化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4762-4773.DOI: 10.16085/j.issn.1000-6613.2021-0429
何泽兴1,2(), 史成香1,2, 陈志超1,2, 潘伦1,2, 黄振峰1,2, 张香文1,2, 邹吉军1,2()
收稿日期:
2021-03-02
修回日期:
2021-05-13
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
邹吉军
作者简介:
何泽兴(1997—),男,硕士研究生,研究方向为酸性电解水制氢催化剂开发。E-mail: 基金资助:
HE Zexing1,2(), SHI Chengxiang1,2, CHEN Zhichao1,2, PAN Lun1,2, HUANG Zhenfeng1,2, ZHANG Xiangwen1,2, ZOU Jijun1,2()
Received:
2021-03-02
Revised:
2021-05-13
Online:
2021-09-05
Published:
2021-09-13
Contact:
ZOU Jijun
摘要:
氢能是支撑起智能电网和可再生能源发电规模化的最佳能源载体,而电解水制氢是实现制氢规模化的重要途径。在多种电解水制氢技术中,质子交换膜电解水技术由于具备电流密度大、产氢纯度高、响应速度快等优势,吸引了科学界和工业界的广泛重视。本文首先介绍了质子交换膜电解池的结构组成以及各组成的主要作用,对比分析了碱性电解池、固体氧化物电解池与质子交换膜电解池的技术差异,并结合电解水析氢反应以及析氧反应的机理阐释,分别介绍了两步半反应的常用催化剂;然后,从最初的实验室研究阶段到目前兆瓦级别的质子交换膜电解水系统,回顾了该技术的发展历程以及应用现状;其次,从制氢成本、电堆性能及电堆寿命等多角度分析目前该技术面临的瓶颈问题;最后,根据质子交换膜电解池的技术优势,并针对上游间歇性可再生能源的需求以及和下游产业的联合应用,对其未来前景进行了展望。
中图分类号:
何泽兴, 史成香, 陈志超, 潘伦, 黄振峰, 张香文, 邹吉军. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
HE Zexing, SHI Chengxiang, CHEN Zhichao, PAN Lun, HUANG Zhenfeng, ZHANG Xiangwen, ZOU Jijun. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773.
25 | MAHMOOD J, LI F, JUNG S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotechnology, 2017, 12(5): 441-446. |
26 | ZHENG Z L, YU L, GAO M, et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer[J]. Nature Communications, 2020, 11: 3315. |
27 | HAN N N, YANG K R, LU Z Y, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid[J]. Nature Communications, 2018, 9: 924. |
28 | ZHOU L Y, YAN S C, SONG H Z, et al. Multivariate control of effective cobalt doping in tungsten disulfide for highly efficient hydrogen evolution reaction[J]. Scientific Reports, 2019, 9(1): 1357. |
29 | ZHANG L L, ZHU S Q, DONG S Y, et al. Co nanoparticles encapsulated in porous N-doped carbon nanofibers as an efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 2018, 165(15): J3271-J3275. |
30 | DENG J, REN P J, DENG D H, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7): 2100-2104. |
31 | TIAN Y Y, WANG S, VELASCO E, et al. A Co-doped nanorod-like RuO2 electrocatalyst with abundant oxygen vacancies for acidic water oxidation[J]. iScience, 2020, 23(1): 100756. |
32 | GRIMAUD A, DEMORTIÈRE A, SAUBANÈRE M, et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction[J]. Nature Energy, 2017, 2: 16189. |
33 | ZHANG H B, LIU Y Y, CHEN T, et al. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix[J]. Advanced Materials, 2019, 31(48): 1904548. |
34 | BLASCO-AHICART M, SORIANO-LÓPEZ J, CARBÓ J J, et al. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media[J]. Nature Chemistry, 2018, 10(1): 24-30. |
35 | LEI Z W, WANG T Y, ZHAO B T, et al. Recent progress in electrocatalysts for acidic water oxidation[J]. Advanced Energy Materials, 2020, 10(23): 2000478. |
36 | HUANG Z F, SONG J J, DOU S, et al. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis[J]. Matter, 2019, 1(6): 1494-1518. |
37 | HUANG Z F, SONG J J, DU Y H, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nature Energy, 2019, 4(4): 329-338. |
38 | GEIGER S, KASIAN O, LEDENDECKER M, et al. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515. |
39 | FABBRI E, HABEREDER A, WALTAR K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2014, 4(11): 3800-3821. |
40 | SAPOUNTZI F M, GRACIA J M, WESTSTRATE C J J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy and Combustion Science, 2017, 58: 1-35. |
41 | HUYNH M, BEDIAKO D K, NOCERA D G. A functionally stable manganese oxide oxygen evolution catalyst in acid[J]. Journal of the American Chemical Society, 2014, 136(16): 6002-6010. |
1 | 国家发改委,国家能源局. 能源发展“十三五”规划[EB/OL]. [2017-01-17]. . |
National Development and Reform Commission, National Energy Administration. The 13th Five-Year Plan for energy development[EB/OL]. [2017-01-17]. . | |
2 | DUTTA S. A review on production, storage of hydrogen and its utilization as an energy resource[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1148-1156. |
3 | BIROL F. The future of hydrogen[EB/OL]. [2019-06]. . |
4 | ABDALLA A M, HOSSAIN S, NISFINDY O B, et al. Hydrogen production, storage, transportation and key challenges with applications: a review[J]. Energy Conversion and Management, 2018, 165: 602-627. |
5 | MIDILLI A, DINCER I. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption[J]. International Journal of Hydrogen Energy, 2008, 33(16): 4209-4222. |
6 | TLILI O, MANSILLA C, FRIMAT D, et al. Hydrogen market penetration feasibility assessment: mobility and natural gas markets in the US, Europe, China and Japan[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16048-16068. |
7 | YE L T, XIE K. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2021, 54: 736-745. |
8 | SHIVA KUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis—A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. |
9 | TONG W M, FORSTER M, DIONIGI F, et al. Electrolysis of low-grade and saline surface water[J]. Nature Energy, 2020, 5(5): 367-377. |
10 | HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D. Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14625-14639. |
11 | GAGO A S, ANSAR S A, SARUHAN B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers[J]. Journal of Power Sources, 2016, 307(35): 815-825. |
12 | GRIGORIEV S A, MILLET P, VOLOBUEV S A, et al. Optimization of porous current collectors for PEM water electrolysers[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4968-4973. |
13 | SUERMANN M, SCHMIDT T J, BUCHI F N. Investigation of mass transport losses in polymer electrolyte electrolysis cells[J]. ECS Transactions, 2015, 69(17): 1141-1148. |
14 | BARBOSA R, ESCOBAR MORALES B. Electrochemical and microstructural analysis of a modified gas diffusion layer for a PEM water electrolyzer[J]. International Journal of Electrochemical Science, 2020, 15: 5571-5584. |
15 | MO J K, KANG Z Y, RETTERER S T, et al. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting[J]. Science Advances, 2016, 2(11): e1600690. |
16 | FALCÃO D S, PINTO A M F R. A review on PEM electrolyzer modelling: guidelines for beginners[J]. Journal of Cleaner Production, 2020, 261: 121184. |
17 | PITSCHAK B, MERGEL J. Electrolytic processes[M]//Hydrogen and Fuel Cell. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016: 187-207. |
18 | BESSARABOV D, WANG H J, LI H, et al. PEM electrolysis for hydrogen production: principles and applications [M]. Boca Raton, FL, USA: CRC Press, 2016. |
19 | BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
20 | SLADE S, CAMPBELL S A, RALPH T R, et al. Ionic conductivity of an extruded nafion 1100 EW series of membranes[J]. Journal of the Electrochemical Society, 2002, 149(12): A1556. |
21 | DAVID M, OCAMPO-MARTÍNEZ C, SÁNCHEZ-PEÑA R. Advances in alkaline water electrolyzers: a review[J]. Journal of Energy Storage, 2019, 23: 392-403. |
22 | SUNFIRE G. RSOC electrolyzer factsheet[EB/OL]. . |
23 | LEWINSKI K A, VLIET D VAN DER, LUOPA S M. NSTF advances for PEM electrolysis—The effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers[J]. ECS Transactions, 2015, 69(17): 893-917. |
24 | CHENG Q, HU C, WANG G, et al. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2020, 142(12): 5594-5601. |
42 | LI A L, OOKA H, BONNET N, et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angewandte Chemie International Edition, 2019, 58(15): 5054-5058. |
43 | SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. |
44 | YE S H, SHI Z X, FENG J X, et al. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2018, 57(10): 2672-2676. |
45 | CHEN D W, QIAO M, LU Y R, et al. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2018, 57(28): 8691-8696. |
46 | HWANG J, FENG Z X, CHARLES N, et al. Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity[J]. Materials Today, 2019, 31(5): 100-118. |
47 | SEITZ L C, DICKENS C F, NISHIO K, et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014. |
48 | SUN M H, JI J P, HU M Y, et al. Overwhelming the performance of single atoms with atomic clusters for platinum-catalyzed hydrogen evolution[J]. ACS Catalysis, 2019, 9(9): 8213-8223. |
49 | LIU D B, LI X Y, CHEN S M, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution[J]. Nature Energy, 2019, 4(6): 512-518. |
50 | DU N N, WANG C M, WANG X J, et al. Trimetallic TriStar nanostructures: tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2016, 28(10): 2077-2084. |
51 | MURTHY A P, MADHAVAN J, MURUGAN K. Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media[J]. Journal of Power Sources, 2018, 398(2): 9-26. |
52 | ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. |
53 | SEO B, JOO S H. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction[J]. Nano Convergence, 2017, 4(1): 19. |
54 | KING L A, HUBERT M A, CAPUANO C, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser[J]. Nature Nanotechnology, 2019, 14(11): 1071-1074. |
55 | HOLZAPFEL P K R, BÜHLER M, ESCALERA-LÓPEZ D, et al. Fabrication of a robust PEM water electrolyzer based on non-noble metal cathode catalyst: [Mo3S13]2-clusters anchored to N-doped carbon nanotubes[J]. Small, 2020, 16(37): 2003161. |
56 | GRUBB W T. Batteries with solid ion exchange electrolytes[J]. Journal of the Electrochemical Society, 1959, 106(4): 275. |
57 | NUTTALL L J, FICKETT A P, TITTERINGTON W A. Hydrogen generation by solid polymer electrolyte water electrolysis[M]. Boston, MA: Springer US, 1975. |
58 | AYERS K. The potential of proton exchange membrane-based electrolysis technology[J]. Current Opinion in Electrochemistry, 2019, 18: 9-15. |
59 | OKANO K. Development histories: hydrogen technologies[M]//Green Energy and Technology. Tokyo: Springer Japan, 2016: 53-92. |
60 | OnSite’s Proton1MW PEM electrolyser for Europe energy storage[J]. Fuel Cells Bulletin, 2012, 2012(12): 9-10. |
61 | Proton OnSite MW electrolyser passes half-million cell hours[J]. Fuel Cells Bulletin, 2016, 2016(2): 8. |
62 | OBERLIN R, FISCHER M. Status of the membrel process for water electrolysis[J]. Hydrogen Energy Progress, 1986, 2(1): 3. |
63 | STUCKI S, SCHERER G G, SCHLAGOWSKI S, et al. PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants[J]. Journal of Applied Electrochemistry, 1998, 28(10): 1041-1049. |
64 | MILLET P, DURAND R, PINERI M. Preparation of new solid polymer electrolyte composites for water electrolysis[J]. International Journal of Hydrogen Energy, 1990, 15(4): 245-253. |
65 | GRIGORIEV S A, POREMBSKY V I, FATEEV V N. Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International Journal of Hydrogen Energy, 2006, 31(2): 171-175. |
66 | MILLET P, DRAGOE D, GRIGORIEV S, et al. GenHyPEM: a research program on PEM water electrolysis supported by the European Commission[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4974-4982. |
67 | TAKAHASHI K. Sunshine project in Japan-solar photovoltaic program[J]. Solar Cells, 1989, 26(1/2): 87-96. |
68 | YAMAGUCHI M, OKISAWA K, NAKANORI T. Development of high performance solid polymer electrolyte water electrolyzer in WE-NET[C]//IECEC- |
97 | Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203). July 27-August 1, 1997, Honolulu, HI, USA. IEEE, 1997: 1958-1965. |
69 | HASHIMOTO A, KATSUO H, KATSUTOSHI S. Development of PEM water electrolysis type hydrogen production system for WE-NET[C]//Proceedings of the 14th World Hydrogen Energy Conference, Canada. 2002. |
70 | 吴志强, 高峰, 邓一兵, 等. 空间站再生生保关键技术研究[J]. 航天医学与医学工程, 2018, 31(2): 105-111. |
WU Zhiqiang, GAO Feng, DENG Yibing, et al. Key technology review of research on regenerative environmental control and life support system for space station[J]. Space Medicine & Medical Engineering, 2018, 31(2): 105-111. | |
71 | 李俊荣, 谭意诚, 谢曙, 等. 一种质子膜水电解池: CN106011914B[P]. 2018-03-27. |
LI Junrong, TAN Yicheng, XIE Shu, et al. Proton membrane water electrolytic cell: CN106011914B[P]. 2018-03-27. | |
72 | 李俊荣, 谭意诚, 谢曙, 等. 一种高差压水电解器: CN105951118B[P]. 2018-09-18. |
LI Junrong, TAN Yicheng, XIE Shu, et al. High-differential-pressure water electrolyzer: CN105951118B[P]. 2018-09-18. | |
73 | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[EB/OL]. [2019-06-29]. . |
China Hydrogen Alliance. White paper on China’s hydrogen energy and fuel cell industry[EB/OL]. [2019-06-29]. . | |
74 | PEM electrolyser from Siemens for Salzgitter steelmaking hydrogen[J]. Fuel Cells Bulletin, 2019, 2019(12): 10. |
75 | BERTUCCIOLI L, CHAN A, HART D, et al. Study on development of water electrolysis in the EU[EB/OL]. [2014-02-07]. . |
76 | SHIRVANIAN P, BERKEL F VAN. Novel components in proton exchange membrane (PEM) water electrolyzers (PEMWE): status, challenges and future needs. A mini review[J]. Electrochemistry Communications, 2020, 114(5): 106704. |
77 | FABBRI E, SCHMIDT T J. Oxygen evolution reaction—The enigma in water electrolysis[J]. ACS Catalysis, 2018, 8(10): 9765-9774. |
78 | MEIER J C, GALEANO C, KATSOUNAROS I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions[J]. ACS Catalysis, 2012, 2(5): 832-843. |
79 | BABIC U, SUERMANN M, BÜCHI F N, et al. Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development[J]. Journal of the Electrochemical Society, 2017, 164(4): F387-F399. |
81 | AYERS K. The potential of proton exchange membrane-based electrolysis technology[J]. Current Opinion in Electrochemistry, 2019, 18: 9-15. |
82 | IEA. World energy outlook 2019[EB/OL]. [2019-09]. . |
83 | MEIER K. Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials[J]. International Journal of Energy and Environmental Engineering, 2014, 5(2/3): 104. |
84 | GÜL T, PALES A F, PAOLI L. Batteries and hydrogen technology: keys for a clean energy future[EB/OL]. [2020-03-03]. . |
85 | Vattenfall, Preem in fossil-free hydrogen production partnership[J]. Fuel Cells Bulletin, 2019, 2019(6): 11. |
86 | DUONG C, BOWER C, KEN H M, et al. Quest carbon capture and storage offset project: findings and learnings from 1st reporting period[J]. International Journal of Greenhouse Gas Control, 2019, 89: 65-75. |
87 | OZTURK M, DINCER I. An integrated system for ammonia production from renewable hydrogen: a case study[J]. International Journal of Hydrogen Energy, 2021, 46(8): 5918-5925. |
88 | BERMUDEZ J M, HASEGAWA T. Hydrogen-tracking report[EB/OL]. [2020-06]. . |
89 | AGN plans HyP plant in Queensland[J]. Fuel Cells Bulletin, 2020, 2020(3): 11-12. |
90 | ARICÒ A S, SIRACUSANO S, BRIGUGLIO N, et al. Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources[J]. Journal of Applied Electrochemistry, 2013, 43(2): 107-118. |
91 | JUNIOR I. Power-to-X: the pathway to a carbon-free world[EB/OL]. [2019-10]. . |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[13] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[14] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[15] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |