化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4749-4761.DOI: 10.16085/j.issn.1000-6613.2021-1208
收稿日期:
2021-06-07
修回日期:
2021-07-02
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
苏远海
作者简介:
王昱翰(1998—),男,博士研究生,研究方向为微反应器内的光化学合成及自动化。E-mail:基金资助:
WANG Yuhan(), SHEN Chong, SU Yuanhai()
Received:
2021-06-07
Revised:
2021-07-02
Online:
2021-09-05
Published:
2021-09-13
Contact:
SU Yuanhai
摘要:
光化学转化是有效利用光能实现化学反应的重要途径,微反应技术为提高其过程效率提供了一个强有力的平台。本文首先指出微反应器相比于传统釜式光反应器,在光强分布、过程放大、光能利用效率等诸多方面存在明显的优势,能够实现光化学反应过程的高效强化。简要地介绍了光化学转化及光化学微反应技术的基本特征,然后系统地综述了光化学微反应器的设计构建及其在有机合成、聚合等方面的应用,并详细介绍了自动化控制的光化学微反应系统及应用。重点介绍了微反应技术在紫外光、可见光辐照下的光化学合成进展及其过程放大。最后,对光化学微反应技术的研究进展进行总结,并对其发展趋势进行了展望。
中图分类号:
王昱翰, 沈冲, 苏远海. 光化学微反应技术的基础及研究进展[J]. 化工进展, 2021, 40(9): 4749-4761.
WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761.
1 | CAMBIÉ D, BOTTECCHIA C, STRAATHOF N J W, et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment[J]. Chemical Reviews, 2016, 116(17): 10276-10341. |
2 | 朱梅, 漆亚云, 甘宜远, 等. 微通道反应器在合成工艺改进中的应用研究进展[J]. 合成化学, 2019, 27(11): 923-929. |
ZHU Mei, QI Yayun, GAN Yiyuan, et al. Research progress on application of microchannel reactor in improvement of synthetic process[J]. Chinese Journal of Synthetic Chemistry, 2019, 27(11): 923-929. | |
3 | SU Y H, STRAATHOF N J W, HESSEL V, et al. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications[J]. Chemistry—A European Journal, 2014, 20(34): 10562-10589. |
4 | CHAMBERS R D, SPINK R C H. Microreactors for elemental fluorine[J]. Chemical Communications, 1999(10): 883-884. |
5 | WEIR B A, SUNDSTROM D W, KLEI H E. Destruction of benzene by ultraviolet light-catalyzed oxidation with hydrogen peroxide[J]. Hazardous Waste and Hazardous Materials, 1987, 4(2): 165-176. |
6 | ROBERGE D M, DUCRY L, BIELER N, et al. Microreactor technology: a revolution for the fine chemical and pharmaceutical industries?[J]. Chemical Engineering & Technology, 2005, 28(3): 318-323. |
7 | SINGH J, SRIVASTAVA V, NIGAM K D P. Novel membrane module for permeate flux augmentation and process intensification[J]. Industrial & Engineering Chemistry Research, 2016, 55(13): 3861-3870. |
8 | CHEN Y S, DE FRUTOS O, MATEOS C, et al. Continuous flow photochemical benzylic bromination of a key intermediate in the synthesis of a 2-oxazolidinone[J]. ChemPhotoChem, 2018, 2(10): 906-912. |
9 | LAUDADIO G, DENG Y C, VAN DER WAL K, et al. C(sp3)-H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow[J]. Science, 2020, 369(6499): 92-96. |
10 | REHM T H. Reactor technology concepts for flow photochemistry[J]. ChemPhotoChem, 2020, 4(4): 235-254. |
11 | CHAUDHURI A, KUIJPERS K P L, HENDRIX R B J, et al. Process intensification of a photochemical oxidation reaction using a rotor-stator spinning disk reactor: a strategy for scale up[J]. Chemical Engineering Journal, 2020, 400: 125875. |
12 | DELANEY E N, LEE D S, ELLIOTT L D, et al. A laboratory-scale annular continuous flow reactor for UV photochemistry using excimer lamps for discrete wavelength excitation and its use in a wavelength study of a photodecarboxlyative cyclisation[J]. Green Chemistry, 2017, 19(6): 1431-1438. |
13 | ELLIOTT L D, BERRY M, HARJI B, et al. A small-footprint, high-capacity flow reactor for UV photochemical synthesis on the kilogram scale[J]. Organic Process Research & Development, 2016, 20(10): 1806-1811. |
14 | CAMBIÉ D, DOBBELAAR J, RIENTE P, et al. Energy-efficient solar photochemistry with luminescent solar concentrator based photomicroreactors[J]. Angewandte Chemie International Edition, 2019, 58(40): 14374-14378. |
15 | PU X, ZHANG B H, SU Y H. Heterogeneous photocatalysis in microreactors for efficient reduction of nitrobenzene to aniline: mechanisms and energy efficiency[J]. Chemical Engineering & Technology, 2019, 42(10): 2146-2153. |
16 | XU W H, SU Y H, SONG Y, et al. Process analysis on preparation of cyclobutanetetracarboxylic dianhydride in a photomicroreactor within gas-liquid Taylor flow[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2476-2485. |
17 | BAUMANN M, BAXENDALE I R. Continuous photochemistry: the flow synthesis of ibuprofen via a photo-Favorskii rearrangement[J]. Reaction Chemistry & Engineering, 2016, 1(2): 147-150. |
18 | SHEN C, SHANG M J, ZHANG H, et al. A UV-LEDs based photomicroreactor for mechanistic insights and kinetic studies in the norbornadiene photoisomerization[J]. AIChE Journal, 2020, 66(2): e16841. |
19 | WANG Z M, LIU J, DAI Y C, et al. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor[J]. Journal of Hazardous Materials, 2012, 215/216: 25-31. |
20 | ZHANG J S, WANG K, TEIXEIRA A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8(1): 285-305. |
21 | 赵玉潮, 陈光文. 微化工系统的并行放大研究进展[J]. 中国科学: 化学, 2015, 45(1): 16-23. |
ZHAO Yuchao, CHEN Guangwen. Progress in research on numbering-up of microchemical system[J]. Scientia Sinica (Chimica), 2015, 45(1): 16-23. | |
22 | WANG K, LU Y C, LUO G S. Strategy for scaling-up of a microsieve dispersion reactor[J]. Chemical Engineering & Technology, 2014, 37(12): 2116-2122. |
23 | JANG S, VIDYACHARAN S, RAMANJANEYULU B T, et al. Photocatalysis in a multi-capillary assembly microreactor: toward up-scaling the synthesis of 2H-indazoles as drug scaffolds[J]. Reaction Chemistry & Engineering, 2019, 4(8): 1466-1471. |
24 | KUIJPERS K P L, DIJK M A H VAN, RUMEUR Q G, et al. A sensitivity analysis of a numbered-up photomicroreactor system[J]. Reaction Chemistry & Engineering, 2017, 2(2): 109-115. |
25 | LEE D S, SHARABI M, JEFFERSON-LOVEDAY R, et al. Scalable continuous vortex reactor for gram to kilo scale for UV and visible photochemistry[J]. Organic Process Research & Development, 2020, 24(2): 201-206. |
26 | CONRADI M, JUNKERS T. Efficient [2 + 2] photocycloadditions under equimolar conditions by employing a continuous UV-flow reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259: 41-46. |
27 | DU TOIT H, MACDONALD T J, HUANG H, et al. Continuous flow synthesis of citrate capped gold nanoparticles using UV induced nucleation[J]. RSC Advances, 2017, 7(16): 9632-9638. |
28 | GUTIERREZ A C, JAMISON T F. Continuous photochemical generation of catalytically active [CpRu]+ complexes from CpRu(η6-C6H6)PF6[J]. Organic Letters, 2011, 13(24): 6414-6417. |
29 | AIDA S, TERAO K, NISHIYAMA Y, et al. Microflow photochemistry—a reactor comparison study using the photochemical synthesis of terebic acid as a model reaction[J]. Tetrahedron Letters, 2012, 53(42): 5578-5581. |
30 | JOVANOVIĆ J, REBROV E V, NIJHUIS T A X, et al. Liquid-liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance[J]. Industrial & Engineering Chemistry Research, 2012, 51(2): 1015-1026. |
31 | KASHID M N, RENKEN A, KIWI-MINSKER L. Influence of flow regime on mass transfer in different types of microchannels[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6906-6914. |
32 | COTTIER L, DESCOTES G, VIOLLET E, et al. Oxidation of 5-hydroxymethylfurfural and derivatives to furanaldehydes with 2, 2, 6, 6-tetramethylpiperidine oxide radical-co-oxidant pairs[J]. Journal of Heterocyclic Chemistry, 1995, 32(3): 927-930. |
33 | TELMESANI R, WHITE J A H, BEELER A B. Liquid-liquid slug-flow-accelerated [2+2] photocycloaddition of cinnamates[J]. ChemPhotoChem, 2018, 2(10): 865-869. |
34 | NAKANO M, NISHIYAMA Y, TANIMOTO H, et al. Remarkable improvement of organic photoreaction efficiency in the flow microreactor by the slug flow condition using water[J]. Organic Process Research & Development, 2016, 20(9): 1626-1632. |
35 | LAUDADIO G, GOVAERTS S, WANG Y, et al. Selective C(sp3)-H aerobic oxidation enabled by decatungstate photocatalysis in flow[J]. Angewandte Chemie International Edition, 2018, 57(15): 4078-4082. |
36 | LESIEUR M, GENICOT C, PASAU P. Development of a flow photochemical aerobic oxidation of benzylic C-H bonds[J]. Organic Letters, 2018, 20(7): 1987-1990. |
37 | LAUDADIO G, GEMOETS H P L, HESSEL V, et al. Flow synthesis of diaryliodonium triflates[J]. The Journal of Organic Chemistry, 2017, 82(22): 11735-11741. |
38 | SHUKLA K, AGARWALLA S, DURAISWAMY S, et al. Recent advances in heterogeneous micro-photoreactors for wastewater treatment application[J]. Chemical Engineering Science, 2021, 235: 116511. |
39 | LIN S, SUN S Y, SHEN K X, et al. Photocatalytic microreactors based on nano TiO2-containing clay colloidosomes[J]. Applied Clay Science, 2018, 159: 42-49. |
40 | NAGAMINE S. Photocatalytic microreactor using TiO2/Ti plates: formation of TiO2 nanostructure and separation of oxidation/reduction into different channels[J]. Advanced Powder Technology, 2020, 31(2): 521-527. |
41 | COLMENARES J C, VARMA R S, NAIR V. Correction: Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors[J]. Chemical Society Reviews, 2017, 46(22): 7094. |
42 | COLMENARES J C, NAIR V, KUNA E, et al. Development of photocatalyst coated fluoropolymer based microreactor using ultrasound for water remediation[J]. Ultrasonics Sonochemistry, 2018, 41: 297-302. |
43 | KIEVIET B D, SCHÖN P M, VANCSO G J. Stimulus-responsive polymers and other functional polymer surfaces as components in glass microfluidic channels[J]. Lab Chip, 2014, 14(21): 4159-4170. |
44 | BRILL Z G, RITTS C B, MANSOOR U F, et al. Continuous flow enables metallaphotoredox catalysis in a medicinal chemistry setting: accelerated optimization and library execution of a reductive coupling between benzylic chlorides and aryl bromides[J]. Organic Letters, 2020, 22(2): 410-416. |
45 | SHVYDKIV O, JÄHNISCH K, STEINFELDT N, et al. Visible-light photooxygenation of α-terpinene in a falling film microreactor[J]. Catalysis Today, 2018, 308: 102-118. |
46 | LEE D S, AMARA Z, CLARK C A, et al. Continuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratory[J]. Organic Process Research & Development, 2017, 21(7): 1042-1050. |
47 | BONFIELD H E, WILLIAMS J D, OOI W X, et al. A detailed study of irradiation requirements towards an efficient photochemical wohl-ziegler procedure in flow[J]. ChemPhotoChem, 2018, 2(10): 938-944. |
48 | SHI X Q, LIU S E, DUANMU C S, et al. Visible-light photooxidation of benzene to phenol in continuous-flow microreactors[J]. Chemical Engineering Journal, 2021, 420: 129976. |
49 | LIN S, SUN S Y, WANG K, et al. Bioinspired design of alcohol dehydrogenase@nano TiO2 microreactors for sustainable cycling of NAD+/NADH coenzyme[J]. Nanomaterials, 2018, 8(2): 127. |
50 | FABRY D C, HO Y A, ZAPF R, et al. Blue light mediated C—H arylation of heteroarenes using TiO2 as an immobilized photocatalyst in a continuous-flow microreactor[J]. Green Chemistry, 2017, 19(8): 1911-1918. |
51 | HEGGO D, OOKAWARA S. Multiphase photocatalytic microreactors[J]. Chemical Engineering Science, 2017, 169: 67-77. |
52 | CHEN M, ZHONG M, JOHNSON J A. Light-controlled radical polymerization: mechanisms, methods, and applications[J]. Chemical Reviews, 2016, 116(17): 10167-10211. |
53 | JUNKERS T, WENN B. Continuous photoflow synthesis of precision polymers[J]. Reaction Chemistry & Engineering, 2016, 1(1): 60-64. |
54 | CABRAL J T, HUDSON S D, HARRISON C, et al. Frontal photopolymerization for microfluidic applications[J]. Langmuir, 2004, 20(23): 10020-10029. |
55 | SU Y H, SONG Y, XIANG L. Continuous-flow microreactors for polymer synthesis: engineering principles and applications[J]. Topics in Current Chemistry, 2018, 376(6): 1-44. |
56 | GEMOETS H P L, LAUDADIO G, VERSTRAETE K, et al. A modular flow design for the meta-selective C-H arylation of anilines[J]. Angewandte Chemie International Edition, 2017, 56(25): 7161-7165. |
57 | ORTIZ DE SOLORZANO I, MENDOZA G, ARRUEBO M, et al. Customized hybrid and NIR-light triggered thermoresponsive drug delivery microparticles synthetized by photopolymerization in a one-step flow focusing continuous microreactor[J]. Colloids and Surfaces B: Biointerfaces, 2020, 190: 110904. |
58 | LIU X M, ZHENG Y T, PEURIFOY S R, et al. Optimization of 4D polymer printing within a massively parallel flow-through photochemical microreactor[J]. Polymer Chemistry, 2016, 7(19): 3229-3235. |
59 | JAMALI A, VANRAES R, HANSELAER P, et al. A batch LED reactor for the photocatalytic degradation of phenol[J]. Chemical Engineering and Processing: Process Intensification, 2013, 71: 43-50. |
60 | SU Y H, HESSEL V, NOËL T. A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations[J]. AIChE Journal, 2015, 61(7): 2215-2227. |
61 | HAAS C P, ROIDER T, HOFFMANN R W, et al. Light as a reaction parameter-systematic wavelength screening in photochemical synthesis[J]. Reaction Chemistry & Engineering, 2019, 4(11): 1912-1916. |
62 | ROIBU A, MORTHALA R B, LEBLEBICI M E, et al. Design and characterization of visible-light LED sources for microstructured photoreactors[J]. Reaction Chemistry & Engineering, 2018, 3(6): 849-865. |
63 | ŠEBEJ P, LIM B H, PARK B S, et al. The power of solvent in altering the course of photorearrangements[J]. Org. Lett., 2011, 13(4): 644-647. |
64 | MOORE J S, JENSEN K F. “Batch” kinetics in flow: online IR analysis and continuous control[J]. Angewandte Chemie International Edition, 2014, 53(2): 470-473. |
65 | WANG N, TAN F R, ZHAO Y, et al. Optofluidic UV-vis spectrophotometer for online monitoring of photocatalytic reactions[J]. Scientific Reports, 2016, 6: 28928. |
66 | YUE J, SCHOUTEN J C, NIJHUIS T A. Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization[J]. Industrial & Engineering Chemistry Research, 2012, 51(45): 14583-14609. |
67 | PERERA D, TUCKER J W, BRAHMBHATT S, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow[J]. Science, 2018, 359(6374): 429-434. |
68 | HAAS C P, BIESENROTH S, BUCKENMAIER S, et al. Automated generation of photochemical reaction data by transient flow experiments coupled with online HPLC analysis[J]. Reaction Chemistry & Engineering, 2020, 5(5): 912-920. |
69 | ZHAO F, CAMBIÉ D, HESSEL V, et al. Real-time reaction control for solar production of chemicals under fluctuating irradiance[J]. Green Chemistry, 2018, 20(11): 2459-2464. |
70 | COLEY C W, ABOLHASANI M, LIN H K, et al. Material-efficient microfluidic platform for exploratory studies of visible-light photoredox catalysis[J]. Angewandte Chemie International Edition, 2017, 56(33): 9847-9850. |
71 | BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241. |
72 | MOZHAROV S, NORDON A, LITTLEJOHN D, et al. Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry[J]. Journal of the American Chemical Society, 2011, 133(10): 3601-3608. |
[1] | 吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122. |
[2] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[3] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[4] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[5] | 刘卫孝, 刘洋, 高福磊, 汪伟, 汪营磊. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
[6] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[7] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[8] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[9] | 王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[10] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[11] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[12] | 刘怡璇, 林跃朝, 马伟芳. 可见光催化降解水中卤代有机污染物的研究进展[J]. 化工进展, 2022, 41(S1): 571-579. |
[13] | 孙凌波, 胡明忠, 梁明明, 吴永娟, 刘立影. 铋系半导体光催化剂研究进展[J]. 化工进展, 2022, 41(9): 4813-4830. |
[14] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
[15] | 姜圣坤, 韩博, 赵鑫, 于万河, 骆广生, 邓建, 刘光启, 王景奇, 王金波. 微通道反应器中甲苯过量连续绝热硝化制备单硝基甲苯[J]. 化工进展, 2022, 41(6): 2910-2914. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |