化工进展 ›› 2023, Vol. 42 ›› Issue (2): 1028-1038.DOI: 10.16085/j.issn.1000-6613.2022-0689
收稿日期:
2022-04-18
修回日期:
2022-06-09
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
马和平
作者简介:
陈姝晖(1981—),女,博士研究生,研究方向为多孔材料的制备及工业应用。E-mail:applechen2018@stu.xjtu.edu.cn。
基金资助:
CHEN Shuhui(), WU Yue, ZHANG Wenxiang, WANG Shanshan, MA Heping()
Received:
2022-04-18
Revised:
2022-06-09
Online:
2023-02-25
Published:
2023-03-13
Contact:
MA Heping
摘要:
高效经济地消除燃煤烟气中的SO2和CO2对生态环境具有重要意义,但开发具有高捕集能力、高选择性和良好稳定性的吸附剂仍然是一个挑战。本文通过靛红与芳香族单体(三蝶烯)在超酸性条件下反应得到了性质稳定的有机多孔聚合物吸附剂PPN-1,并对PPN-1季胺化以及离子交换获得离子型多孔聚合物PPN-1-OH。由于两种有机多孔吸附剂拥有合适的BET表面积、丰富的微孔孔道以及大量的富电子基团,PPN-1和PPN-1-OH对SO2和CO2具有很强的亲和力。尤其是离子型有机多孔聚合物PPN-1-OH显示出超高的静态吸附能力,在298K、0.1MPa下其SO2的吸附量高达13.09mmol/g,超过了此前报道的多孔材料。基于瞬时吸附速率,理想吸附溶液理论模拟和固定床穿透实验的研究证明PPN-1-OH具有卓越的SO2动态吸附容量和选择性。在三组分混合气体(SO2/CO2/N2=0.2/9/90.8,体积比)动态固定床穿透实验中,PPN-1-OH的SO2吸附量高达1.81mmol/g,SO2/CO2选择性突破211。理论分析表明PPN-1-OH微孔孔道内大量的羟基基团能显著增强骨架与SO2之间的结合力,有效地提高吸附容量和选择性。
中图分类号:
陈姝晖, 伍岳, 张文祥, 王闪闪, 马和平. 离子型有机多孔聚合物的制备及其烟气脱硫耦合脱碳性质[J]. 化工进展, 2023, 42(2): 1028-1038.
CHEN Shuhui, WU Yue, ZHANG Wenxiang, WANG Shanshan, MA Heping. Preparation of ionic organic porous polymer and its coupled desulfurization and decarbonization properties in flue gas[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1028-1038.
材料 | SO2吸附量/mmol·g-1 | CO2吸附量/mmol·g-1 | N2吸附量/mmol·g-1 | |||||
---|---|---|---|---|---|---|---|---|
273K | 298K | 308K | 323K | 273K | 298K | 273K | 298K | |
PPN-1 | 17.01 | 10.38 | 9.64 | 9.37 | 3.99 | 2.68 | 0.27 | 0.18 |
PPN-1-OH | 17.89 | 13.09 | 11.16 | 10.22 | 3.87 | 2.60 | 0.27 | 0.15 |
表1 PPN-1和PPN-1-OH在1.0bar时的SO2、CO2和N2吸附量
材料 | SO2吸附量/mmol·g-1 | CO2吸附量/mmol·g-1 | N2吸附量/mmol·g-1 | |||||
---|---|---|---|---|---|---|---|---|
273K | 298K | 308K | 323K | 273K | 298K | 273K | 298K | |
PPN-1 | 17.01 | 10.38 | 9.64 | 9.37 | 3.99 | 2.68 | 0.27 | 0.18 |
PPN-1-OH | 17.89 | 13.09 | 11.16 | 10.22 | 3.87 | 2.60 | 0.27 | 0.15 |
1 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
2 | LUCAS Francisco W S, Gary GRIM R, TACEY Sean A, et al. Electrochemical routes for the valorization of biomass-derived feedstocks: From chemistry to application[J]. ACS Energy Letters, 2021, 6(4): 1205-1270. |
3 | NOVOTNIK Breda, NANDY Arpita, VENKATESAN Senthil Velan, et al. Can fossil fuel energy be recovered and used without any CO2 emissions to the atmosphere?[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 217-240. |
4 | LIU Songtao, HAO Hongke, JIA Wenbo, et al. Effects of ultralow-emission retrofitting on mercury emission from a coal-fired power plant[J]. Energy & Fuels, 2020, 34(6): 7502-7508. |
5 | ZHANG Yan, ZHANG Peixin, YU Weikang, et al. Highly selective and reversible sulfur dioxide adsorption on a microporous metal-organic framework via polar sites[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10680-10688. |
6 | HASHEMI Ali, PAJOUM SHARIATI Farshid, SOHANI Elnaz, et al. CO2 biofixation by Synechococcus elongatus from the power plant flue gas under various light-dark cycles[J]. Clean Technologies and Environmental Policy, 2020, 22(8): 1735-1743. |
7 | LI Xiaosen, ZHAN Hao, XU Chungang, et al. Effects of tetrabutyl-(ammonium/phosphonium) salts on clathrate hydrate capture of CO2 from simulated flue gas[J]. Energy & Fuels, 2012, 26(4): 2518-2527. |
8 | SHEKHAH Osama, BELMABKHOUT Youssef, CHEN Zhijie, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[J]. Nature Communications, 2014, 5: 4228. |
9 | WANG Yuxuan, ZHANG Qian, HE Kebin, et al. Sulfate-nitrate-ammonium aerosols over China: Response to 2000—2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia[J]. Atmospheric Chemistry and Physics, 2013, 13: 2635-2652. |
10 | HAN Xue, YANG Sihai, Martin SCHRÖDER. Porous metal-organic frameworks as emerging sorbents for clean air[J]. Nature Reviews Chemistry, 2019, 3(2): 108-118. |
11 | Jonghun LIM, CHOI Yeongryeol, KIM Geonyeol, et al. Modeling of the wet flue gas desulfurization system to utilize low-grade limestone[J]. Korean Journal of Chemical Engineering, 2020, 37(12): 2085-2093. |
12 | YANG Lifeng, QIAN Siheng, WANG Xiaobing, et al. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
13 | WANG Jun, ZHANG Yan, ZHANG Peixin, et al. Optimizing pore space for flexible-robust metal-organic framework to boost trace acetylene removal[J]. Journal of the American Chemical Society, 2020, 142(21): 9744-9751. |
14 | XIAO Jing, SONG Chunshan, MA Xiaoliang, et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3436-3443. |
15 | YI Honghong, WANG Zhixiang, LIU Haiyan, et al. Adsorption of SO2, NO, and CO2 on activated carbons: equilibrium and thermodynamics[J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1556-1563. |
16 | CHEN Xi, SHEN Benxian, SUN Hui, et al. Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas: Experimental and computational investigations[J]. Microporous and Mesoporous Materials, 2018, 261: 227-236. |
17 | LIAO Junjie, ZHANG Yunfei, FAN Lijun, et al. Insight into the acid sites over modified NaY zeolite and their adsorption mechanisms for thiophene and benzene[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4572-4580. |
18 | HUO Quan, LI Jianshu, QI Xiaoran, et al. Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization[J]. Chemical Engineering Journal, 2019, 378: 122106. |
19 | CHEN Fuqiang, LAI Dan, GUO Lidong, et al. Deep desulfurization with record SO2 adsorption on the metal-organic frameworks[J]. Journal of the American Chemical Society, 2021, 143(24): 9040-9047. |
20 | GRAPE Erik Svensson, Gabriel FLORES J, HIDALGO Tania, et al. A robust and biocompatible bismuth ellagate MOF synthesized under green ambient conditions[J]. Journal of the American Chemical Society, 2020, 142(39): 16795-16804. |
21 | SUO Xian, YU Ying, QIAN Siheng, et al. Tailoring the pore size and chemistry of ionic ultramicroporous polymers for trace sulfur dioxide capture with high capacity and selectivity[J]. Angewandte Chemie International Edition, 2021, 60(13): 6986-6991. |
22 | BRANDT Philipp, NUHNEN Alexander, LANGE Marcus, et al. Metal-organic frameworks with potential application for SO2 separation and flue gas desulfurization[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17350-17358. |
23 | MA Heping, LIU Bailing, LI Bin, et al. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction[J]. Journal of the American Chemical Society, 2016, 138(18): 5897-5903. |
24 | RAMEZANIPOUR PENCHAH Hamid, GHAEMI Ahad, GANADZADEH GILANI Hossein. Benzene-based hyper-cross-linked polymer with enhanced adsorption capacity for CO2 capture[J]. Energy & Fuels, 2019, 33(12): 12578-12586. |
25 | LI Lina, CAI Kun, WANG Pengyuan, et al. Construction of sole benzene ring porous aromatic frameworks and their high adsorption properties[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 201-208. |
26 | CHEN Tongfan, ZHANG Wenxiang, LI Bin, et al. Adsorptive separation of aromatic compounds from alkanes by π-π interactions in a carbazole-based conjugated microporous polymer[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56385-56392. |
27 | FU Yu, WANG Zhiqiang, LI Sizhe, et al. Functionalized covalent triazine frameworks for effective CO2 and SO2 removal[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36002-36009. |
28 | RABBANI Mohammad Gulam, ISLAMOGLU Timur, EL-KADERI Hani M. Benzothiazole-and benzoxazole-linked porous polymers for carbon dioxide storage and separation[J]. Journal of Materials Chemistry A, 2017, 5(1): 258-265. |
29 | WU Linbo, AN Dong, DONG Jie, et al. Preparation and SO2 absorption/desorption properties of crosslinked poly(1,1,3,3-tetramethylguanidine acrylate) porous particles[J]. Macromolecular Rapid Communications, 2006, 27(22): 1949-1954. |
30 | DENG Hua, YI Honghong, TANG Xiaolong, et al. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites[J]. Chemical Engineering Journal, 2012, 188: 77-85. |
31 | CUI Xili, YANG Qiwei, YANG Lifeng, et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials[J]. Advanced Materials, 2017, 29(28): 1606929. |
32 | CARTER Joseph H, HAN Xue, MOREAU Florian Y, et al. Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal-organic framework[J]. Journal of the American Chemical Society, 2018, 140(46): 15564-15567. |
33 | YANG Sihai, LIU Leifeng, SUN Junliang, et al. Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide[J]. Journal of the American Chemical Society, 2013, 135(13): 4954-4957. |
34 | LI Guiyang, WANG Zhonggang. Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors[J]. Macromolecules, 2013, 46(8): 3058-3066. |
35 | SEKIZKARDES Ali Kemal, ALTARAWNEH Suha, KAHVECI Zafer, et al. Highly selective CO2 capture by triazine-based benzimidazole-linked polymers[J]. Macromolecules, 2014, 47(23): 8328-8334. |
36 | ARAB Pezhman, RABBANI Mohammad Gulam, SEKIZKARDES Ali Kemal, et al. Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: Impact of textural properties on gas storage and selective carbon dioxide capture[J]. Chemistry of Materials, 2014, 26(3): 1385-1392. |
37 | Aysu YURDUŞEN, Yuda YÜRÜM. A controlled synthesis strategy to enhance the CO2 adsorption capacity of MIL-88B type MOF crystallites by the crucial role of narrow micropores[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14058-14072. |
38 | CMARIK Gregory E, KIM Min, COHEN Seth M, et al. Tuning the adsorption properties of UiO-66 via ligand functionalization[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(44): 15606-15613. |
39 | SMITH Gemma L, EYLEY Jennifer E, HAN Xue, et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metal-organic framework with open copper sites[J]. Nature Materials, 2019, 18(12): 1358-1365. |
40 | SAVAGE Mathew, CHENG Yongqiang, EASUN Timothy L, et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework material[J]. Advanced Materials, 2016, 28(39): 8705-8711. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[9] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[10] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[11] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[12] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[15] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |