化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6430-6442.DOI: 10.16085/j.issn.1000-6613.2022-0365

• 材料科学与技术 • 上一篇    下一篇

低维石墨相氮化碳合成方法研究进展

周杰1(), 孙月1, 包妍1, 刘泽珏1, 张沙沙1, 朱蓓蓓1,2, 王璐1, 管国锋3   

  1. 1.南通职业大学药品与环境工程学院,江苏 南通 226007
    2.扬州大学化学化工学院,江苏 扬州 225002
    3.南京工业大学化工学院,江苏 南京 211816
  • 收稿日期:2022-03-10 修回日期:2022-04-10 出版日期:2022-12-20 发布日期:2022-12-29
  • 通讯作者: 周杰
  • 作者简介:周杰(1981—),男,博士,副教授,研究方向为光催化。E-mail:jomole@ntu.edu.cn
  • 基金资助:
    国家自然科学基金(U19B2001);江苏省“333人才培养工程”;江苏高校“青蓝工程”项目;南通市科技计划项目(JC2020105);江苏省大学生创新创业训练项目;南通职业大学校级课题(21ZK03)

Research progress on modification strategy of graphite carbon nitride based on dimensional regulation

ZHOU Jie1(), SUN Yue1, BAO Yan1, LIU Zejue1, ZHANG Shasha1, ZHU Beibei1,2, WANG Lu1, GUAN Guofeng3   

  1. 1.College of Pharmaceutical and Environmental Engineering, Nantong Vocational University, Nantong 226007, Jiangsu, China
    2.College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
    3.College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2022-03-10 Revised:2022-04-10 Online:2022-12-20 Published:2022-12-29
  • Contact: ZHOU Jie

摘要:

作为一种非金属半导体材料,石墨相氮化碳(g-C3N4)因其独特的物理和化学性质及优异的光催化性能,在能源和环境催化等领域展现出良好的应用前景,但体相g-C3N4存在聚合度低、比表面积小、活性位点少等缺点,制约了其进一步应用。将体相g-C3N4合成为各种低维度g-C3N4是改善上述缺陷的有效策略之一。基于以上改性策略,本文系统介绍了近年来具有零维、一维、二维和三维纳米结构的低维度g-C3N4的主要合成方法,分析了不同维度对g-C3N4的能带结构、光生电子和空穴的产生和转移效率、光吸收能力和光催化性能的影响,总结了不同维度材料在能源和环境催化等领域的具体应用,同时指出目前研究工作普遍存在反应机理不够深入、缺乏大规模合成和工业应用等问题,展望了未来在加强理论深度研究的同时,需要进一步拓展g-C3N4在废水、废气的工业化治理和碳转化等领域的关键技术开发,以期为后续的研究工作提供方向和指引。

关键词: 石墨相氮化碳, 光催化, 低维度, 合成

Abstract:

As a non-metallic semiconductor material, graphite phase carbon nitride (g-C3N4) shows good application prospects in the fields of energy and environmental catalysis due to its unique physical and chemical properties and excellent photocatalytic performance.However, the disadvantages of bulk phase g-C3N4, such as low degree of polymerization, small specific surface area and few active sites, restrict its further application. The synthesis of bulk g-C3N4 into various low-dimensional structure is one of the effective strategies to overcome the above defects. Based on the above modification strategies, this article systematically introduces the main synthesis methods of low-dimensional g-C3N4 with zero dimensional, one-dimensional, two-dimensional and three-dimensional nanostructures in recent years, analyzes the effects of different dimensions on the energy band structure, generation and transfer efficiency of photogenerated electrons and holes, light absorption capacity and photocatalytic performance of g-C3N4, and summarizes the specific applications of materials with different dimensions in the fields of energy and environmental catalysis. At the same time, it is pointed out that the current research work generally had some problems, such as lack of in-depth reaction mechanism, and lack of large-scale synthesis and industrial application. Looking forward to the future while strengthening the theoretical in-depth research, it is necessary to further expand the development of key technologies of g-C3N4 in the field of industrial treatment of wastewater and waste gas and that of carbon conversion in order to provide direction and guidance for the follow-up research work.

Key words: graphitic carbon nitride, photocatalysis, low dimension, synthesis

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn