化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4734-4748.DOI: 10.16085/j.issn.1000-6613.2021-0393
廖珮懿1,2(), 杨代军1,2(), 明平文1,2, 薛明喆1,2, 李冰1,2, 张存满1,2
收稿日期:
2021-03-01
修回日期:
2021-05-17
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
杨代军
作者简介:
廖珮懿(1991—)女,博士研究生,研究方向为燃料电池流体动力学。E-mail:基金资助:
LIAO Peiyi1,2(), YANG Daijun1,2(), MING Pingwen1,2, XUE Mingzhe1,2, LI Bing1,2, ZHANG Cunman1,2
Received:
2021-03-01
Revised:
2021-05-17
Online:
2021-09-05
Published:
2021-09-13
Contact:
YANG Daijun
摘要:
微流道由于具有比表面积高、传质能力强等优点,已成功地应用于化工领域的多种气-液反应体系中。此外,其在化工领域中的研究成果还可以应用于目前备受关注的燃料电池领域以提高其电化学转化效率。然而,微流道尺度的微小化以及其中气-液两相流规律的复杂性使得微流道内的气-液两相流特性的阐明还需要进一步的研究,才能促使微流道在实际应用中发挥更优异的作用。本文从流型、压降和传质三个关键特征的研究角度来介绍微流道内气-液两相流的研究进展,简述了不同流型的特征及其形成条件,阐明了其对应的压降大小和传质能力的高低,回顾了现有的压降和传质系数的预测模型及其相应的优化措施,并分析了运用这三个关键特征的相关参数来优化质子交换膜燃料电池流场设计方面的研究进展,得到了流场类型、流道尺寸、流道形状、流道表面特性等的优化方案。但是,燃料电池中的精细流道的特殊结构及其特定工况使得其与传统的微流道有显著的区别。由此,本文提出了应当根据燃料电池精细流道的特点探明其中的两相流型、压降和传质的动态变化规律以及构建相应的压降预测模型的建议,以期为流场设计提供更准确的参考依据,进而提高燃料电池性能,加速燃料电池的商用进程。
中图分类号:
廖珮懿, 杨代军, 明平文, 薛明喆, 李冰, 张存满. 微流道气-液两相流研究及其在PEMFC中的应用进展[J]. 化工进展, 2021, 40(9): 4734-4748.
LIAO Peiyi, YANG Daijun, MING Pingwen, XUE Mingzhe, LI Bing, ZHANG Cunman. Research progress of gas-liquid two-phase flow in micro-channel and its application in PEMFC[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4734-4748.
流型 | 特征描述 |
---|---|
泡状流 | 以液相为连续相,气体以小气泡形式分散在液相中,气泡与气泡之间间距较大 |
段塞流 | 气泡的直径达到了流道的宽度,气泡具有椭圆形的“头部”和矩形的“身体” |
搅混流 | 大气泡破碎并以凌乱的状态、不规则的大小进入液相 |
环形流 | 具有被液膜包裹的气芯,形成带波浪形边缘环状的流态 |
帽状-气泡流 | 气泡呈“帽状”,有着近似半圆的“头部”和较“肥大”的尾部 |
段塞液滴流 | 长段气泡中含有液滴,但是液段中不含气泡 |
环形液滴流 | 具有被液膜包裹的气芯,且气芯中包含液滴并随着气泡移动 |
表1 流型及其特征对照表
流型 | 特征描述 |
---|---|
泡状流 | 以液相为连续相,气体以小气泡形式分散在液相中,气泡与气泡之间间距较大 |
段塞流 | 气泡的直径达到了流道的宽度,气泡具有椭圆形的“头部”和矩形的“身体” |
搅混流 | 大气泡破碎并以凌乱的状态、不规则的大小进入液相 |
环形流 | 具有被液膜包裹的气芯,形成带波浪形边缘环状的流态 |
帽状-气泡流 | 气泡呈“帽状”,有着近似半圆的“头部”和较“肥大”的尾部 |
段塞液滴流 | 长段气泡中含有液滴,但是液段中不含气泡 |
环形液滴流 | 具有被液膜包裹的气芯,且气芯中包含液滴并随着气泡移动 |
研究者 | 发表年份 | 微流道参数 | 流体体系 | 操作条件 | 探究因素 | 主要结论 | |||
---|---|---|---|---|---|---|---|---|---|
流道水力直径 /mm | 流道表面特性 | 放置方式 | 气体和液体的表观速度 /m·s–1 | 气-液两相在入口处的夹角/(°) | |||||
Chung等[ | 2004 | 0.05,0.1,0.25,0.53 | — | 水平 | 氮气-水 | UG∶0.01~73 UL∶0.01~5.8 | 90 | 流道直径 | 随着流道直径减小,观测到的流型种类减少至只剩下段塞流 |
宋静[ | 2006 | 0.4 | 亲水 | 水平 | 氮气-液体(水,无水乙醇,不同浓度的CMC水溶液) | UG∶0.79~24 UL∶0.03~0.5 | 0 | 流体特性(密度,黏度) | 随着液体黏度的增加,越容易出现环形流 |
Venkatesan等[ | 2010 | 0.6, 1.2, 1.7, 2.6, 3.4 | 亲水 | 水平 | 空气-水 | UG∶0.01~50 UL∶0.01~3 | 0 | 流道直径 | 当流道直径小于2mm时观测不到分层流和环形流,小于1mm时只能观测到泡状流、段塞流、段塞-环形流和分散泡状流 |
Choi等[ | 2011 | 0.5 | 亲水,疏水 | 水平 | 氮气-水 | UG∶0.07~34.1 UL∶0.19~0.46 | 90 | 壁面接触角 | 亲水壁面可观测到泡状流、长泡状流、段塞-环形流,而疏水壁面则更倾向于形成分层流型 |
袁希钢等[ | 2012 | 0.53 | — | 水平 | 空气-液体(水,不同浓度的乙醇和丙三醇) | UG∶0.1~20 UL∶0.1~3 | 180 | 流体特性(密度,黏度) | 黏度增加对流型的过渡线的移动的影响并不明显 |
Saisorn等[ | 2015 | 0.53 | — | 水平,垂直向上 | 空气-水 | UG∶0.38~21.19 UL∶0.004~2.44 | 0,90 | 流道放置方向 | 垂直放置的流道内无法观测到弹状流;水平放置的流道内无法观测到环状流 |
Puccetti等[ | 2015 | 0.28 | — | 水平 | 空气-水 | UG, UL∶0.005~0.15 | 90 | 气体和液体的表观速度 | 表观气速和表观液速影响气泡长度 |
Zhou 等[ | 2017 | 0.18 | 亲水,疏水 | 水平 | 空气-水 | UG, UL∶0.001~10 | 0 | 壁面固有接触角和表面粗糙度 | 随着接触角增大,形成的流型减少至只剩段塞流,表面粗糙度增大时表面疏水程度增大 |
Lim等[ | 2019 | 0.2 | — | 水平 | He-乙醇 | UG∶0.06,0.1,0.15 UL∶0.04,0.07,0.1 | 20,45,90,135,160 | 两相入口夹角 | 入口夹角大于90°有利于增大气泡比表面积 |
王长亮等[ | 2019 | 0.1 | 亲水,疏水 | 水平 | 空气-水 | UG, UL∶0.12 | 90 | 壁面接触角 | 接触角的变化改变了气-液接触界面的形状 |
表2 微流道内气-液两相流流型的研究进展
研究者 | 发表年份 | 微流道参数 | 流体体系 | 操作条件 | 探究因素 | 主要结论 | |||
---|---|---|---|---|---|---|---|---|---|
流道水力直径 /mm | 流道表面特性 | 放置方式 | 气体和液体的表观速度 /m·s–1 | 气-液两相在入口处的夹角/(°) | |||||
Chung等[ | 2004 | 0.05,0.1,0.25,0.53 | — | 水平 | 氮气-水 | UG∶0.01~73 UL∶0.01~5.8 | 90 | 流道直径 | 随着流道直径减小,观测到的流型种类减少至只剩下段塞流 |
宋静[ | 2006 | 0.4 | 亲水 | 水平 | 氮气-液体(水,无水乙醇,不同浓度的CMC水溶液) | UG∶0.79~24 UL∶0.03~0.5 | 0 | 流体特性(密度,黏度) | 随着液体黏度的增加,越容易出现环形流 |
Venkatesan等[ | 2010 | 0.6, 1.2, 1.7, 2.6, 3.4 | 亲水 | 水平 | 空气-水 | UG∶0.01~50 UL∶0.01~3 | 0 | 流道直径 | 当流道直径小于2mm时观测不到分层流和环形流,小于1mm时只能观测到泡状流、段塞流、段塞-环形流和分散泡状流 |
Choi等[ | 2011 | 0.5 | 亲水,疏水 | 水平 | 氮气-水 | UG∶0.07~34.1 UL∶0.19~0.46 | 90 | 壁面接触角 | 亲水壁面可观测到泡状流、长泡状流、段塞-环形流,而疏水壁面则更倾向于形成分层流型 |
袁希钢等[ | 2012 | 0.53 | — | 水平 | 空气-液体(水,不同浓度的乙醇和丙三醇) | UG∶0.1~20 UL∶0.1~3 | 180 | 流体特性(密度,黏度) | 黏度增加对流型的过渡线的移动的影响并不明显 |
Saisorn等[ | 2015 | 0.53 | — | 水平,垂直向上 | 空气-水 | UG∶0.38~21.19 UL∶0.004~2.44 | 0,90 | 流道放置方向 | 垂直放置的流道内无法观测到弹状流;水平放置的流道内无法观测到环状流 |
Puccetti等[ | 2015 | 0.28 | — | 水平 | 空气-水 | UG, UL∶0.005~0.15 | 90 | 气体和液体的表观速度 | 表观气速和表观液速影响气泡长度 |
Zhou 等[ | 2017 | 0.18 | 亲水,疏水 | 水平 | 空气-水 | UG, UL∶0.001~10 | 0 | 壁面固有接触角和表面粗糙度 | 随着接触角增大,形成的流型减少至只剩段塞流,表面粗糙度增大时表面疏水程度增大 |
Lim等[ | 2019 | 0.2 | — | 水平 | He-乙醇 | UG∶0.06,0.1,0.15 UL∶0.04,0.07,0.1 | 20,45,90,135,160 | 两相入口夹角 | 入口夹角大于90°有利于增大气泡比表面积 |
王长亮等[ | 2019 | 0.1 | 亲水,疏水 | 水平 | 空气-水 | UG, UL∶0.12 | 90 | 壁面接触角 | 接触角的变化改变了气-液接触界面的形状 |
1 | BERTSCH S S, GROLL E A, GARIMELLA S V. Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels[J]. International Journal of Multiphase Flow, 2009, 35(2): 142-154. |
2 | ZHAO Y C, CHEN G W, YUAN Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels[J]. AIChE Journal, 2007, 53(12): 3042-3053. |
3 | KIM T, Design KWON S., fabrication and testing of a catalytic microreactor for hydrogen production[J]. Journal of Micromechanics and Microengineering, 2006, 16(9): 1752-1760. |
4 | GAO Z X, LI H F, LIU J J, et al. A simple microfluidic chlorine gas sensor based on gas-liquid chemiluminescence of luminol-chlorine system[J]. Analytica Chimica Acta, 2008, 622(1/2): 143-149. |
5 | KOPP M U, DE MELLO A J, MANZ A. Chemical amplification: continuous-flow PCR on a chip[J]. Science, 1998, 280(5366): 1046-1048. |
6 | KANDLIKAR S G. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Experimental Thermal and Fluid Science, 2002, 26(2/3/4): 389-407. |
7 | 曹彬, 陈光文, 袁权. 微通道反应器内氢气催化燃烧[J]. 化工学报, 2004, 55(1): 42-47. |
CAO Bin, CHEN Guangwen, YUAN Quan. Catalytic combustion of hydrogen/air in microchannel reactor[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(1): 42-47. | |
8 | YUE J, CHEN G W, YUAN Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
9 | LÖB P, LÖWE H, HESSEL V. Fluorinations, chlorinations and brominations of organic compounds in micro reactors[J]. Journal of Fluorine Chemistry, 2004, 125(11): 1677-1694. |
10 | DE MAS N, GÜNTHER A, SCHMIDT M A, et al. Microfabricated multiphase reactors for the selective direct fluorination of aromatics[J]. Industrial & Engineering Chemistry Research, 2003, 42(4): 698-710. |
11 | 张海峰, 衣宝廉, 侯明, 等. 流场尺寸对质子交换膜燃料电池性能的影响[J]. 电源技术, 2004, 28(8): 494-497. |
ZHANG Haifeng, YI Baolian, HOU Ming, et al. Effect of dimension of flow field on performance of PEMFC[J]. Chinese Journal of Power Sources, 2004, 28(8): 494-497. | |
12 | SCHOLTA J, ESCHER G, ZHANG W, et al. Investigation on the influence of channel geometries on PEMFC performance[J]. Journal of Power Sources, 2006, 155(1): 66-71. |
13 | WANG X D, YAN W M, DUAN Y Y, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J]. Energy Conversion and Management, 2010, 51(5): 959-968. |
14 | 熊济时, 肖金生, 潘牧. 质子交换膜燃料电池流场模拟与结构尺寸优化[J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(3): 534-536, 568. |
XIONG Jishi, XIAO Jinsheng, PAN Mu. Modeling and optimizing of the flow field in PEM fuel cell[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2009, 33(3): 534-536, 568. | |
15 | CHOWDHURY M Z, GENC O, TOROS S. Numerical optimization of channel to land width ratio for PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10798-10809. |
16 | IMBRIOSCIA G M, FASOLI H J. Simulation and study of proposed modifications over straight-parallel flow field design[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8861-8867. |
17 | XU J L, CHENG P, ZHAO T S. Gas-liquid two-phase flow regimes in rectangular channels with mini/micro gaps[J]. International Journal of Multiphase Flow, 1999, 25(3): 411-432. |
18 | TRIPLETT K A, GHIAASIAAN S M, ABDEL-KHALIK S I, et al. Gas-liquid two-phase flow in microchannels. Part Ⅰ: Two-phase flow patterns[J]. International Journal of Multiphase Flow, 1999, 25(3): 377-394. |
19 | KREUTZER M T, KAPTEIJN F, MOULIJN J A, et al. Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[J]. Chemical Engineering Science, 2005, 60(22): 5895-5916. |
20 | QIAN D Y, LAWAL A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science, 2006, 61(23): 7609-7625. |
21 | 李婷, 许松林. 微通道内液-液泰勒流传热的计算流体力学模拟[J]. 化工进展, 2017, 36(6): 2078-2085. |
LI Ting, XU Songlin. CFD simulations of heat transfer of liquid-liquid Taylor flow in microchannels[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2078-2085. | |
22 | 陈宏霞, 肖红洋, 孙源, 等. 不同T型微通道内弹状流相分离规律的实验研究[J]. 高校化学工程学报, 2020, 34(4): 912-918. |
CHEN Hongxia, XIAO Hongyang, SUN Yuan, et al. Experimental study on phase separation of slug flow in different T-type microchannels[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(4): 912-918. | |
23 | BARAJAS A M, PANTON R L. The effects of contact angle on two-phase flow in capillary tubes[J]. International Journal of Multiphase Flow, 1993, 19(2): 337-346. |
24 | KANDLIKAR S G, LU Z J, RAO N, et al. Visualization of fuel cell water transport and performance characterization under freezing conditions[R]. Office of Scientific and Technical Information (OSTI), 2010. |
25 | KANDLIKAR S G, GRANDE W J. Evolution of microchannel flow passages—Thermohydraulic performance and fabrication technology[J]. Heat Transfer Engineering, 2003, 24(1): 3-17. |
26 | CHUNG P M Y, KAWAJI M. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels[J]. International Journal of Multiphase Flow, 2004, 30(7/8): 735-761. |
27 | VENKATESAN M, DAS S K, BALAKRISHNAN A R. Effect of tube diameter on two-phase flow patterns in mini tubes[J]. The Canadian Journal of Chemical Engineering, 2010, 88(6): 936-944. |
28 | CHOI C, YU D I, KIM M. Surface wettability effect on flow pattern and pressure drop in adiabatic two-phase flows in rectangular microchannels with T-junction mixer[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 1086-1096. |
29 | ZHOU Y L, CHANG H, QI T. Gas-liquid two-phase flow in serpentine microchannel with different wall wettability[J]. Chinese Journal of Chemical Engineering, 2017, 25(7): 874-881. |
30 | WENZEL R N. Resistance of solid surface to wetting by water[J]. Transactions of the Faraday Society, 1936, 28(8): 988-994. |
31 | HAZEL A L, HEIL M. The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section[J]. Journal of Fluid Mechanics, 2002, 470: 91-114. |
32 | EDVINSSON R K, IRANDOUST S. Finite-element analysis of Taylor flow[J]. AIChE Journal, 1996, 42(7): 1815-1823. |
33 | SAISORN S, WONGWISES S. Adiabatic two-phase gas-liquid flow behaviors during upward flow in a vertical circular micro-channel[J]. Experimental Thermal and Fluid Science, 2015, 69: 158-168. |
34 | 宋静. 微通道内气-液两相流动特性研究[J]. 青岛科技大学学报(自然科学版), 2006, 27(4): 299-303. |
SONG Jing. Study on flow behaviors of gas-liquid two phases in microchannel[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2006, 27(4): 299-303. | |
35 | 袁希钢, 宋文琦. T型结构微通道气液两相流型的数值模拟[J]. 天津大学学报, 2012, 45(9): 763-769. |
YUAN Xigang, SONG Wenqi. Numerical simulation of gas-liquid two phase flow pattern in T-junction microchannel[J]. Journal of Tianjin University, 2012, 45(9): 763-769. | |
36 | PUCCETTI G, TOSI M, PULVIRENTI B, et al. Flow patterns of an air-water mixture at the exit of a micro T-junction[J]. Experimental Thermal and Fluid Science, 2015, 67: 62-69. |
37 | LIM A E, LIM C Y, LAM Y C, et al. Effect of microchannel junction angle on two-phase liquid-gas Taylor flow[J]. Chemical Engineering Science, 2019, 202: 417-428. |
38 | 王长亮, 田茂诚. 壁面润湿性对微通道内Taylor流动特性的影响[J]. 化工进展, 2019, 38(7): 3072-3078. |
WANG Changliang, TIAN Maocheng. Surface wettability effect on Taylor flow characteristics in microchannels[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3072-3078. | |
39 | IDE H, KARIYASAKI A, FUKANO T. Fundamental data on the gas-liquid two-phase flow in minichannels[J]. International Journal of Thermal Sciences, 2007, 46(6): 519-530. |
40 | BOTTOMLEY W T. Flow of boiling water through orifices and pipes[J]. Trans. North East Coast Inst. Eng. Ship Builders, 1936(53): 65-100. |
41 | LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase flow, two component flow in pipes[J]. Chem. Eng. Prog., 1949, 45: 39-48. |
42 | KAWAHARA A, CHUNG P M Y, KAWAJI M. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel[J]. International Journal of Multiphase Flow, 2002, 28(9): 1411-1435. |
43 | LEE H J, LEE S Y. Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights[J]. International Journal of Multiphase Flow, 2001, 27(5): 783-796. |
44 | SAISORN S, WONGWISES S. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel[J]. Experimental Thermal and Fluid Science, 2008, 32(3): 748-760. |
45 | SUR A, LIU D. Adiabatic air-water two-phase flow in circular microchannels[J]. International Journal of Thermal Sciences, 2012, 53: 18-34. |
46 | WARNIER M J F, CROON M H J M, REBROV E V, et al. Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluidics and Nanofluidics, 2009, 8(1): 33-45. |
47 | CAREY V P. Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment[M]. Boca Raton: CRC Press, 2007. |
48 | MORENO QUIBÉN J, THOME J R. Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part Ⅱ: New phenomenological model[J]. International Journal of Heat and Fluid Flow, 2007, 28(5): 1060-1072. |
49 | CHOI C, KIM M. Flow pattern based correlations of two-phase pressure drop in rectangular microchannels[J]. International Journal of Heat and Fluid Flow, 2011, 32(6): 1199-1207. |
50 | BARRETO E X, OLIVEIRA J L G, PASSOS J C. Frictional pressure drop and void fraction analysis in air-water two-phase flow in a microchannel[J]. International Journal of Multiphase Flow, 2015, 72: 1-10. |
51 | PAMITRAN A S, CHOI K I, OH J T, et al. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes[J]. International Journal of Refrigeration, 2010, 33(3): 578-588. |
52 | SEMPÉRTEGUI-TAPIA D F, RIBATSKI G. Two-phase frictional pressure drop in horizontal micro-scale channels: experimental data analysis and prediction method development[J]. International Journal of Refrigeration, 2017, 79: 143-163. |
53 | DUAN Z P, YOVANOVICH M M, MUZYCHKA Y S. Pressure drop for fully developed turbulent flow in circular and noncircular ducts[J]. Journal of Fluids Engineering, 2012, 134(6): 061201. |
54 | YAO C Q, ZHENG J, ZHAO Y C, et al. Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel[J]. Chemical Engineering Journal, 2019, 373: 437-445. |
55 | TORTOPIDIS P, BONTOZOGLOU V. Mass transfer in gas-liquid flow in small-diameter tubes[J]. Chemical Engineering Science, 1997, 52(14): 2231-2237. |
56 | ZHANG H C, CHEN G W, YUE J, et al. Hydrodynamics and mass transfer of gas-liquid flow in a falling film microreactor[J]. AIChE Journal, 2009, 55(5): 1110-1120. |
57 | SOBIESZUK P, POHORECKI R, CYGAŃSKI P, et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel[J]. Chemical Engineering Science, 2011, 66(23): 6048-6056. |
58 | YANG L, TAN J, WANG K, et al. Mass transfer characteristics of bubbly flow in microchannels[J]. Chemical Engineering Science, 2014, 109: 306-314. |
59 | YIN Y R, ZHU C Y, FU T T, et al. Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel[J]. Chemical Engineering Science, 2019, 201: 264-273. |
60 | ZHANG S Z, ZHU C Y, FENG H S, et al. Intensification of gas-liquid two-phase flow and mass transfer in microchannels by sudden expansions[J]. Chemical Engineering Science, 2021, 229: 116040. |
61 | ZHENG C, ZHANG M D, QIU S C, et al. Numerical simulation and experimental investigation of gas-liquid two-phase flow in a complex microchannel[J]. Chemical Engineering Science, 2021, 230: 116198. |
62 | YOON Y G, LEE W Y, PARK G G, et al. Effects of channel and rib widths of flow field plates on the performance of a PEMFC[J]. International Journal of Hydrogen Energy, 2005, 30(12): 1363-1366. |
63 | 陈磊, 郭朋彦, 张瑞珠, 等. 质子交换膜燃料电池流道尺寸对电池性能的影响[J]. 河南科技, 2018(1): 141-142. |
CHEN Lei, GUO Pengyan, ZHANG Ruizhu, et al. Effect of flow path size of proton exchange membrane fuel cell on battery performance[J]. Henan Science and Technology, 2018(1): 141-142. | |
64 | LU Z, KANDLIKAR S G, RATH C, et al. Water management studies in PEM fuel cells, Part Ⅱ: Ex situ investigation of flow maldistribution, pressure drop and two-phase flow pattern in gas channels[J]. International Journal of Hydrogen Energy, 2009, 34(8): 3445-3456. |
65 | HUSSAINI I S, WANG C Y. Visualization and quantification of cathode channel flooding in PEM fuel cells[J]. Journal of Power Sources, 2009, 187(2): 444-451. |
66 | LU Z J, RATH C, ZHANG G S, et al. Water management studies in PEM fuel cells, Part Ⅳ: Effects of channel surface wettability, geometry and orientation on the two-phase flow in parallel gas channels[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9864-9875. |
67 | MALHOTRA S, GHOSH S. Effects of channel diameter on flow pattern and pressure drop for air-water flow in serpentine gas channels of PEM fuel cell—An ex situ experiment[J]. Experimental Thermal and Fluid Science, 2019, 100: 233-250. |
68 | COOPER N J, SMITH T, SANTAMARIA A D, et al. Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry[J]. International Journal of Hydrogen Energy, 2016, 41(2): 1213-1223. |
69 | GONG J, LI Q S, SUI P C, et al. Numerical and experimental investigations of bipolar membrane fuel cells: 3D model development and effect of gas channel width[J]. Journal of the Electrochemical Society, 2018, 165(11): F994-F1001. |
70 | HSIEH S S, HUANG Y J, HER B S. Pressure drop on water accumulation distribution for a micro PEM fuel cell with different flow field plates[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5657-5659. |
71 | GOPALAN P, KANDLIKAR S G. Effect of channel materials and trapezoidal corner angles on emerging droplet behavior in proton exchange membrane fuel cell gas channels[J]. Journal of Power Sources, 2014, 248: 230-238. |
72 | COEURIOT V, DILLET J, MARANZANA G, et al. An ex-situ experiment to study the two-phase flow induced by water condensation into the channels of proton exchange membrane fuel cells (PEMFC)[J]. International Journal of Hydrogen Energy, 2015, 40(22): 7192-7203. |
73 | MORTAZAVI M, HEIDARI M, NIKNAM S A. A discussion about two-phase flow pressure drop in proton exchange membrane fuel cells[J]. Heat Transfer Engineering, 2020, 41(21): 1784-1799. |
74 | MISHIMA K, HIBIKI T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4): 703-712. |
75 | RAMIN F, SADEGHIFAR H, TORKAVANNEJAD A. Flow field plates with trap-shape channels to enhance power density of polymer electrolyte membrane fuel cells[J]. International Journal of Heat and Mass Transfer, 2019, 129: 1151-1160. |
76 | SHEN J, TU Z K, CHAN S H. Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel[J]. Applied Thermal Engineering, 2019, 149: 1408-1418. |
77 | KONNO N, MIZUNO S, NAKAJI H, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 123-129. |
78 | NIU Z Q, FAN L H, BAO Z M, et al. Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2018, 42(10): 3328-3338. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[3] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[4] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[5] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[6] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[7] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[10] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[11] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[12] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[13] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
[14] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[15] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |