化的一个热点。本文通过梳理近20年来国内外的文献,重点分析了TPAD的优势,从不同角度介绍了TPAD的运行效果,揭示了包括消化基质性质、前后相温度、停留时间、有机负荷以及前相pH在内的各个因素对于TPAD的影响,详细总结了TPAD中微生物的菌群结构及其相互作用,并对TPAD进行了多方面的评估以及对未来的发展方向进行了展望,以期为该工艺的研究与应用提供系统和科学的参考,促进有机废弃物的能源化。
中图分类号:
陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881.
CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881.
基质类型 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | ||
污泥 | 0.39 | 0.07 | 39.4 | 0.40 | 0.27 | 67.7 | 0.40 | 330 | 63.3 | [ |
污泥 | 0.65±0.01 | 31±0.56 | 44.3±2.9 | 0.39±0.01 | 183±2.08 | 54.4±3.2 | 0.52 | 214±3 | 53.2 | [ |
牛粪 | 2.2 | 286 | 58.0 | 0.82 | 265 | 59.0 | 1.40 | 278 | 58.7 | [ |
牛粪 | 1.18±0.19 | 179 | 15.2 | 2.58±0.11 | 192 | 84.8 | 2.11 | 186 | 46.2 | [ |
餐厨垃圾 | 10.40 | 145 | 41.0 | 4.70 | 330 | 70.0~80.0 | 5.84 | 275 | 47.0 | [ |
餐厨垃圾 | 0 | 0 | 0 | 3.18 | 1016±135 | 59.9 | 2.54 | 965±560 | 59.9 | [ |
有机垃圾 | 3.47 | 9 | — | 1.58 | 13 | — | 2.53 | 11 | — | [ |
混合污泥 | 0.95±0.30 | — | 61.0±1.0 | 0.87±0.23 | — | 71.0±1.0 | 0.90 | — | 66.5 | [ |
污泥与有机垃圾混合物 | — | 163±14 | 44.8±1.6 | — | 172±13 | 58.7±2.2 | — | 335±18 | 57.4 | [ |
污泥与有机垃圾混合物 | 3.30±0.70 | 75±17 | 48.0±3.0 | 1.20±0.30 | 495±110 | 63.0±2.0 | 2.30 | 285±16 | 55.5 | [ |
甜菜渣与污泥混合物 | 1.56 | 190 | — | 2.03 | 325 | — | 1.80 | 258 | — | [ |
表1 TPAD系统的产沼气性能
基质类型 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | ||
污泥 | 0.39 | 0.07 | 39.4 | 0.40 | 0.27 | 67.7 | 0.40 | 330 | 63.3 | [ |
污泥 | 0.65±0.01 | 31±0.56 | 44.3±2.9 | 0.39±0.01 | 183±2.08 | 54.4±3.2 | 0.52 | 214±3 | 53.2 | [ |
牛粪 | 2.2 | 286 | 58.0 | 0.82 | 265 | 59.0 | 1.40 | 278 | 58.7 | [ |
牛粪 | 1.18±0.19 | 179 | 15.2 | 2.58±0.11 | 192 | 84.8 | 2.11 | 186 | 46.2 | [ |
餐厨垃圾 | 10.40 | 145 | 41.0 | 4.70 | 330 | 70.0~80.0 | 5.84 | 275 | 47.0 | [ |
餐厨垃圾 | 0 | 0 | 0 | 3.18 | 1016±135 | 59.9 | 2.54 | 965±560 | 59.9 | [ |
有机垃圾 | 3.47 | 9 | — | 1.58 | 13 | — | 2.53 | 11 | — | [ |
混合污泥 | 0.95±0.30 | — | 61.0±1.0 | 0.87±0.23 | — | 71.0±1.0 | 0.90 | — | 66.5 | [ |
污泥与有机垃圾混合物 | — | 163±14 | 44.8±1.6 | — | 172±13 | 58.7±2.2 | — | 335±18 | 57.4 | [ |
污泥与有机垃圾混合物 | 3.30±0.70 | 75±17 | 48.0±3.0 | 1.20±0.30 | 495±110 | 63.0±2.0 | 2.30 | 285±16 | 55.5 | [ |
甜菜渣与污泥混合物 | 1.56 | 190 | — | 2.03 | 325 | — | 1.80 | 258 | — | [ |
基质 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
基质类型 | 总固体含量 | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | VS 去除率/% | COD 去除率/% | |
污泥 | 4.61%±0.07% | 6 | 70 | - | 6.4 | 33.0±6.0 | 43.0±2.0 | 24 | 35 | - | - | 44.0±10.0 | 42.0±17.0 | 52.0±15.0 | 53.0±17.0 | [ |
污泥 | 5.41%±0.03% | 2 | 55 | 26.09±0.25 | 6.2 | 24.5±4.4 | 21.0±2.2 | 13 | 35 | 2.3 | 7.2 | 46.7±4.8 | 48.3±2.5 | 64.8 | 59.7 | [ |
牛粪 | 14.54% | 4 | 55 | 7.70 | 7.5 | 21.8±1.9 | - | 10 | 35 | 3.1 | 7.7 | 9.5±1.0 | - | 29.3±2.1 | - | [ |
牛粪 | 5.10% | 3 | 68 | - | 6.5 | 28.1±1.5 | - | 12 | 55 | - | 7.5 | 7.9±2.4 | - | 36.1±1.4 | - | [ |
餐厨垃圾 | 33.80% | 1.3 | 55 | 38.40 | 5.5 | 77.1 | 64.4 | 5 | 35 | 6.6 | 7.5 | 88.0 | 83.3 | 95.7 | 93.2 | [ |
餐厨垃圾 | 10.69%±0.36% | 6 | 55 | 3.22 | 3.8 | 3.8±3.9 | 3.7±3.9 | 24 | 37 | 0.9 | 7.8 | 77.9±3.9 | 74.1±2.8 | 78.6±4.6 | 77.9±2.3 | [ |
有机垃圾 | 8.97% | 4 | 55 | 22.41 | 7.0 | - | - | 10 | 37 | 9.0 | 7.5 | - | - | - | 63.5 | [ |
混合污泥 | 32.19g/L | 8 | 55 | 3.16 | 7.1 | 41.0±13.0 | 43.0±2.0 | 12 | 37 | 2.1 | 7.2 | 41.0±8.0 | 42.0±17.0 | 50.0±10.0 | 53.0±17.0 | [ |
污泥与有机垃圾混合物 | 42.20~44.40g/L | 3 | 55 | - | 7.0 | 27.3±7.8 | 45.4±6.5 | 10 | 35 | - | 7.2 | - | - | 65.1±4.4 | 63.8±8.9 | [ |
污泥与有机垃圾混合物 | 37.30g/L | 1 | 55 | 44.57±5.08 | 7.2 | 28.4 | - | 9 | 35 | 2.3±0.2 | 8.1 | 48.6 | - | 77.0 | - | [ |
甜菜渣与 污泥混合物 | 17.50g/L | 10 | 55 | - | 7.5 | - | - | 10 | 35 | 2.2 | 7.2 | - | - | 77.2 | 82.8 | [ |
表2 不同因素对TPAD运行的影响
基质 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
基质类型 | 总固体含量 | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | VS 去除率/% | COD 去除率/% | |
污泥 | 4.61%±0.07% | 6 | 70 | - | 6.4 | 33.0±6.0 | 43.0±2.0 | 24 | 35 | - | - | 44.0±10.0 | 42.0±17.0 | 52.0±15.0 | 53.0±17.0 | [ |
污泥 | 5.41%±0.03% | 2 | 55 | 26.09±0.25 | 6.2 | 24.5±4.4 | 21.0±2.2 | 13 | 35 | 2.3 | 7.2 | 46.7±4.8 | 48.3±2.5 | 64.8 | 59.7 | [ |
牛粪 | 14.54% | 4 | 55 | 7.70 | 7.5 | 21.8±1.9 | - | 10 | 35 | 3.1 | 7.7 | 9.5±1.0 | - | 29.3±2.1 | - | [ |
牛粪 | 5.10% | 3 | 68 | - | 6.5 | 28.1±1.5 | - | 12 | 55 | - | 7.5 | 7.9±2.4 | - | 36.1±1.4 | - | [ |
餐厨垃圾 | 33.80% | 1.3 | 55 | 38.40 | 5.5 | 77.1 | 64.4 | 5 | 35 | 6.6 | 7.5 | 88.0 | 83.3 | 95.7 | 93.2 | [ |
餐厨垃圾 | 10.69%±0.36% | 6 | 55 | 3.22 | 3.8 | 3.8±3.9 | 3.7±3.9 | 24 | 37 | 0.9 | 7.8 | 77.9±3.9 | 74.1±2.8 | 78.6±4.6 | 77.9±2.3 | [ |
有机垃圾 | 8.97% | 4 | 55 | 22.41 | 7.0 | - | - | 10 | 37 | 9.0 | 7.5 | - | - | - | 63.5 | [ |
混合污泥 | 32.19g/L | 8 | 55 | 3.16 | 7.1 | 41.0±13.0 | 43.0±2.0 | 12 | 37 | 2.1 | 7.2 | 41.0±8.0 | 42.0±17.0 | 50.0±10.0 | 53.0±17.0 | [ |
污泥与有机垃圾混合物 | 42.20~44.40g/L | 3 | 55 | - | 7.0 | 27.3±7.8 | 45.4±6.5 | 10 | 35 | - | 7.2 | - | - | 65.1±4.4 | 63.8±8.9 | [ |
污泥与有机垃圾混合物 | 37.30g/L | 1 | 55 | 44.57±5.08 | 7.2 | 28.4 | - | 9 | 35 | 2.3±0.2 | 8.1 | 48.6 | - | 77.0 | - | [ |
甜菜渣与 污泥混合物 | 17.50g/L | 10 | 55 | - | 7.5 | - | - | 10 | 35 | 2.2 | 7.2 | - | - | 77.2 | 82.8 | [ |
基质 类型 | 前相细菌 | 前相古菌 | 后相细菌 | 后相古菌 | 参考 文献 |
---|---|---|---|---|---|
活性 污泥 | Clostridium(49.2%) Hydrogenophilus(24.6%) Sphingobacterium(1.7%) Bacteroides(0.8%) | Methanosarcina(44.4%) Methanosaeta(1.6%) Methanoculleus(54%) | Clostridium(8.9%) Hydrogenophilus(22.0%) Sphingobacterium(13.0%) Bacteroides(2.4%) Chloroflexi(1.7%) | Methanosarcina(54.1%) Methanosaeta(14.8%) Methanoculleus(9.8%) Methanothermobacter(3.3%) Methanolinea(16.4%) | [ |
市政 污泥 | Clostridium(8.0%) Thermoanaerobacterales(23.2%) Bacteroides(7.6%) Hydrogenophilus | Methanosarcina(9.9%) Methanobacterium(9.9%) Methanobrevibacter(1.8%) Methanothermobacter(3.4%) | Clostridium(5.0%) Thermoanaerobacterales(13.2%) Bacteroides(26.8%) Hydrogenophilus | Methanosarcina(73.3%) Methanobacterium(26.1%) Methanothermobacte(0.3%) | [ |
混合 污泥 | — | Methanosarcina Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | — | Methanosarcin Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | [ |
秸秆和 猪粪 | Thermoanaero-Bacteroidetes Clostridium(7.7%) Ruminococcus(6.92%) | Methanothermobacter Methanosarcina Methanobrevibacter | Bacteroidetes (28.9%) Dojkabacteria(12.2%) Clostridium | Methanosaeta Bathyarchaeia | [ |
牛粪 | — | Methanosarcina Methanobacterium | — | Methanosarcina Methanosaeta Methanobacterium | [ |
牛粪与 废乳制品 | Bacteroidetes Synergistetes Thermotogales | Methanosarcina(12.1%) Methanobacterium(6.5%) Methanoculleus(65.2%) Methanobrevibacter(5.0%) Methanosphaera(0.7%) | Bacteroides Clostridium Spirochaetes Aminobacterium | Methanosarcina(47.3%) Methanobacterium(21.0%) Methanoculleus(1.0%) Methanobrevibacter(24.0%) Methanosphaera(4.1%) | [ |
有机 垃圾 | Bacteroidetes(10.0%) Clostridium(61.0%) Bacilli Thermotogales | Methanosarcina. Methanoculleus Methanobacterium | Bacteroidetes(36.0%) Clostridium(28.0%) Bacilli Thermotoga | Methanospirillum Methanoculleus Methanosarcina Methanomethylovorans | [ |
表3 TPAD反应器中微生物组成
基质 类型 | 前相细菌 | 前相古菌 | 后相细菌 | 后相古菌 | 参考 文献 |
---|---|---|---|---|---|
活性 污泥 | Clostridium(49.2%) Hydrogenophilus(24.6%) Sphingobacterium(1.7%) Bacteroides(0.8%) | Methanosarcina(44.4%) Methanosaeta(1.6%) Methanoculleus(54%) | Clostridium(8.9%) Hydrogenophilus(22.0%) Sphingobacterium(13.0%) Bacteroides(2.4%) Chloroflexi(1.7%) | Methanosarcina(54.1%) Methanosaeta(14.8%) Methanoculleus(9.8%) Methanothermobacter(3.3%) Methanolinea(16.4%) | [ |
市政 污泥 | Clostridium(8.0%) Thermoanaerobacterales(23.2%) Bacteroides(7.6%) Hydrogenophilus | Methanosarcina(9.9%) Methanobacterium(9.9%) Methanobrevibacter(1.8%) Methanothermobacter(3.4%) | Clostridium(5.0%) Thermoanaerobacterales(13.2%) Bacteroides(26.8%) Hydrogenophilus | Methanosarcina(73.3%) Methanobacterium(26.1%) Methanothermobacte(0.3%) | [ |
混合 污泥 | — | Methanosarcina Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | — | Methanosarcin Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | [ |
秸秆和 猪粪 | Thermoanaero-Bacteroidetes Clostridium(7.7%) Ruminococcus(6.92%) | Methanothermobacter Methanosarcina Methanobrevibacter | Bacteroidetes (28.9%) Dojkabacteria(12.2%) Clostridium | Methanosaeta Bathyarchaeia | [ |
牛粪 | — | Methanosarcina Methanobacterium | — | Methanosarcina Methanosaeta Methanobacterium | [ |
牛粪与 废乳制品 | Bacteroidetes Synergistetes Thermotogales | Methanosarcina(12.1%) Methanobacterium(6.5%) Methanoculleus(65.2%) Methanobrevibacter(5.0%) Methanosphaera(0.7%) | Bacteroides Clostridium Spirochaetes Aminobacterium | Methanosarcina(47.3%) Methanobacterium(21.0%) Methanoculleus(1.0%) Methanobrevibacter(24.0%) Methanosphaera(4.1%) | [ |
有机 垃圾 | Bacteroidetes(10.0%) Clostridium(61.0%) Bacilli Thermotogales | Methanosarcina. Methanoculleus Methanobacterium | Bacteroidetes(36.0%) Clostridium(28.0%) Bacilli Thermotoga | Methanospirillum Methanoculleus Methanosarcina Methanomethylovorans | [ |
1 | NIE Erqi, HE Pinjing, ZHANG Hua, et al. How does temperature regulate anaerobic digestion?[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111453. |
2 | GAO Meng, YANG Jiahui, LI Siqi, et al. Effects of incineration leachate on anaerobic digestion of excess sludge and the related mechanisms[J]. Journal of Environmental Management, 2022, 311: 114831. |
3 | POHLAND F G, GHOSH S. Developments in anaerobic stabilization of organic wastes—The two-phase concept[J]. Environmental Letters, 1971, 1(4): 255-266. |
4 | DAGUE R R, HARRIS W L, KAISER S K. Temperature-phased anaerobic waste treatment process: US5746919[P]. 1998-05-05. |
5 | ZHANG Dian, SANTHA H, PALLANSCH K, et al. Repurposing pre-pasteurization as an in situ thermal hydrolysis pretreatment process for enhancing anaerobic digestion of municipal sludge: A horizontal comparison between temperature-phased and standalone thermophilic or mesophilic anaerobic digestion[J]. Environmental Science: Water Research & Technology, 2020, 6(12): 3316-3325. |
6 | LANKO I, HEJNIC J, ŘÍHOVÁ-AMBROŽOVÁ J, et al. Digested sludge quality in mesophilic, thermophilic and temperature-phased anaerobic digestion systems[J]. Water, 2021, 13(20): 2839. |
7 | CHEN Hong, ZHANG Wenzhe, WU Jun, et al. Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation[J]. Chemosphere, 2021, 274: 129787. |
8 | Wen LYU, SCHANBACHER F L, YU Zhongtang. Putting microbes to work in sequence: Recent advances in temperature-phased anaerobic digestion processes[J]. Bioresource Technology, 2010, 101(24): 9409-9414. |
9 | LIU Huan, LI Xuan, ZHANG Zehao, et al. Urine pretreatment significantly promotes methane production in anaerobic waste activated sludge digestion[J]. Science of the Total Environment, 2022, 853: 158684. |
10 | SCHMIT K H, ELLIS T G. Comparison of temperature-phased and two-phase anaerobic co-digestion of primary sludge and municipal solid waste[J]. Water Environment Research, 2001, 73(3): 314-321. |
11 | 蔡伟娜, 陆小青. 温度对污泥厌氧发酵产酸过程的影响[J]. 净水技术, 2011, 30(4): 9-12. |
CAI Weina, LU Xiaoqing. Effects of temperature on acidogenic process in anaerobic fermentation for sewage sludge[J]. Water Purification Technology, 2011, 30(4): 9-12. | |
12 | RIAU V, DE LA RUBIA M A, PÉREZ M. Temperature-phased anaerobic digestion (TPAD) to obtain Class A biosolids: A semi-continuous study[J]. Bioresource Technology, 2010, 101(8): 2706-2712. |
13 | RUBIO-LOZA L A, NOYOLA A. Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing Class A biosolids from municipal sludge[J]. Bioresource Technology, 2010, 101(2): 576-585. |
14 | JIANG Y, XIE S H, DENNEHY C, et al. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109654. |
15 | SONG Young-Chae, KWON Sang-Jo, Jung-Hui WOO. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge[J]. Water Research, 2004, 38(7): 1653-1662. |
16 | ALONSO R M, DEL RÍO R S, GARCÍA M P. Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation[J]. Biomass and Bioenergy, 2016, 93: 107-115. |
17 | AMODEO C, HATTOU S, BUFFIERE P, et al. Temperature phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW) and digested sludge (DS): Effect of different hydrolysis conditions[J]. Waste Management, 2021, 126: 21-29. |
18 | QIN Yu, HIGASHIMORI A, WU Lijie, et al. Phase separation and microbial distribution in the hyperthermophilic-mesophilic-type temperature-phased anaerobic digestion (TPAD) of waste activated sludge (WAS)[J]. Bioresource Technology, 2017, 245: 401-410. |
19 | COELHO N M G, DROSTE R L, KENNEDY K J. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge[J]. Water Research, 2011, 45(9): 2822-2834. |
20 | SUNG Shihwu, SANTHA H. Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes[J]. Water Research, 2003, 37(7): 1628-1636. |
21 | NIELSEN H B, MLADENOVSKA Z, AHRING B K. Bioaugmentation of a two-stage thermophilic (68℃/55℃) anaerobic digestion concept for improvement of the methane yield from cattle manure[J]. Biotechnology and Bioengineering, 2007, 97(6): 1638-1643. |
22 | CHU Chunfeng, LI Yuyou, XU Kaiqin, et al. A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4739-4746. |
23 | XIAO Benyi, QIN Yu, ZHANG Wenzhe, et al. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance[J]. Bioresource Technology, 2018, 249: 826-834. |
24 | FERNÁNDEZ-RODRÍGUEZ J, PÉREZ M, ROMERO L I. Semicontinuous temperature-phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW). Comparison with single-stage processes[J]. Chemical Engineering Journal, 2016, 285: 409-416. |
25 | SAMARAS V G, STASINAKIS A S, THOMAIDIS Nikolaos S, et al. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2014, 162: 365-372. |
26 | BOROWSKI S. Temperature-phased anaerobic digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge[J]. International Biodeterioration & Biodegradation, 2015, 105: 106-113. |
27 | 张文哲, 陈静, 刘玉, 等. 中温和高温厌氧消化的比较[J]. 化工进展, 2018, 37(12): 4853-4861. |
ZHANG Wenzhe, CHEN Jing, LIU Yu, et al. Comparison of mesophilic and thermophilic anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4853-4861. | |
28 | CHEN Huibin, CHANG Sheng. Dissecting methanogenesis for temperature-phased anaerobic digestion: Impact of temperature on community structure, correlation, and fate of methanogens[J]. Bioresource Technology, 2020, 306: 123104. |
29 | QIN Yu, WU Jing, XIAO Benyi, et al. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste[J]. Energy, 2019, 179: 1235-1245. |
30 | SILLERO L, PÉREZ M, SOLERA R. Temperature-phased enhanced the single-stage anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Perspetives for the circular economy[J]. Fuel, 2023, 331: 125761. |
31 | LIU Rongzhan, CHEN Xiangyu, ZHANG Ke, et al. Effect of mixing ratio and total solids content on temperature-phased anaerobic codigestion of rice straw and pig manure: Biohythane production and microbial structure[J]. Bioresource Technology, 2022, 344: 126173. |
32 | LI Lu, KONG Zhe, QIN Yu, et al. Temperature-phased anaerobic co-digestion of food waste and paper waste with and without recirculation: Biogas production and microbial structure[J]. Science of the Total Environment, 2020, 724: 138168. |
33 | LIU Xiaohui, LEE Changmin, KIM Jae Young. Comparison of mesophilic and thermophilic anaerobic digestions of thermal hydrolysis pretreated swine manure: Process performance, microbial communities and energy balance[J]. Journal of Environmental Sciences (China), 2023, 126: 222-233. |
34 | 董仁杰, 张紫嘉, 刘晟, 等. 水热预处理对猪粪厌氧消化及沼液生态安全性的影响[J]. 农业工程学报, 2022, 38(6): 193-203. |
DONG Renjie, ZHANG Zijia, LIU Sheng, et al. Effects of hydrothermal pretreatments on the anaerobic digestion of pig manure and ecological safety of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 193-203. | |
35 | BOLZONELLA D, PAVAN P, ZANETTE M, et al. Two-phase anaerobic digestion of waste activated sludge: Effect of an extreme thermophilic prefermentation[J]. Industrial & Engineering Chemistry Research, 2007, 46(21): 6650-6655. |
36 | GE Huoqing, JENSEN P D, BATSTONE D J. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge[J]. Water Research, 2010, 44(1): 123-130. |
37 | 蔚静雯, 郑明霞, 王凯军, 等. 剩余污泥温度分级-生物分相(TSBP)厌氧消化系统运行研究[J]. 给水排水, 2012, 48(12): 39-44. |
WEI Jingwen, ZHENG Mingxia, WANG Kaijun, et al. Study on the operation of anaerobic digestion system of residual sludge temperature classification-biological phase separation (TSBP)[J]. Water & Wastewater Engineering, 2012, 48(12): 39-44. | |
38 | GABY J C, ZAMANZADEH M, HORN S J. The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste[J]. Biotechnology for Biofuels, 2017, 10(1): 1-13. |
39 | DUGBA P N, ZHANG Ruihong. Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems— Thermophilic versus mesophilic operations[J]. Bioresource Technology, 1999, 68(3): 225-233. |
40 | SILLERO L, SOLERA R, PÉREZ M. Thermophilic-mesophilic temperature phase anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Effect of hydraulic retention time on mesophilic-methanogenic stage[J]. Chemical Engineering Journal, 2023, 451: 138478. |
41 | LI Yueh-Fen, ABRAHAM C, NELSON M C, et al. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey[J]. Applied Microbiology and Biotechnology, 2015, 99(20): 8777-8792. |
42 | KIM H W, HAN S K, SHIN H S. Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2004, 50(9): 107-114. |
43 | 郑祥, 许海朋, 范庆文, 等. 餐厨垃圾厌氧消化处理技术研究进展[J]. 现代化工, 2022, 42(2): 10-14, 18. |
ZHENG Xiang, XU Haipeng, FAN Qingwen, et al. Research progress on anaerobic digestion treatment technology for kitchen waste[J]. Modern Chemical Industry, 2022, 42(2): 10-14, 18. | |
44 | 李慧莉, 何芙蓉, 刘鹏程, 等. 外源酶强化秸秆污泥混合厌氧消化条件优化[J]. 中国给水排水, 2020, 36(15): 6-12. |
LI Huili, HE Furong, LIU Pengcheng, et al. Optimization of anaerobic co-digestion conditions of straw and sludge enhanced by exogenous enzymes[J]. China Water & Wastewater, 2020, 36(15): 6-12. | |
45 | Wen LYU, ZHANG Wenfei, YU Zhongtang. Evaluation of system performance and microbial communities of a temperature-phased anaerobic digestion system treating dairy manure: Thermophilic digester operated at acidic pH[J]. Bioresource Technology, 2013, 142: 625-632. |
46 | WANG Guopeng, DAI Xiaohu, ZHANG Dong, et al. Two-phase high solid anaerobic digestion with dewatered sludge: Improved volatile solid degradation and specific methane generation by temperature and pH regulation[J]. Bioresource Technology, 2018, 259: 253-258. |
47 | CHEN Hong, HUANG Rong, WU Jun, et al. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure[J]. Bioresource Technology, 2021, 320: 124303. |
48 | HAMEED S A, RIFFAT R, LI Baoqiang, et al. Microbial population dynamics in temperature-phased anaerobic digestion of municipal wastewater sludge[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(6): 1816-1831. |
49 | LEVÉN L, ERIKSSON A R B, SCHNÜRER A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste[J]. FEMS Microbiology Ecology, 2007, 59(3): 683-693. |
50 | LI Yan, XU Haipeng, HUA Dongliang, et al. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources[J]. Science of the Total Environment, 2020, 699: 134226. |
51 | SINGH S, CHAKRABORTY S. Biochemical treatment of coal mine drainage in constructed wetlands: Influence of electron donor, biotic–abiotic pathways and microbial diversity[J]. Chemical Engineering Journal, 2022, 440: 135986. |
52 | 李叶青, 景张牧, 江皓, 等. 微生物组学及其在厌氧消化中的研究进展[J]. 生物技术通报, 2021, 37(1): 90-101. |
LI Yeqing, JING Zhangmu, JIANG Hao, et al. Microbiome and its research progress of anaerobic digestion[J]. Biotechnology Bulletin, 2021, 37(1): 90-101. | |
53 | PERMAN E, SCHNÜRER A, BJÖRN A, et al. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste[J]. Biomass and Bioenergy, 2022, 161: 106478. |
54 | STAMS A J M, SOUSA D Z, KLEEREBEZEM R, et al. Role of syntrophic microbial communities in high-rate methanogenic bioreactors[J]. Water Science and Technology, 2012, 66(2): 352-362. |
55 | GAGLIANO M C, BRAGUGLIA C M, GIANICO A, et al. Thermophilic anaerobic digestion of thermal pretreated sludge: Role of microbial community structure and correlation with process performances[J]. Water Research, 2015, 68: 498-509. |
56 | BHATT A H, TAO Ling. Economic perspectives of biogas production via anaerobic digestion[J]. Bioengineering, 2020, 7(3): 74. |
57 | 宋新新, 刘杰, 林甲, 等. 碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J]. 环境科学学报, 2022, 42(4): 53-63. |
SONG Xinxin, LIU Jie, LIN Jia, et al. The development direction and practice of energy self-sufficiency sewage treatment plants in China under Carbon Neutral Era[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 53-63. | |
58 | PUCHAJDA B, OLESZKIEWICZ J. Impact of sludge thickening on energy recovery from anaerobic digestion[J]. Water Science and Technology, 2008, 57(3): 395-401. |
59 | 阮敏, 孙宇桐, 黄忠良, 等. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
RUAN Min, SUN Yutong, HUANG Zhongliang, et al. Energy economy evaluation of sludge pretreatment-anaerobic digestion system[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. | |
60 | OLES J, DICHTL N, H-H NIEHOFF. Full scale experience of two stage thermophilic/mesophilic sludge digestion[J]. Water Science and Technology, 1997, 36(6/7): 449-456. |
61 | 翟一杰, 张天祚, 申晓旭, 等. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446-455. |
ZHAI Yijie, ZHANG Tianzuo, SHEN Xiaoxu, et al. Development of life cycle assessment method[J]. Resources Science, 2021, 43(3): 446-455. | |
62 | LANKO I, FLORES L, GARFÍ M, et al. Life cycle assessment of the mesophilic, thermophilic, and temperature-phased anaerobic digestion of sewage sludge[J]. Water, 2020, 12(11): 3140. |
[1] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[2] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[3] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[4] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[5] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[6] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[7] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[8] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[9] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[10] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[11] | 张芳, 郭鹍鹏, 梁春平, 尤雪瑞, 张志超. 一种具有聚集诱导发光效应有机荧光小分子的设计合成及功能应用[J]. 化工进展, 2023, 42(6): 3097-3104. |
[12] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[13] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[14] | 戴行, 高瑞雪, 李奕国, 朱锦, 王静刚. 高玻璃化转变温度抗冲击透明聚酯的研究进展[J]. 化工进展, 2023, 42(5): 2555-2565. |
[15] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |