化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6443-6453.DOI: 10.16085/j.issn.1000-6613.2022-0300
陈国栋1(), 刘海成1,2(), 孟无霜1, 尤雨1, 张皓1, 曹梦茹1
收稿日期:
2022-02-28
修回日期:
2022-04-25
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
刘海成
作者简介:
陈国栋(1994—),男,硕士研究生,研究方向为微塑料环境污染与防治。E-mail:1372840158@qq.com。
基金资助:
CHEN Guodong1(), LIU Haicheng1,2(), MENG Wushuang1, YOU Yu1, ZHANG Hao1, CAO Mengru1
Received:
2022-02-28
Revised:
2022-04-25
Online:
2022-12-20
Published:
2022-12-29
Contact:
LIU Haicheng
摘要:
微塑料在环境中会经历自然老化的过程。由于存在老化发生缓慢和过程复杂等问题,自然老化不利于开展环境中微塑料的长期命运和风险评估研究。因此,研究人员在试验中已普遍采用人工干预技术加速微塑料的老化进程,但所用加速老化的方法类型和参数条件却存在差异。本文总结了现有微塑料老化研究中所采用的人工干预技术,并指出了各自的特点及适用性。在这些老化方法中,光辐射和高级氧化技术因操作简单、老化效果明显而应用尤为广泛。然后,从微观形貌、比表面积、表面官能团等多个方面阐述了老化过程引起的微塑料理化特性变化,并介绍了相应表征技术的应用。最后,针对未来的微塑料老化研究工作,提出了重视微塑料的原位环境老化研究、考虑多种老化途径或环境因素、考察添加剂或氧化副产物的释放问题以及制订微塑料老化的试验标准/协议等建议,以期为老化技术的发展和相关标准的制订提供支持。
中图分类号:
陈国栋, 刘海成, 孟无霜, 尤雨, 张皓, 曹梦茹. 微塑料老化的人工干预及理化特性表征研究进展[J]. 化工进展, 2022, 41(12): 6443-6453.
CHEN Guodong, LIU Haicheng, MENG Wushuang, YOU Yu, ZHANG Hao, CAO Mengru. Research progress on artificial intervention and characterization of physicochemical properties of microplastics aging[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6443-6453.
类别 | 方法 | 参数 | 文献 | ||||
---|---|---|---|---|---|---|---|
微塑料 | 粒径 | 时间 | 介质 | 其他 | |||
光辐射 | UV-A 340nm | PS | 0.1µm | 90d | 空气、纯水和模拟海水 | 25℃ | [ |
UV-B 313nm | PVC | 50~100µm | 25d | 空气 | 50W/m2 | [ | |
UV-C 254nm | PVC | D50=139µm | 60d | 模拟海水 | 功率20W | [ | |
氙灯 | PE | 75~150µm | 10d | 空气 | 85℃、734W/m2 | [ | |
汞灯365nm | PP | 100~150µm | 20d | 超纯水、河口水或海水 | 25℃、100W/m2 | [ | |
金属卤化物灯 | PA6.6 | 4mm和100µm | 77d | 海水、空气 | <30℃、照度12200lx | [ | |
高级氧化 | 热活化K2S2O8 | PP | <180µm | 40d | 100mL纯水中加入2.5g K2S2O8 | 70℃ | [ |
Fenton | PS | — | 7d | Fenton试剂、1.5%H2O2溶液 | 25℃±2℃、pH=4.0、振荡 | [ | |
光Fenton | PS | 50.4µm±11.9µm | 5d | Fenton试剂 | 30℃、pH=3.0、10W/m2 | [ | |
光催化 | PP | 3~5mm,厚约1mm | 4h | 纳米TiO2包覆 | 60℃、湿度70%、1200W/m2 | [ | |
O3 | 色母粒 | <500µm | 6h | 浓度0.21mg/min、流速30mL/min | 25℃ | [ | |
放电等离子体 | PVC | 40~320µm | 1h | 干燥空气 | 空气流速1.0L/min、电压18kV、频率50Hz | [ | |
高温热解 | PS | 平均1µm | 90d | 空气、纯水和模拟海水 | 75℃、pH=7.0 | [ | |
PP颗粒 | 直径约2mm,长度4~5mm | 20min | 空气、N2;气流200mL/min、气压0.1MPa | 管式炉150℃、250℃、450℃和700℃ | [ | ||
微生物降解 | 真菌 | HDPE | <200µm | 28d | 液体培养基 | 从蜡螟幼虫的肠道内容物分离,培养筛选微生物 | [ |
高能辐射 | γ射线 | HDPE | 90~106µm | — | — | 1.17MeV,60Co源 | [ |
机械磨损 | PP | <5mm | 5d | 砂、纯水混合物 | 25℃、黑暗条件、摇床250r/min | [ | |
环境因素 | PA、PET、PS、PVC | 150~550µm | 90d | 海水、沙子、土壤和空气 | 25℃、UV-A 340nm、功率20W | [ |
表1 微塑料的加速老化方法
类别 | 方法 | 参数 | 文献 | ||||
---|---|---|---|---|---|---|---|
微塑料 | 粒径 | 时间 | 介质 | 其他 | |||
光辐射 | UV-A 340nm | PS | 0.1µm | 90d | 空气、纯水和模拟海水 | 25℃ | [ |
UV-B 313nm | PVC | 50~100µm | 25d | 空气 | 50W/m2 | [ | |
UV-C 254nm | PVC | D50=139µm | 60d | 模拟海水 | 功率20W | [ | |
氙灯 | PE | 75~150µm | 10d | 空气 | 85℃、734W/m2 | [ | |
汞灯365nm | PP | 100~150µm | 20d | 超纯水、河口水或海水 | 25℃、100W/m2 | [ | |
金属卤化物灯 | PA6.6 | 4mm和100µm | 77d | 海水、空气 | <30℃、照度12200lx | [ | |
高级氧化 | 热活化K2S2O8 | PP | <180µm | 40d | 100mL纯水中加入2.5g K2S2O8 | 70℃ | [ |
Fenton | PS | — | 7d | Fenton试剂、1.5%H2O2溶液 | 25℃±2℃、pH=4.0、振荡 | [ | |
光Fenton | PS | 50.4µm±11.9µm | 5d | Fenton试剂 | 30℃、pH=3.0、10W/m2 | [ | |
光催化 | PP | 3~5mm,厚约1mm | 4h | 纳米TiO2包覆 | 60℃、湿度70%、1200W/m2 | [ | |
O3 | 色母粒 | <500µm | 6h | 浓度0.21mg/min、流速30mL/min | 25℃ | [ | |
放电等离子体 | PVC | 40~320µm | 1h | 干燥空气 | 空气流速1.0L/min、电压18kV、频率50Hz | [ | |
高温热解 | PS | 平均1µm | 90d | 空气、纯水和模拟海水 | 75℃、pH=7.0 | [ | |
PP颗粒 | 直径约2mm,长度4~5mm | 20min | 空气、N2;气流200mL/min、气压0.1MPa | 管式炉150℃、250℃、450℃和700℃ | [ | ||
微生物降解 | 真菌 | HDPE | <200µm | 28d | 液体培养基 | 从蜡螟幼虫的肠道内容物分离,培养筛选微生物 | [ |
高能辐射 | γ射线 | HDPE | 90~106µm | — | — | 1.17MeV,60Co源 | [ |
机械磨损 | PP | <5mm | 5d | 砂、纯水混合物 | 25℃、黑暗条件、摇床250r/min | [ | |
环境因素 | PA、PET、PS、PVC | 150~550µm | 90d | 海水、沙子、土壤和空气 | 25℃、UV-A 340nm、功率20W | [ |
类别 | 老化方法 | 控制参数 | 特点 | 适用性 |
---|---|---|---|---|
光辐射 | 紫外灯、氙灯、汞灯等 | 辐照时间和强度、环境介质 | 老化周期较短,无须分离 | 较强 |
高级氧化 | 热活化K2S2O8、光Fenton、O3等 | 氧化剂种类和剂量 | 老化周期短,但氧化剂消耗量大,分离复杂 | 良好 |
高温热解 | 升温 | 温度、湿度 | 操作简单 | 良好 |
微生物降解 | 细菌、真菌等 | 菌属、培养条件 | 微生物需要分离和富集培养,老化周期较长 | 一般 |
高能辐射 | γ射线 | 辐照剂量和时间 | 反应迅速,老化周期短 | 一般 |
机械磨损 | 沙子、恒温振荡器 | 沙子粒径、振荡速度 | 引起物理老化,分离较简单 | 良好 |
表2 微塑料加速老化的方法比较
类别 | 老化方法 | 控制参数 | 特点 | 适用性 |
---|---|---|---|---|
光辐射 | 紫外灯、氙灯、汞灯等 | 辐照时间和强度、环境介质 | 老化周期较短,无须分离 | 较强 |
高级氧化 | 热活化K2S2O8、光Fenton、O3等 | 氧化剂种类和剂量 | 老化周期短,但氧化剂消耗量大,分离复杂 | 良好 |
高温热解 | 升温 | 温度、湿度 | 操作简单 | 良好 |
微生物降解 | 细菌、真菌等 | 菌属、培养条件 | 微生物需要分离和富集培养,老化周期较长 | 一般 |
高能辐射 | γ射线 | 辐照剂量和时间 | 反应迅速,老化周期短 | 一般 |
机械磨损 | 沙子、恒温振荡器 | 沙子粒径、振荡速度 | 引起物理老化,分离较简单 | 良好 |
微塑料类型 | 计算方法 | 参考文献 |
---|---|---|
PE | [ | |
[ | ||
[ | ||
[ | ||
PP | [ | |
[ | ||
PS | [ | |
[ |
表3 几种常见微塑料的CI值计算方法
微塑料类型 | 计算方法 | 参考文献 |
---|---|---|
PE | [ | |
[ | ||
[ | ||
[ | ||
PP | [ | |
[ | ||
PS | [ | |
[ |
1 | ARTHUR C, BAKER J, BAMFORD H, et al. Summary of the international research workshop on the occurrence, effects, and fate of microplastic marine debris[C]//ARTHUR C, BAKER J, BAMFORD H. Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris. Washington: National Oceanic and Atmospheric Administration Technical Memorandum NOS-OR&R-30, 2009. |
2 | 马思睿, 李舒行, 郭学涛. 微塑料的老化特性、机制及其对污染物吸附影响的研究进展[J]. 中国环境科学, 2020, 40(9): 3992-4003. |
MA Sirui, LI Shuxing, GUO Xuetao. A review on aging characteristics, mechanism of microplastics and their effects on the adsorption behaviors of pollutants[J]. China Environmental Science, 2020, 40(9): 3992-4003. | |
3 | LUO Hongwei, LIU Chenyang, HE Dongqin, et al. Environmental behaviors of microplastics in aquatic systems: a systematic review on degradation, adsorption, toxicity and biofilm under aging conditions[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126915. |
4 | WANG Zezheng, FU Dongdong, GAO Liu, et al. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112199. |
5 | ZHANG Xingli, XIA Mengli, SU Xiaojuan, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis[J]. Journal of Hazardous Materials, 2021, 413: 125321. |
6 | BOTTERELL Zara L R, BEAUMONT Nicola, COLE Matthew, et al. Bioavailability of microplastics to marine zooplankton: effect of shape and infochemicals[J]. Environmental Science & Technology, 2020, 54(19): 12024-12033. |
7 | GEWERT Berit, PLASSMANN Merle M, MACLEOD Matthew. Pathways for degradation of plastic polymers floating in the marine environment[J]. Environmental Science: Processes & Impacts, 2015, 17(9): 1513-1521. |
8 | ZHANG Kai, HAMIDIAN Amir Hossein, Aleksandra TUBIĆ, et al. Understanding plastic degradation and microplastic formation in the environment: a review[J]. Environmental Pollution, 2021, 274: 116554. |
9 | ALIMI Olubukola S, Dominique CLAVEAU-MALLET, KURUSU Rafael S, et al. Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: what are we missing? [J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126955. |
10 | CHAMAS Ali, MOON Hyunjin, ZHENG Jiajia, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494-3511. |
11 | SONG Young Kyoung, HONG Sang Hee, JANG Mi, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. |
12 | John D’ORAZIO, JARRETT Stuart, Alexandra AMARO-ORTIZ, et al. UV radiation and the skin[J]. International Journal of Molecular Sciences, 2013, 14(6): 12222-12248. |
13 | MAO Ruofan, LANG Mengfan, YU Xiaoqin, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393: 122515. |
14 | WANG Qiongjie, WANGJIN Xiaoxue, ZHANG Yong, et al. The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii [J]. Science of the Total Environment, 2020, 749: 141603. |
15 | FU Dongdong, ZHANG Qiongjie, FAN Zhengquan, et al. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris [J]. Aquatic Toxicology, 2019, 216: 105319. |
16 | YOU Huimin, HUANG Baoquan, CAO Changlin, et al. Adsorption-desorption behavior of methylene blue onto aged polyethylene microplastics in aqueous environments[J]. Marine Pollution Bulletin, 2021, 167: 112287. |
17 | WU Xiaowei, LIU Peng, WANG Hanyu, et al. Photo aging of polypropylene microplastics in estuary water and coastal seawater: important role of chlorine ion[J]. Water Research, 2021, 202: 117396. |
18 | Verónica FERNÁNDEZ-GONZÁLEZ, ANDRADE Jose Manuel, FERREIRO Borja, et al. Monitorization of polyamide microplastics weathering using attenuated total reflectance and microreflectance infrared spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 263: 120162. |
19 | WU Xiaowei, LIU Peng, HUANG Hexinyue, et al. Adsorption of triclosan onto different aged polypropylene microplastics: critical effect of cations[J]. Science of the Total Environment, 2020, 717: 137033. |
20 | LANG Mengfan, YU Xiaoqin, LIU Jiaheng, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. |
21 | LIU Peng, WU Xiaowei, LIU Haiyong, et al. Desorption of pharmaceuticals from pristine and aged polystyrene microplastics under simulated gastrointestinal conditions[J]. Journal of Hazardous Materials, 2020, 392: 122346. |
22 | LUO Hongwei, XIANG Yahui, LI Yu, et al. Photocatalytic aging process of Nano-TiO2 coated polypropylene microplastics: combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization[J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124159. |
23 | LUO Hongwei, ZENG Yifeng, ZHAO Yaoyao, et al. Effects of advanced oxidation processes on leachates and properties of microplastics[J]. Journal of Hazardous Materials, 2021, 413: 125342. |
24 | ZHOU Liling, WANG Tiecheng, QU Guangzhou, et al. Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma[J]. Journal of Hazardous Materials, 2020, 398: 122956. |
25 | DING Ling, MAO Ruofan, MA Sirui, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174: 115634. |
26 | HU Lingling, FU Juyang, WANG Shuo, et al. Microplastics generated under simulated fire scenarios: characteristics, antimony leaching, and toxicity[J]. Environmental Pollution, 2021, 269: 115905. |
27 | ZHANG Junqing, GAO Danling, LI Quanhao, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella [J]. Science of the Total Environment, 2020, 704: 135931. |
28 | JOHANSEN Mathew P, CRESSWELL Tom, DAVIS Joel, et al. Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods[J]. Water Research, 2019, 158: 392-400. |
29 | SINGH Nisha, KHANDELWAL Nitin, TIWARI Ekta, et al. Interaction of metal oxide nanoparticles with microplastics: impact of weathering under riverine conditions[J]. Water Research, 2021, 189: 116622. |
30 | GAO Liu, FU Dongdong, ZHAO Jinjin, et al. Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater[J]. Marine Pollution Bulletin, 2021, 169: 112480. |
31 | 徐鹏程, 郭健, 马东, 等. 新制和老化微塑料对多溴联苯醚的吸附[J]. 环境科学, 2020, 41(3): 1329-1337. |
XU Pengcheng, GUO Jian, MA Dong, et al. Sorption of polybrominated diphenyl ethers by virgin and aged microplastics[J]. Environmental Science, 2020, 41(3): 1329-1337. | |
32 | LIU Peng, QIAN Li, WANG Hanyu, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. |
33 | ZHU Kecheng, JIA Hanzhong, SUN Yajiao, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: roles of reactive oxygen species[J]. Water Research, 2020, 173: 115564. |
34 | LIU Peng, SHI Yanqi, WU Xiaowei, et al. Review of the artificially-accelerated aging technology and ecological risk of microplastics[J]. Science of the Total Environment, 2021, 768: 144969. |
35 | REN Zhefan, GUI Xiangyang, WEI Yaqiang, et al. Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: key factors, mechanisms, and modeling[J]. Water Research, 2021, 202: 117407. |
36 | LIU Peng, LU Kun, LI Jinli, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 2020, 384: 121193. |
37 | 白濛雨, 赵世烨, 彭谷雨, 等. 城市污水处理过程中微塑料赋存特征[J]. 中国环境科学, 2018, 38(5): 1734-1743. |
BAI Mengyu, ZHAO Shiye, PENG Guyu, et al. Occurrence, characteristics of microplastic during urban sewage treatment process[J]. China Environmental Science, 2018, 38(5): 1734-1743. | |
38 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. | |
39 | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046 | |
40 | LIU Peng, ZHAN Xin, WU Xiaowei, et al. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks[J]. Chemosphere, 2020, 242: 125193. |
41 | SUN Yiran, YUAN Jianhua, ZHOU Tao, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: a systematic review[J]. Environmental Pollution, 2020, 265(Pt B): 114864. |
42 | 黎厚斌. 包装应用化学[M]. 北京: 印刷工业出版社, 2014. |
LI Houbin. Baozhuang yingyong huaxue[M]. Beijing: Graphic Communication Press, 2014. | |
43 | CHEN Zhi, ZHAO Wenqi, XING Ruizhi, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology[J]. Journal of Hazardous Materials, 2020, 384: 121271. |
44 | MIRI Saba, SAINI Rahul, DAVOODI Seyyed Mohammadreza, et al. Biodegradation of microplastics: better late than never[J]. Chemosphere, 2022, 286: 131670. |
45 | MAITY Sukhendu, BANERJEE Sambuddha, BISWAS Chayan, et al. Functional interplay between plastic polymers and microbes: a comprehensive review[J]. Biodegradation, 2021, 32(5): 487-510. |
46 | YUAN Jianhua, MA Jie, SUN Yiran, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715: 136968. |
47 | AUTA H S, EMENIKE C U, JAYANTHI B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21. |
48 | PARK Seon Yeong, KIM Chang Gyun. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533. |
49 | ZURIER Hannah S, GODDARD Julie M. Biodegradation of microplastics in food and agriculture[J]. Current Opinion in Food Science, 2021, 37: 37-44. |
50 | PELLER Julie R, MEZYK Stephen P, SHIDLER Sarah, et al. The reactivity of polyethylene microplastics in water under low oxygen conditions using radiation chemistry[J]. Water, 2021, 13(21): 3120. |
51 | MATTSSON Karin, Frida BJÖRKROTH, KARLSSON Therese, et al. Nanofragmentation of expanded polystyrene under simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence)[J]. Frontiers in Marine Science, 2021, 7: 578178. |
52 | CESA Flavia Salvador, TURRA Alexander, CHECON Helio Herminio, et al. Laundering and textile parameters influence fibers release in household washings[J]. Environmental Pollution, 2020, 257: 113553. |
53 | KOLE Pieter Jan, LÖHR Ansje J, VAN BELLEGHEM Frank G A J, et al. Wear and tear of tyres: a stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1265. |
54 | TONG Huiyan, ZHONG Xiaocong, DUAN Zhenghang, et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: formation, aging factors, and toxicity[J]. Science of the Total Environment, 2022, 833: 155275. |
55 | DUAN Jiajun, BOLAN Nanthi, LI Yang, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments[J]. Water Research, 2021, 196: 117011. |
56 | LUO Hongwei, ZHAO Yaoyao, LI Yu, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714: 136862. |
57 | ZHANG Haibo, WANG Jiaqing, ZHOU Bianying, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243(Pt B): 1550-1557. |
58 | SUN Peipei, LIU Xuemin, ZHANG Minghui, et al. Sorption and leaching behaviors between aged MPs and BPA in water: the role of BPA binding modes within plastic matrix[J]. Water Research, 2021, 195: 116956. |
59 | SU Yinglong, ZHANG Zhongjian, ZHU Jundong, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: the enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. |
60 | ANDRADY Anthony L. The plastic in microplastics: a review[J]. Marine Pollution Bulletin, 2017, 119(1): 12-22. |
61 | Axel MÜLLER, BECKER Roland, DORGERLOH Ute, et al. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics[J]. Environmental Pollution, 2018, 240: 639-646. |
62 | WU Xiaowei, LIU Peng, SHI Huanhuan, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater[J]. Water Research, 2021, 188: 116456. |
63 | 王琼杰, 张勇, 陈雨, 等. 水体中微塑料的环境影响行为研究进展[J]. 化工进展, 2020, 39(4): 1500-1510. |
WANG Qiongjie, ZHANG Yong, CHEN Yu, et al. Research progress on environmental influence behavior of microplastics in water[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1500-1510. | |
64 | 周倩, 涂晨, 张晨捷, 等. 滨海湿地环境中微塑料表面性质及形貌变化[J]. 科学通报, 2021, 66(13): 1580-1591. |
ZHOU Qian, TU Chen, ZHANG Chenjie, et al. Surface properties and changes in morphology of microplastics exposed in situ to Chinese coastal wetlands[J]. Chinese Science Bulletin, 2021, 66(13): 1580-1591. | |
65 | YANG Min, CHEN Bing, XIN Xiaying, et al. Interactions between microplastics and oil dispersion in the marine environment[J]. Journal of Hazardous Materials, 2021, 403: 123944. |
66 | LUO Hongwei, XIANG Yahui, LI Yu, et al. Weathering alters surface characteristic of TiO2-pigmented microplastics and particle size distribution of TiO2 released into water[J]. Science of the Total Environment, 2020, 729: 139083. |
67 | LIU Peng, WU Xiaowei, PENG Jianbiao, et al. Critical effect of iron red pigment on photoaging behavior of polypropylene microplastics in artificial seawater[J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124209. |
68 | CHEN Haibo, HUA Xin, YANG Yue, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans [J]. Journal of Hazardous Materials, 2021, 419: 126482. |
69 | Wai Kit HO, LAW Japhet Cheuk Fung, ZHANG Tong, et al. Effects of weathering on the sorption behavior and toxicity of polystyrene microplastics in multi-solute systems[J]. Water Research, 2020, 187: 116419. |
70 | FENG Qi, AN Chunjiang, CHEN Zhi, et al. Investigation into the impact of aged microplastics on oil behavior in shoreline environments[J]. Journal of Hazardous Materials, 2022, 421: 126711. |
[1] | 胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060. |
[2] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[3] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[4] | 邓亚玲, 舒建成, 陈梦君, 雷天涯, 曾祥菲, 杨勇, 刘作华. 不同堆存时间电解锰渣的理化特性分析[J]. 化工进展, 2022, 41(4): 2161-2170. |
[5] | 付杰, 邱春生, 王晨晨, 郑金鑫, 刘楠楠, 王栋, 王少坡, 孙力平. 污泥热水解处理过程重金属的迁移转化与风险评价[J]. 化工进展, 2022, 41(4): 2216-2225. |
[6] | 张雅珊, 陈宗耀, 马伟芳. 微塑料的迁移转化及其生态风险研究进展[J]. 化工进展, 2022, 41(11): 6080-6098. |
[7] | 马志斌, 张学里, 郭彦霞, 程芳琴. 循环流化床粉煤灰理化特性及元素溶出行为研究进展[J]. 化工进展, 2021, 40(6): 3058-3071. |
[8] | 李松旌, 樊向阳, 崔二苹, 胡超, 崔丙健, 刘源, 李中阳, 景若瑶, 李胜曙. PPCPs在土壤-作物系统行为特征及环境风险的研究进展[J]. 化工进展, 2021, 40(5): 2827-2838. |
[9] | 邹联沛, 宋琳, 李小伟, 万雨岚, 李曼, 刘建勇, 欧阳创, 奚慧, 钱光人, 戴晓虎. 湿垃圾组分对厌氧消化抑制作用的研究进展[J]. 化工进展, 2020, 39(S2): 362-371. |
[10] | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
[11] | 王琼杰,张勇,陈雨,汪金晓雪,汪贻妹. 水体中微塑料的环境影响行为研究进展[J]. 化工进展, 2020, 39(4): 1500-1510. |
[12] | 何德军, 舒建成, 陈梦君, 王建义, 高遇事, 王宁, 顾汉念. 电解锰渣建材资源化研究现状与展望[J]. 化工进展, 2020, 39(10): 4227-4237. |
[13] | 崔爱军, 辛健, 蔡煜明, 薛士瀚, 朱晨浩, 韦梅俊, 陈群. 有机改性金红石型纳米TiO2对聚乙醇酸抗光老化性能的研究[J]. 化工进展, 2018, 37(01): 195-200. |
[14] | 马双忱, 华继洲, 苟发全, 文晓春, 杨静, 张立男. 白泥脱硫浆液与石膏理化特性[J]. 化工进展, 2016, 35(S2): 381-388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |