化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4762-4773.DOI: 10.16085/j.issn.1000-6613.2021-0429

• • 上一篇    下一篇

质子交换膜电解水制氢技术的发展现状及展望

何泽兴1,2(), 史成香1,2, 陈志超1,2, 潘伦1,2, 黄振峰1,2, 张香文1,2, 邹吉军1,2()   

  1. 1.天津大学化工学院,绿色合成与转化教育部重点实验室,天津 300350
    2.天津化学化工协同创新中心,天津 300350
  • 收稿日期:2021-03-02 修回日期:2021-05-13 出版日期:2021-09-05 发布日期:2021-09-13
  • 通讯作者: 邹吉军
  • 作者简介:何泽兴(1997—),男,硕士研究生,研究方向为酸性电解水制氢催化剂开发。E-mail: zexinghe@tju.edu.cn
  • 基金资助:
    国家自然科学基金(22008170)

Development status and prospects of proton exchange membrane water electrolysis

HE Zexing1,2(), SHI Chengxiang1,2, CHEN Zhichao1,2, PAN Lun1,2, HUANG Zhenfeng1,2, ZHANG Xiangwen1,2, ZOU Jijun1,2()   

  1. 1.Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    2.Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
  • Received:2021-03-02 Revised:2021-05-13 Online:2021-09-05 Published:2021-09-13
  • Contact: ZOU Jijun

摘要:

氢能是支撑起智能电网和可再生能源发电规模化的最佳能源载体,而电解水制氢是实现制氢规模化的重要途径。在多种电解水制氢技术中,质子交换膜电解水技术由于具备电流密度大、产氢纯度高、响应速度快等优势,吸引了科学界和工业界的广泛重视。本文首先介绍了质子交换膜电解池的结构组成以及各组成的主要作用,对比分析了碱性电解池、固体氧化物电解池与质子交换膜电解池的技术差异,并结合电解水析氢反应以及析氧反应的机理阐释,分别介绍了两步半反应的常用催化剂;然后,从最初的实验室研究阶段到目前兆瓦级别的质子交换膜电解水系统,回顾了该技术的发展历程以及应用现状;其次,从制氢成本、电堆性能及电堆寿命等多角度分析目前该技术面临的瓶颈问题;最后,根据质子交换膜电解池的技术优势,并针对上游间歇性可再生能源的需求以及和下游产业的联合应用,对其未来前景进行了展望。

关键词: 质子交换膜电解池, 可再生能源, 制氢, 催化剂, 储能

Abstract:

Hydrogen energy is one of the most promising energy carriers to support smart grid and large-scale of power generation by renewable energy. Water electrolysis is one of the most important routes to realize the large-scale of hydrogen production. Among the technologies of water electrolysis, proton exchange membrane electrolyzer (PEMEL) technology has attracted the attention of scientific and industrial communities because of its advantages of high current density, high purity of hydrogen production and fast response speed. This paper firstly introduces the structure of PEMEL and the main functions of each component. The technical differences between the alkaline electrolyzer, solid oxide electrolyzer and proton exchange membrane electrolyzer are compared and analyzed. Through explaining the mechanism of oxygen evolution reaction and hydrogen evolution reaction, this paper introduces common electrocatalysts for electrochemical water splitting. With the advantages of low cost and improved performance, non-noble metal catalysts are becoming more competitive. Then, from the initial laboratory research stage to the current megawatt-level PEMEL, this paper reviews the development process and application of the technology. Further, the current bottlenecks of the technology are discussed from multiple perspective. The major bottlenecks of PEMEL are the cost of hydrogen production, the performance of electrode material and the life of stacks. Finally, it is prospected based on the advantages of PEMEL that the application of such technology has a promising future for the renewable energy demand as well as the joint application with other industries.

Key words: proton exchange membrane electrolyzer, renewable energy, hydrogen production, catalyst, energy storage

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn