1 |
戴晓虎. 城镇污水处理厂污泥稳定化处理的必要性和迫切性的思考[J]. 给水排水, 2017, 53(12): 1-5.
|
|
DAI X H. The necessity and urgency of sludge stabilization treatment in municipal sewage treatment plant[J]. Water & Wastewater Engineering, 2017, 53(12): 1-5.
|
2 |
LIU X X, WANG Y W, GUI C M, et al. Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-induced low temperature pyrolysis[J]. RSC Advances, 2016, 6(104): 101960-101967.
|
3 |
XU Y, ZHANG C S, ZHAO M H, et al. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge[J]. Chemosphere, 2017, 168: 1152-1157.
|
4 |
ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 559-577.
|
5 |
YUAN X Z, HUANG H J, ZENG G M, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(5): 4104-4110.
|
6 |
解道雷, 孔慈明, 徐龙乾, 等. 城市污泥中重金属存在形态、去除及稳定化研究进展[J]. 化工进展, 2018, 37(1): 330-342.
|
|
XIE D L, KONG C M, XU L Q, et al. Developments of the speciation, removal and stabilization of heavy metals in municipal sludge[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 330-342.
|
7 |
郑金鑫, 邱春生, 王晨晨, 等. Fenton处理对污泥脱水性、重金属形态及生物淋滤效率影响[J]. 化工进展, 2020, 39(2): 805-811.
|
|
ZHENG J X, QIU C S, WANG C C, et al. Effects of Fenton treatment on sewage sludge dewaterability, heavy metal speciation and leaching efficiency[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 805-811.
|
8 |
LIN K, KUO J H, LIN C L, et al. Sequential extraction for heavy metal distribution of bottom ash from fluidized bed co-combusted phosphorus-rich sludge under the agglomeration/defluidization process[J]. Waste Management & Research, 2020, 38(2): 122-133.
|
9 |
RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61.
|
10 |
ZHANG J, TIAN Y, ZHANG J, et al. Distribution and risk assessment of heavy metals in sewage sludge after ozonation[J]. Environmental Science and Pollution Research, 2017, 24(6): 5118-5125.
|
11 |
陈思思, 杨殿海, 庞维海, 等. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J]. 化工进展, 2020, 39(4): 1511-1520.
|
|
CHEN S S, YANG D H, PANG W H, et al. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520.
|
12 |
卓杨, 韩芸, 程瑶, 等. 高含固污泥水热预处理中碳、氮、磷、硫转化规律[J]. 环境科学, 2015, 36(3): 1006-1012.
|
|
ZHUO Y, HAN Y, CHEN Y, et al. Transformation characteristics of carbon, nitrogen, phosphorus and sulfur during thermal hydrolysis pretreatment of sludge with high solid content[J]. Environmental Science, 2015, 36(3): 1006-1012.
|
13 |
ZHENG J X, QIU C S, WANG C C, et al. Influence of thermal hydrolysis treatment on chemical speciation and bioleaching behavior of heavy metals in the sewage sludge[J]. Water Science and Technology, 2021, 83(2): 372-380.
|
14 |
孙雪萍, 王安亭, 李新豪, 等. 热水解法处理污泥过程中重金属的迁移规律[J]. 中国给水排水, 2010, 26(17): 66-68, 72.
|
|
SUN X P, WANG A T, LI X H, et al. Migration of heavy metals in sludge treatment by thermal hydrolysis process[J]. China Water & Wastewater, 2010, 26(17): 66-68, 72.
|
15 |
王兴栋, 林景江, 李智伟, 等. 水热处理时间对污泥中氮磷钾及重金属迁移的影响[J]. 环境科学, 2016, 37(3): 1048-1054.
|
|
WANG X D, LIN J J, LI Z W, et al. Effects of hydrothermal treatment time on the transformations of N, P, K and heavy metals in sewage sludge[J]. Environmental Science, 2016, 37(3): 1048-1054.
|
16 |
WU H M, LI M, ZHANG L, et al. Research on the stability of heavy metals (Cu, Zn) in excess sludge with the pretreatment of thermal hydrolysis[J]. Water Science and Technology, 2016, 73(4): 890-898.
|
17 |
国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
|
State Environmental Protection Administration Determination methods for examination of water and wastewater Editorial Board. Determination methods for examination of water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2002.
|
18 |
FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761.
|
19 |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
|
20 |
MARCHIORETTO M M, BRUNING H, RULKENS W. Heavy metals precipitation in sewage sludge[J]. Separation Science and Technology, 2005, 40(16): 3393-3405.
|
21 |
HAKANSON L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001.
|
22 |
HUANG H J, YUAN X Z, ZENG G M, et al. Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(22): 10346-10351.
|
23 |
ZHANG Q, ZHANG L, SANG W J, et al. Chemical speciation of heavy metals in excess sludge treatment by thermal hydrolysis and anaerobic digestion process[J]. Desalination and Water Treatment, 2016, 57(27): 12770-12776.
|
24 |
乔玮, 王伟, 黎攀, 等. 城市污水污泥微波热水解特性研究[J]. 环境科学, 2008, 29(1): 152-157.
|
|
QIAO W, WANG W, LI P, et al. Sewage sludge microwave thermal hydrolysis process[J]. Environment Science, 2008, 29(1): 152-157.
|
25 |
JEONG S Y, CHANG S W, NGO H H, et al. Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content[J]. Waste Management, 2019, 85: 214-221.
|
26 |
ZHANG D, FENG Y M, HUANG H B, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629.
|
27 |
YOSHIDA T, ANTAL M J. Sewage sludge carbonization for terra preta applications[J]. Energy & Fuels, 2009, 23(11): 5454-5459.
|
28 |
WEI L L, LI J J, XUE M, et al. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: sorption properties and mechanisms[J]. Bioresource Technology, 2019, 291: 121868.
|
29 |
于贺, 邱春生, 王晨晨, 等. Fenton预处理对城市污泥重金属形态及生物淋滤溶出影响[J]. 环境工程学报, 2019, 13(3): 725-731.
|
|
YU H, QIU C S, WANG C C, et al. Influence of Fenton pretreatment on heavy metal speciation and bioleaching efficiency in municipal sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 725-731.
|
30 |
WOO S, YUM S, JUNG J H, et al. Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus [J]. Marine Biotechnology, 2006, 8(6): 654-662.
|
31 |
ADAM V, PETRLOVA J, POTESIL D, et al. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor[J]. Electroanalysis, 2005, 17(18): 1649-1657.
|
32 |
RUDD T, STERRITT R M, LESTER J N. Complexation of heavy metals by extracellular polymers in the activated sludge process [J]. Journal (Water Pollution Control Federation), 1984, 56(12): 1260-1268.
|
33 |
甘莉, 刘贺琴, 王清萍, 等. 氧化亚铁硫杆菌生物浸出污泥中的重金属离子[J]. 中国环境科学, 2014, 34(10): 2617-2623.
|
|
GAN L, LIU H Q, WANG Q P, et al. Bioleaching of heavy metals in sewage sludge using Acidithiobacillus ferrooxidans [J]. China Environmental Science, 2014, 34(10): 2617-2623.
|
34 |
朱萍, 李晓晨, 马海涛, 等. 污泥中重金属形态分布与可浸出性的相关性研究[J]. 河海大学学报(自然科学版), 2007, 35(2): 121-124.
|
|
ZHU P, LI X C, MA H T, et al. Correlation between chemical forms and leachability of heavy metals in sludge samples[J]. Journal of Hohai University(Natural Sciences), 2007, 35(2): 121-124.
|
35 |
ZHENG X R, LIU Y Q, HUANG J M, et al. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110457.
|