化工进展 ›› 2023, Vol. 42 ›› Issue (2): 1039-1050.DOI: 10.16085/j.issn.1000-6613.2022-0664
王玉1,2(), 余广炜1,3(), 林佳佳1,2, 黎长江1,4, 江汝清1, 邢贞娇1, 余铖5
收稿日期:
2022-04-14
修回日期:
2022-06-28
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
余广炜
作者简介:
王玉(1996—),男,硕士研究生,研究方向为固体废弃物资源化利用与污染物控制。E-mail:yuwang@iue.ac.cn。
基金资助:
WANG Yu1,2(), YU Guangwei1,3(), LIN Jiajia1,2, LI Changjiang1,4, JIANG Ruqing1, XING Zhenjiao1, YU Cheng5
Received:
2022-04-14
Revised:
2022-06-28
Online:
2023-02-25
Published:
2023-03-13
Contact:
YU Guangwei
摘要:
以90%(质量分数)餐厨厌氧沼渣(DR)与10%(质量分数)飞灰(FA)协同水热脱水滤饼为研究对象,将其热解制备得到的沼渣生物炭(DFC)与污泥生物炭(SSC)按比例混合造粒并经高温烧结制备高强度建筑陶粒以实现废弃物资源化利用。按国家标准GB/T 17431.1—2010进行性能检测,并解析BCR形态和潜在生态风险指标,评估其安全性。结果表明,DFC与SSC按照25%∶75%比例混合造粒,在1050℃烧结温度下制备得到的建筑陶粒各项性能指标均符合国家标准GB/T 17431.1—2010,其中抗压强度大于5.85MPa(密度等级为900级),堆积密度小于1050kg/m3,表观密度小于2000kg/m3,氯化物含量低于0.02%,硫化物和硫酸盐含量低于1%;建筑陶粒中重金属浸出毒性低于国家标准GB 5085.3—2007的阈值。BCR形态分析表明Cr、Ni、Cu、Zn、As、Pb的主要存在形式为稳定形式残渣态(F4)态,占比均超过70%;重金属潜在生态风险指数较低,产品安全性较高,属于轻微风险。通过经济性核算可知,每生产1t的建筑陶粒将会额外产生2000~2500元左右的收益,因此本研究具有广阔的应用市场和前景,同时也是实现DR、FA、SSC三种废弃物资源化、减量化和无害化处置的有效途径之一。
中图分类号:
王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050.
WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050.
温度/℃ | 0∶100% | 25%∶75% | 50%∶50% | 75%∶25% | 100%∶0 |
---|---|---|---|---|---|
1050 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1100 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1150 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC010-1050 |
1200 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1250 | DFC00-1250 | DFC25-1250 | DFC50-1250 | DFC75-1250 | DFC100-1250 |
1300 | DFC00-1300 | DFC25-1300 | DFC50-1300 | DFC75-1300 | DFC100-1300 |
表1 建筑陶粒烧结条件和命名
温度/℃ | 0∶100% | 25%∶75% | 50%∶50% | 75%∶25% | 100%∶0 |
---|---|---|---|---|---|
1050 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1100 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1150 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC010-1050 |
1200 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1250 | DFC00-1250 | DFC25-1250 | DFC50-1250 | DFC75-1250 | DFC100-1250 |
1300 | DFC00-1300 | DFC25-1300 | DFC50-1300 | DFC75-1300 | DFC100-1300 |
序号 | 形态 | 实验步骤 |
---|---|---|
F1 | 弱酸提取态 | 称取0.500g过100目干燥样品于50mL离心管中,加入20mL 0.11mol/L的乙酸溶液,在25℃、200r/min的条件下震荡16h后离心(8000r/min)20min,过滤、定容存于4℃保存待测 |
F2 | 可还原态 | 取上一步样品在75℃干燥至近干后加入20mL 0.5mol/L的氯化羟铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F3 | 可氧化态 | 取上一步样品在75℃干燥后加入5mL 30%的H2O2溶液(为防止反应过于激烈,分两次加入),静置1h后在85℃条件下静置1h,然后再加入5mL H2O2同样在85℃条件下待近干后加入25mL浓度为1mol/L的乙酸铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F4 | 残渣态 | 取上一步残留样品干燥后进行消解,消解过程与重金属总量测试相同 |
表2 重金属BCR连续提取法预处理步骤
序号 | 形态 | 实验步骤 |
---|---|---|
F1 | 弱酸提取态 | 称取0.500g过100目干燥样品于50mL离心管中,加入20mL 0.11mol/L的乙酸溶液,在25℃、200r/min的条件下震荡16h后离心(8000r/min)20min,过滤、定容存于4℃保存待测 |
F2 | 可还原态 | 取上一步样品在75℃干燥至近干后加入20mL 0.5mol/L的氯化羟铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F3 | 可氧化态 | 取上一步样品在75℃干燥后加入5mL 30%的H2O2溶液(为防止反应过于激烈,分两次加入),静置1h后在85℃条件下静置1h,然后再加入5mL H2O2同样在85℃条件下待近干后加入25mL浓度为1mol/L的乙酸铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F4 | 残渣态 | 取上一步残留样品干燥后进行消解,消解过程与重金属总量测试相同 |
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险系数 | IR | 潜在生态风险程度 |
---|---|---|---|---|---|
Cf≤1 | 极低 | Er≤40 | 低 | IR≤150 | 轻微 |
1<Cf≤3 | 低 | 40<Er≤80 | 中 | 150<IR≤300 | 中等 |
3<Cf≤6 | 中 | 80<Er≤160 | 较高 | 300<IR≤600 | 较高 |
6<Cf≤9 | 较高 | 160<Er≤320 | 高 | IR>600 | 高 |
Cf>9 | 高 | Er>320 | 很高 |
表3 潜在生态风险评估指标
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险系数 | IR | 潜在生态风险程度 |
---|---|---|---|---|---|
Cf≤1 | 极低 | Er≤40 | 低 | IR≤150 | 轻微 |
1<Cf≤3 | 低 | 40<Er≤80 | 中 | 150<IR≤300 | 中等 |
3<Cf≤6 | 中 | 80<Er≤160 | 较高 | 300<IR≤600 | 较高 |
6<Cf≤9 | 较高 | 160<Er≤320 | 高 | IR>600 | 高 |
Cf>9 | 高 | Er>320 | 很高 |
样品 | 工业分析质量分数/% | 元素分析质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | C | H | N | S | H/C | N/C | |
DR | 53.17 | 45.25 | 1.58 | 17.57 | 2.43 | 2.37 | 1.19 | 1.66 | 0.12 |
FA | 85.41 | 11.08 | 3.51 | 2.21 | 0.04 | 0.30 | 3.30 | 0.22 | 0.12 |
DFC | 95.91 | 3.72 | 0.37 | 9.70 | 0.91 | 0.47 | 1.19 | 1.13 | 0.04 |
SSC | 90.17 | 5.70 | 4.13 | 3.15 | 0.81 | 0.01 | 0.72 | 3.09 | 0.00 |
样品 | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO |
DR | 1.16 | 2.22 | 2.5 | 2.19 | 9.50 | 3.67 | 0.78 | 0.56 | 36.53 |
FA | 13.20 | 1.06 | 1.17 | 4.86 | 0.46 | 7.07 | 25.84 | 5.60 | 36.90 |
DFC | 2.12 | 2.02 | 2.54 | 3.52 | 10.72 | 4.33 | 6.57 | 1.57 | 48.39 |
SSC | 1.59 | 8.55 | 15.94 | 23.57 | 0.22 | 0.40 | 1.00 | 1.05 | 6.87 |
表4 陶粒原料的基本理化性质
样品 | 工业分析质量分数/% | 元素分析质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | C | H | N | S | H/C | N/C | |
DR | 53.17 | 45.25 | 1.58 | 17.57 | 2.43 | 2.37 | 1.19 | 1.66 | 0.12 |
FA | 85.41 | 11.08 | 3.51 | 2.21 | 0.04 | 0.30 | 3.30 | 0.22 | 0.12 |
DFC | 95.91 | 3.72 | 0.37 | 9.70 | 0.91 | 0.47 | 1.19 | 1.13 | 0.04 |
SSC | 90.17 | 5.70 | 4.13 | 3.15 | 0.81 | 0.01 | 0.72 | 3.09 | 0.00 |
样品 | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO |
DR | 1.16 | 2.22 | 2.5 | 2.19 | 9.50 | 3.67 | 0.78 | 0.56 | 36.53 |
FA | 13.20 | 1.06 | 1.17 | 4.86 | 0.46 | 7.07 | 25.84 | 5.60 | 36.90 |
DFC | 2.12 | 2.02 | 2.54 | 3.52 | 10.72 | 4.33 | 6.57 | 1.57 | 48.39 |
SSC | 1.59 | 8.55 | 15.94 | 23.57 | 0.22 | 0.40 | 1.00 | 1.05 | 6.87 |
样品 | Cl/% | SO3/% |
---|---|---|
DFC00-1050 | 0.001 | 0.125 |
DFC00-1100 | 0.000 | 0.569 |
DFC25-1050 | 0.001 | 0.090 |
DFC25-1100 | 0.000 | 0.569 |
DFC25-1150 | 0.001 | 0.515 |
DFC50-1200 | 0.001 | 0.409 |
DFC50-1250 | 0.001 | 0.323 |
DFC75-1300 | 0.002 | 0.688 |
DFC100-1300 | 0.030 | 1.414 |
表5 建筑陶粒中有害物质Cl和SO3质量分数
样品 | Cl/% | SO3/% |
---|---|---|
DFC00-1050 | 0.001 | 0.125 |
DFC00-1100 | 0.000 | 0.569 |
DFC25-1050 | 0.001 | 0.090 |
DFC25-1100 | 0.000 | 0.569 |
DFC25-1150 | 0.001 | 0.515 |
DFC50-1200 | 0.001 | 0.409 |
DFC50-1250 | 0.001 | 0.323 |
DFC75-1300 | 0.002 | 0.688 |
DFC100-1300 | 0.030 | 1.414 |
样品 | 重金属浸出量/mg·L-1 | |||||
---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | |
DFC00-1050 | 0.003 | 1.060 | 17.572 | 10.971 | 0.040 | 0.000 |
DFC00-1100 | 0.361 | 0.033 | 0.304 | 1.129 | 0.078 | 0.000 |
DFC25-1050 | 0.003 | 0.857 | 6.257 | 7.988 | 0.033 | 0.000 |
DFC25-1100 | 0.135 | 0.229 | 3.057 | 2.989 | 0.102 | 0.000 |
DFC25-1150 | 0.058 | 0.291 | 3.142 | 2.350 | 0.106 | 0.000 |
DFC50-1200 | 0.051 | 0.122 | 0.464 | 1.362 | 0.042 | 0.000 |
DFC50-1250 | 0.010 | 0.053 | 1.636 | 0.883 | 0.033 | 0.000 |
DFC75-1300 | 0.614 | 0.074 | 0.172 | 1.042 | 0.114 | 0.000 |
DFC100-1300 | 0.483 | 0.004 | 0.000 | 0.014 | 0.008 | 0.000 |
阈值 | 15 | 5 | 100 | 100 | 5 | 5 |
表6 建筑陶粒中重金属浸出量
样品 | 重金属浸出量/mg·L-1 | |||||
---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | |
DFC00-1050 | 0.003 | 1.060 | 17.572 | 10.971 | 0.040 | 0.000 |
DFC00-1100 | 0.361 | 0.033 | 0.304 | 1.129 | 0.078 | 0.000 |
DFC25-1050 | 0.003 | 0.857 | 6.257 | 7.988 | 0.033 | 0.000 |
DFC25-1100 | 0.135 | 0.229 | 3.057 | 2.989 | 0.102 | 0.000 |
DFC25-1150 | 0.058 | 0.291 | 3.142 | 2.350 | 0.106 | 0.000 |
DFC50-1200 | 0.051 | 0.122 | 0.464 | 1.362 | 0.042 | 0.000 |
DFC50-1250 | 0.010 | 0.053 | 1.636 | 0.883 | 0.033 | 0.000 |
DFC75-1300 | 0.614 | 0.074 | 0.172 | 1.042 | 0.114 | 0.000 |
DFC100-1300 | 0.483 | 0.004 | 0.000 | 0.014 | 0.008 | 0.000 |
阈值 | 15 | 5 | 100 | 100 | 5 | 5 |
样品 | Cf | Er | RI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | Cr | Ni | Cu | Zn | As | Pb | |||
DFC00-1050 | 0.00 | 0.15 | 0.33 | 0.37 | 0.11 | 0.03 | 0.00 | 0.90 | 1.64 | 0.37 | 1.09 | 0.14 | 4.13 | |
DFC00-1100 | 0.01 | 0.01 | 0.02 | 0.28 | 0.13 | 0.00 | 0.02 | 0.04 | 0.09 | 0.28 | 1.28 | 0.00 | 1.71 | |
DFC25-1050 | 0.00 | 0.14 | 0.21 | 0.06 | 0.10 | 0.00 | 0.00 | 0.85 | 1.05 | 0.06 | 0.95 | 0.02 | 2.93 | |
DFC25-1100 | 0.00 | 0.04 | 0.41 | 0.04 | 0.12 | 0.01 | 0.00 | 0.21 | 2.05 | 0.04 | 1.16 | 0.07 | 3.53 | |
DFC25-1150 | 0.00 | 0.03 | 0.27 | 0.01 | 0.08 | 0.01 | 0.00 | 0.20 | 1.33 | 0.01 | 0.79 | 0.07 | 2.40 | |
DFC50-1200 | 0.01 | 0.05 | 0.10 | 0.01 | 0.08 | 0.00 | 0.03 | 0.28 | 0.49 | 0.01 | 0.75 | 0.00 | 1.56 | |
DFC50-1250 | 0.00 | 0.01 | 0.23 | 0.01 | 0.05 | 0.02 | 0.00 | 0.03 | 1.16 | 0.01 | 0.54 | 0.08 | 1.83 | |
DFC75-1300 | 0.08 | 0.10 | 0.05 | 0.02 | 0.10 | 0.00 | 0.17 | 0.60 | 0.25 | 0.02 | 1.05 | 0.01 | 2.09 | |
DFC100-1300 | 0.04 | 0.11 | 0.09 | 0.35 | 0.05 | 0.00 | 0.09 | 0.68 | 0.45 | 0.35 | 0.52 | 0.00 | 2.08 |
表7 建筑陶粒重金属潜在生态风险指数
样品 | Cf | Er | RI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | Cr | Ni | Cu | Zn | As | Pb | |||
DFC00-1050 | 0.00 | 0.15 | 0.33 | 0.37 | 0.11 | 0.03 | 0.00 | 0.90 | 1.64 | 0.37 | 1.09 | 0.14 | 4.13 | |
DFC00-1100 | 0.01 | 0.01 | 0.02 | 0.28 | 0.13 | 0.00 | 0.02 | 0.04 | 0.09 | 0.28 | 1.28 | 0.00 | 1.71 | |
DFC25-1050 | 0.00 | 0.14 | 0.21 | 0.06 | 0.10 | 0.00 | 0.00 | 0.85 | 1.05 | 0.06 | 0.95 | 0.02 | 2.93 | |
DFC25-1100 | 0.00 | 0.04 | 0.41 | 0.04 | 0.12 | 0.01 | 0.00 | 0.21 | 2.05 | 0.04 | 1.16 | 0.07 | 3.53 | |
DFC25-1150 | 0.00 | 0.03 | 0.27 | 0.01 | 0.08 | 0.01 | 0.00 | 0.20 | 1.33 | 0.01 | 0.79 | 0.07 | 2.40 | |
DFC50-1200 | 0.01 | 0.05 | 0.10 | 0.01 | 0.08 | 0.00 | 0.03 | 0.28 | 0.49 | 0.01 | 0.75 | 0.00 | 1.56 | |
DFC50-1250 | 0.00 | 0.01 | 0.23 | 0.01 | 0.05 | 0.02 | 0.00 | 0.03 | 1.16 | 0.01 | 0.54 | 0.08 | 1.83 | |
DFC75-1300 | 0.08 | 0.10 | 0.05 | 0.02 | 0.10 | 0.00 | 0.17 | 0.60 | 0.25 | 0.02 | 1.05 | 0.01 | 2.09 | |
DFC100-1300 | 0.04 | 0.11 | 0.09 | 0.35 | 0.05 | 0.00 | 0.09 | 0.68 | 0.45 | 0.35 | 0.52 | 0.00 | 2.08 |
1 | 国家统计局. 全国大、中城市固体废物污染环境防治年报[J]. 中国统计年鉴, 2020. |
National Bureau of Statistics. Annual report on environmental prevention and control of solid waste pollution in large and medium-sized cities[J]. China Statistical Yearbook, 2020. | |
2 | 王晓君, 温文霞, 潘松青, 等. 辅料比例对餐厨垃圾好氧堆肥及微生物特性的影响[J]. 环境工程学报, 2016, 10(6): 3215-3222. |
WANG Xiaojun, WEN Wenxia, PAN Songqing, et al. Influence of conditioner proportion on aerobic composting of food waste and microbial characteristics[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3215-3222. | |
3 | 王蕊, 邰俊, 赵由才, 等. 餐厨垃圾资源化衍生品的堆肥中试实验[J]. 环境工程学报, 2021, 15(9): 3012-3019. |
WANG Rui, TAI Jun, ZHAO Youcai, et al. Pilot plant test of composting for food waste resource derivatives[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3012-3019. | |
4 | 张黎阳. 餐厨垃圾厌氧消化后沼渣的好氧堆肥优化研究[D]. 杭州: 浙江大学, 2020. |
ZHANG Liyang. Study on optimization of compost of food waste anaerobic digestion residue[D]. Hangzhou: Zhejiang University, 2020. | |
5 | SONG Shuang, Jun Wei LIM, LEE Jonathan T E, et al. Food-waste anaerobic digestate as a fertilizer: The agronomic properties of untreated digestate and biochar-filtered digestate residue[J]. Waste Management (New York, N Y), 2021, 136: 143-152. |
6 | BUSTAMANTE M A, RESTREPO A P, ALBURQUERQUE J A, et al. Recycling of anaerobic digestates by composting: Effect of the bulking agent used[J]. Journal of Cleaner Production, 2013, 47: 61-69. |
7 | KRATZEISEN Martin, STARCEVIC Nikica, MARTINOV Milan, et al. Applicability of biogas digestate as solid fuel[J]. Fuel, 2010, 89(9): 2544-2548. |
8 | 雷赵民, 窦学诚, 张浩, 等. 饲料中添加沼渣对猪的肥育效果及经济效益评价[J]. 甘肃农业大学学报, 2008, 43(4): 51-54. |
LEI Zhaomin, DOU Xuecheng, ZHANG Hao, et al. Effect of biogas residue on fattening performance of pigs and its economic benefit[J]. Journal of Gansu Agricultural University, 2008, 43(4): 51-54. | |
9 | 李佳, 张思奇, 倪文, 等. 垃圾焚烧飞灰的固化及综合利用研究进展[J]. 金属矿山, 2019(12): 182-187. |
LI Jia, ZHANG Siqi, NI Wen, et al. Research progress on solidification and comprehensive utilization of MSWI fly ash[J]. Metal Mine, 2019(12): 182-187. | |
10 | SUN Yuehui, LI Jiangshan, CHEN Zhen, et al. Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: Mechanism and optimization[J]. Construction and Building Materials, 2021, 287: 122993. |
11 | QIN Juan, CUI Chong, CUI Xiaoyu, et al. Preparation and characterization of ceramsite from lime mud and coal fly ash[J]. Construction and Building Materials, 2015, 95: 10-17. |
12 | MI Hongcheng, YI Longsheng, WU Qian, et al. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite[J]. Ceramics International, 2021, 47(13): 18218-18229. |
13 | 林佳佳, 邹晓燕, 王玉, 等. 污泥辅助飞灰水热-热解处置产物制备陶粒[J]. 环境工程学报, 2021, 15(8): 2730-2739. |
LIN Jiajia, ZOU Xiaoyan, WANG Yu, et al. Preparation of ceramsites with fly ash originated from sewage sludge-assisted hydrothermal coupled pyrolysis process[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2730-2739. | |
14 | 李杰, 潘兰佳, 余广炜, 等. 污泥生物炭制备吸附陶粒[J]. 环境科学, 2017, 38(9): 3970-3978. |
LI Jie, PAN Lanjia, YU Guangwei, et al. Preparation of adsorption ceramsite derived from sludge biochar[J]. Environmental Science, 2017, 38(9): 3970-3978. | |
15 | CHEN Zhan, YU Guangwei, WANG Yin, et al. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process[J]. Waste Management (New York, N Y), 2020, 109: 28-37. |
16 | CHEN Zhan, YU Guangwei, ZOU Xiaoyan, et al. Co-disposal of incineration fly ash and sewage sludge via hydrothermal treatment combined with pyrolysis: Cl removal and PCDD/F detoxification[J]. Chemosphere, 2020, 260: 127632. |
17 | WANG Yu, YU Guangwei, LIN Jiajia, et al. Synergistic hydrothermal treatment of food waste digestate residues and incineration fly ash: Dehydration performance and heavy metals safety[J]. Reaction Chemistry & Engineering, 2022, 7(8): 1797-1806. |
18 | 王兴栋, 张斌, 余广炜, 等. 不同粒径污泥热解制备生物炭及其特性分析[J]. 化工学报, 2016, 67(11): 4808-4816. |
WANG Xingdong, ZHANG Bin, YU Guangwei, et al. Preparation of biochar with different particle sized sewage sludge and its characteristics[J]. CIESC Journal, 2016, 67(11): 4808-4816. | |
19 | LI Jie, YU Guangwei, XIE Shengyu, et al. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar[J]. Science of the Total Environment, 2018, 628: 131-140. |
20 | HUANG Huajun, YUAN Xingzhong. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresource Technology, 2016, 200: 991-998. |
21 | 王玉, 余广炜, 江汝清, 等. 粒径对餐厨沼渣热解制备生物炭中磷和重金属的影响[J]. 化工学报, 2021, 72(10): 5344-5353. |
WANG Yu, YU Guangwei, JIANG Ruqing, et al. Effect of particle size on phosphorus and heavy metals during the preparation of biochar from food waste biogas residue[J]. CIESC Journal, 2021, 72(10): 5344-5353. | |
22 | Chanaka Udayanga W D, VEKSHA Andrei, GIANNIS Apostolos, et al. Insights into the speciation of heavy metals during pyrolysis of industrial sludge[J]. The Science of the Total Environment, 2019, 691: 232-242. |
23 | 岳敏, 岳钦艳, 李仁波, 等. 城市污水厂污泥制备陶粒滤料及其特性[J]. 过程工程学报, 2008, 8(5): 972-977. |
YUE Min, YUE Qinyan, LI Renbo, et al. Preparation and characterization of keramzite from municipal sewage sludge[J]. The Chinese Journal of Process Engineering, 2008, 8(5): 972-977. | |
24 | LI Chunxing, XIE Shengyu, WANG Yu, et al. Multi-functional biochar preparation and heavy metal immobilization by co-pyrolysis of livestock feces and biomass waste[J]. Waste Management (New York, N Y), 2021, 134: 241-250. |
25 | XIE Shengyu, YU Guangwei, LI Chunxing, et al. Dewaterability enhancement and heavy metals immobilization by pig manure biochar addition during hydrothermal treatment of sewage sludge[J]. Environmental Science and Pollution Research, 2019, 26(16): 16537-16547. |
26 | XIE Shengyu, YU Guangwei, LI Chunxing, et al. Treatment of high-ash industrial sludge for producing improved char with low heavy metal toxicity[J]. Journal of Analytical and Applied Pyrolysis, 2020, 150: 104866. |
27 | RILEY Charles M. Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society, 1951, 34(4): 121-128. |
28 | 刘亚东, 杨鼎宜, 贾宇婷, 等. 超轻污泥陶粒的研制及其内部结构特征分析[J]. 混凝土, 2014(6): 65-68. |
LIU Yadong, YANG Dingyi, JIA Yuting, et al. Preparation of ultra-lightweight sludge ceramsite and analysis of its inner-structure characteristics[J]. Concrete, 2014(6): 65-68. | |
29 | CHEN Tao, YAN Bo. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge[J]. Waste Management, 2012, 32(5): 957-964. |
30 | WANG Xuexue, JI Guozhao, ZHU Kongyun, et al. Integrated thermal behavior and compounds transition mechanism of municipal solid waste incineration fly ash during thermal treatment process[J]. Chemosphere, 2021, 264: 128406. |
31 | CRANNELL Bradley S, Taylor EIGHMY T, KRZANOWSKI James E, et al. Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate[J]. Waste Management, 2000, 20(2/3): 135-148. |
32 | NZIHOU Ange, SHARROCK Patrick. Calcium phosphate stabilization of fly ash with chloride extraction[J]. Waste Management, 2002, 22(2): 235-239. |
33 | 杨珊珊. 城市污水处理厂污泥固化及制备陶粒初探[D]. 北京: 北京工业大学, 2015. |
YANG Shanshan. Sewage sludge curing experiment and preparation of ceramsite[D]. Beijing: Beijing University of Technology, 2015. | |
34 | XU G R, ZOU J L, LI G B. Effect of sintering temperature on the characteristics of sludge ceramsite[J]. Journal of Hazardous Materials, 2008, 150(2): 394-400. |
35 | ZHAO Hailong, LIU Fang, LIU Hanqiao, et al. Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China[J]. Waste Management (New York, N Y), 2020, 113: 447-455. |
36 | ZHAO Lina, HU Min, MUSLIM Halimi, et al. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production[J]. Chemosphere, 2022, 287(Pt 2): 132145. |
37 | WANG Kuen-Sheng, CHIANG Kung-Yuh, LIN Shin-Ming, et al. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38(8): 1833-1849. |
38 | LU Peng, HUANG Qunxing, BOURTSALAS A C, et al. Review on fate of chlorine during thermal processing of solid wastes[J]. Journal of Environmental Sciences, 2019, 78: 13-28. |
39 | 李惠娴, 李寿德, 杨寰宇, 等. 同心聚力共谋行业绿色发展(二)——2021年陶粒产业调研报告[J]. 砖瓦, 2021(12): 51-56. |
LI Huixian, LI Shoude, YANG Huanyu, et al. 2021 ceramsite industry research report(Ⅱ)[J]. Brick-Tile, 2021(12): 51-56. |
[1] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[4] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[5] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[6] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[7] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[8] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
[9] | 常占坤, 张弛, 苏冰琴, 张聪政, 王健, 权晓慧. H2S气态基质对污泥生物沥滤处理效能的影响[J]. 化工进展, 2023, 42(5): 2733-2743. |
[10] | 李卫华, 吴寅凯, 孙英杰, 尹俊权, 辛明学, 赵友杰. 垃圾焚烧飞灰重金属毒性浸出评价方法研究进展[J]. 化工进展, 2023, 42(5): 2666-2677. |
[11] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
[12] | 郭宇晨, 刘庆林, 蒋金洋, 宗永忠, 王金伟, 李臻, 吕树祥. 含铬污泥资源化方法研究进展[J]. 化工进展, 2023, 42(2): 575-584. |
[13] | 李晶晶, 赵曜, 徐沣驰, 李康建. 不同径流冲刷作用下多孔炉渣沥青混合料重金属的浸出特性[J]. 化工进展, 2023, 42(10): 5520-5530. |
[14] | 唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
[15] | 付杰, 邱春生, 王晨晨, 郑金鑫, 刘楠楠, 王栋, 王少坡, 孙力平. 污泥热水解处理过程重金属的迁移转化与风险评价[J]. 化工进展, 2022, 41(4): 2216-2225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |