化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4774-4781.DOI: 10.16085/j.issn.1000-6613.2021-0315
收稿日期:
2021-02-16
修回日期:
2021-05-15
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
张金龙
作者简介:
朱乔虹(1994—),女,博士研究生,研究方向为光催化分解水制氢。E-mail:基金资助:
ZHU Qiaohong(), XING Mingyang, ZHANG Jinlong()
Received:
2021-02-16
Revised:
2021-05-15
Online:
2021-09-05
Published:
2021-09-13
Contact:
ZHANG Jinlong
摘要:
利用太阳能进行的分解水制氢技术,可以促进太阳能的有效利用和清洁能源氢能的研发。在光催化制氢中,半导体光催化材料的性能是光催化反应性能提升的核心要素,制备优异、高效的光催化剂是提升光催化反应活性的关键步骤。本文从材料形貌和制备角度出发,选取金属硫化物为光催化中的主体半导体,对国内外金属硫化物空心结构的研究、应用和进展进行了回顾,分析了空心结构对增大材料比表面积、增强太阳光吸收、加速载流子分离以及提升反应活性的重要性,提出了空心结构在光催化发展中的优势,对空心结构的发展提出了展望,为这些新型材料的未来研发提供参考,从而能尽快提高光催化反应的太阳光利用率和氢气产量,有助于进一步实现光催化技术的工业化应用。
中图分类号:
朱乔虹, 邢明阳, 张金龙. 光催化分解水制氢中硫化物空心结构的研究进展[J]. 化工进展, 2021, 40(9): 4774-4781.
ZHU Qiaohong, XING Mingyang, ZHANG Jinlong. Progress of hollow-structured-based sulfides in photocatalytic water splitting for hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4774-4781.
图4 Co9S8@ZnIn2S4空心结构及ZnIn2S4纳米片的形貌及光解水产氢机制[50](a), (b), (c) Co9S8@ZnIn2S4空心结构的FESEM图;(d), (e) Co9S8@ZnIn2S4空心结构的TEM图;(f) ZnIn2S4纳米片的HRTEM图;(g) Co9S8@ZnIn2S4用于光催化析氢机理示意图
1 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238 (5358): 37-38. |
2 | KUMAR Pawan, BOUKHERROUB Rabah, SHANKAR Karthik. Sunlight-driven water-splitting using two-dimensional carbon based semiconductors[J]. Journal of Materials Chemistry A, 2018, 6 (27): 12876-12931. |
3 | ZHU Mingshan, SUN Zhichao, FUJITSUKA Mamoru, et al. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light[J]. Angewandte Chemie International Edition, 2018, 57 (8): 2160-2164. |
4 | SHI Rui, YE Huifang, LIANG Fei, et al. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents[J]. Advanced Materials, 2018, 30 (6): 1705941. |
5 | ZHANG Yanlin, HAN Changseok, NADAGOUDA Mallikarjuna N, et al. The fabrication of innovative single crystal N,F-codoped titanium dioxide nanowires with enhanced photocatalytic activity for degradation of atrazine[J]. Applied Catalysis B: Environmental, 2015, 168/169: 550-558. |
6 | TOMBOC Gracita M, GADISA Bekelcha Tesfaye, Jinwhan JOO, et al. Hollow structured metal sulfides for photocatalytic hydrogen generation[J]. ChemNanoMat, 2020, 6 (6): 850-869. |
7 | LI Hongli, PAN Jiaqi, ZHAO Weijie, et al. The 2D nickel‑molybdenum bimetals sulfide synergistic modified hollow cubic CdS towards enhanced photocatalytic water splitting hydrogen production[J]. Applied Surface Science, 2019, 497: 143769. |
8 | ZHU Qiaohong, XU Zehong, YI Qiuying, et al. Prolonged electron lifetime in sulfur vacancy-rich ZnCdS nanocages by interstitial phosphorus doping for photocatalytic water reduction[J]. Materials Chemistry Frontiers, 2020, 4 (11): 3234-3239. |
9 | ZHANG Kan, KIM Jung Kyu, MA Ming, et al. Delocalized electron accumulation at nanorod tips: origin of efficient H2 generation[J]. Advanced Functional Materials, 2016, 26 (25): 4527-4534. |
10 | YU Yanchun, WANG Enbo. Noble-metal-free ternary CN-ZCS-NiS nanocomposites for enhanced solar photocatalytic H2-production activity[J]. Dalton Transactions, 2018, 47 (4): 1171-1178. |
11 | XUE Chao, LI H, AN Hua, et al. NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “bridge” toward visible-light-driven hydrogen evolution[J]. ACS Catalysis, 2018, 8 (2): 1532-1545. |
12 | LINGAMPALLI S R, GAUTAM Ujjal K, RAO C N R. Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1-xZnxS and ZnO/Pt/CdS1-xSex hybrid nanostructures[J]. Energy & Environmental Science, 2013, 6 (12): 3589-3594. |
13 | HAN Zhonghui, CHEN Gang, LI Chunmei, et al. Preparation of 1D cubic Cd0.8Zn0.2S solid-solution nanowires using levelling effect of TGA and improved photocatalytic H2-production activity[J]. Journal of Materials Chemistry A, 2015, 3 (4): 1696-1702. |
14 | CHAI Bo, YAN Juntao, FAN Guozhi, et al. Amorphous MoS2 decorated on uniform Cd0.8Zn0.2S microspheres with dramatically improved photocatalytic hydrogen evolution performance[J]. New Journal of Chemistry, 2019, 43 (20): 7846-7854. |
15 | CHEN Jianmin, SHEN Zirong, Siming LYU, et al. Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with “one stone” as Z-scheme photocatalysts for highly efficient hydrogen production[J]. Journal of Materials Chemistry A, 2018, 6 (40): 19631-19642. |
16 | CHEN Jianmin, Siming LYU, SHEN Zirong, et al. Novel ZnCdS quantum dots engineering for enhanced visible-light-driven hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (16): 13805-13814. |
17 | RAN Jingrun, MA Tianyi, GAO Guoping, et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production[J]. Energy & Environmental Science, 2015, 8 (12): 3708-3717. |
18 | LIU Mingquan, JIAO Yingying, QIN Junchao, et al. Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance[J]. Applied Surface Science, 2021, 541: 148558. |
19 | WANG Shuaijun, HE Fengting, ZHAO Xiaoli, et al. Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 257: 117931. |
20 | LIU Guangqing, XUE Mengwei, LIU Qinpu, et al. Carbon doped honeycomb-like graphitic carbon nitride for photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2019, 552: 728-734. |
21 | ZHANG Luhong, JIN Zhengyuan, HUANG Shaolong, et al. Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 246: 61-71. |
22 | YANG Jinhui, WANG Donge, HAN Hongxian, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46 (8): 1900-1909. |
23 | RAN Jingrun, ZHANG Jun, YU Jiaguo, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chemical Society Reviews, 2014, 43 (22): 7787-7812. |
24 | CAO Shuang, CHEN Yong, WANG Chuanjun, et al. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation[J]. Chemical Communications, 2015, 51 (41): 8708-8711. |
25 | ZHU Qiaohong, QIU Bocheng, DUAN Huan, et al. Electron directed migration cooperated with thermodynamic regulation over bimetallic NiFeP/g-C3N4 for enhanced photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 259: 118078. |
26 | HUANG Hengming, DAI Baoying, WANG Wei, et al. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods[J]. Nano Letters, 2017, 17 (6): 3803-3808. |
27 | ZHU Qiaohong, QIU Bocheng, DU Mengmeng, et al. Dopant-induced edge and basal plane catalytic sites on ultrathin C3N4 nanosheets for photocatalytic water reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (19): 7497-7502. |
28 | YE Huifang, SHI Rui, YANG Xiao, et al. P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural[J]. Applied Catalysis B: Environmental, 2018, 233: 70-79. |
29 | WU Shiqun, CHEN Ziyu, LIU Kaida, et al. Chemisorption-induced and plasmon-promoted photofixation of nitrogen on gold-loaded carbon nitride nanosheets[J]. ChemSusChem, 2020, 13 (13): 3455-3461. |
30 | ZHU Qiaohong, QIU Bocheng, DU Mengmeng, et al. Nickel boride cocatalyst boosting efficient photocatalytic hydrogen evolution reaction[J]. Industrial & Engineering Chemistry Research, 2018, 57 (24): 8125-8130. |
31 | HUANG Xiaoyue, GU Wenyi, HU Songchang, et al. Phosphorus-doped inverse opal g-C3N4 for efficient and selective CO generation from photocatalytic reduction of CO2[J]. Catalysis Science & Technology, 2020, 10 (11): 3694-3700. |
32 | YAN Tingjiang, LI Liping, LI Guangshe. Solvothermal synthesis of hierarchical SnIn4S8 microspheres and their application in photocatalysis[J]. Research on Chemical Intermediates, 2011, 37 (2): 297-307. |
33 | DONG Chunyang, LIAN Cheng, HU Songchang, et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles[J]. Nature Communications2018, 9 (1): 1252. |
34 | XING Mingyang, ZHOU Yi, DONG Chunyang, et al. Modulation of the reduction potential of TiO2–x by fluorination for efficient and selective CH4 generation from CO2 photoreduction[J]. Nano Letters, 2018, 18 (6): 3384-3390. |
35 | WU Shiqun, TAN Xianjun, LEI Juying, et al. Ga-doped and Pt-loaded porous TiO2-SiO2 for photocatalytic nonoxidative coupling of methane[J]. Journal of the American Chemical Society, 2019, 141 (16): 6592-6600. |
36 | ZHOU Yi, ZHOU Lei, ZHOU Yanbo, et al. Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions[J]. Applied Catalysis B: Environmental, 2020, 279: 119365. |
37 | QIU Bocheng, ZHU Qiaohong, DU Mengmeng, et al. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2017, 56 (10): 2684-2688. |
38 | DENG Yuanxin, XIAO Yifei, ZHOU Yi, et al. A structural engineering-inspired CdS based composite for photocatalytic remediation of organic pollutant and hexavalent chromium[J]. Catalysis Today, 2019, 335: 101-109. |
39 | XU Jie, LI Ming, QIU Jianhao, et al. PEGylated deep eutectic solvent-assisted synthesis of CdS@CeO2 composites with enhanced visible light photocatalytic ability[J]. Chemical Engineering Journal, 2020, 383: 123135. |
40 | ZHAO Yi, LU Yongfeng, CHEN Lu, et al. Redox dual-cocatalyst-modified CdS double-heterojunction photocatalysts for efficient hydrogen production[J]. ACS Applied Materials & Interfaces, 2020, 12 (41): 46073-46083. |
41 | QIU Bocheng, ZHU Qiaohong, XING Mingyang, et al. A robust and efficient catalyst of CdxZn1-xSe motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation[J]. Chemical Communications, 2017, 53 (5): 897-900. |
42 | XU Wen, ZHOU Xun, QI Zhaopeng, et al. One-pot colloidal synthesis of MoSe2-Pt nanoflowers and their enhanced electrocatalytic hydrogen evolution performance[J]. Research on Chemical Intermediates, 2019, 45 (3): 1217-1226. |
43 | YOU Daotong, PAN Bao, HE Yishan, et al. Enhanced visible light photocatalytic H2 evolution over CeO2 loaded with Pt and CdS[J]. Research on Chemical Intermediates, 2017, 43 (9): 5103-5112, . |
44 | ZHANG Xiaohu, XIAO Jie, HOU Min, et al. Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid[J]. Applied Catalysis B: Environmental, 2018, 224: 871-876. |
45 | XIAO Mu, WANG Zhiliang, Miaoqiang LYU, et al. Hollow nanostructures for photocatalysis: advantages and challenges[J]. Advanced Materials, 2019, 31 (38): 1801369. |
46 | QIU Bocheng, WANG Cong, ZHANG Ning, et al. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation[J]. ACS Catalysis, 2019, 9 (7): 6484-6490. |
47 | QIU Bocheng, ZHONG Chengchao, XING Mingyang, et al. Facile preparation of C-modified TiO2 supported on MCF for high visible-light-driven photocatalysis[J]. RSC Advances, 2015, 5 (23): 17802-17808. |
48 | XING Mingyang, QIU Bocheng, DU Mengmeng, et al. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2017, 27 (35): 1702624. |
49 | YOU Dan, SHI Dajun, CHENG Qingrong, et al. Integrating Mn-ZIF-67 on hollow spherical CdS photocatalysts forming a unique interfacial structure for the efficient photocatalytic hydrogen evolution and degradation under visible light[J]. Environmental Science: Nano, 2020, 7 (9): 2809-2822. |
50 | WANG Sibo, GUAN Buyuan, WANG Xiao, et al. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2018, 140 (45): 15145-15148. |
51 | CHEN Jianmin, CHEN Junying, LI Yingwei. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation[J]. Journal of Materials Chemistry A, 2017, 5 (46): 24116-24125. |
52 | IQBAL Muhammad Faisal, ASHIQ Muhammad Naeem, ZHANG Meng. Design of metals sulfides with carbon materials for supercapacitor applications: a review[J]. Energy Technology, 2021, 9(4): 2000987. |
53 | WANG Yihui, XU Kai, ZHU Zizheng, et al. Sulfurization-induced partially amorphous palladium sulfide nanosheets for highly efficient electrochemical hydrogen evolution[J]. Chemical Communications, 2021, 57(11): 1368-1371. |
54 | ASLAN Emre, SARILMAZ Adem, OZEL Faruk, et al. Catalytic hydrogen evolution by molybdenum-based ternary metal sulfide nanoparticles[J]. ACS Applied Nano Materials, 2019, 2 (11): 7204-7213. |
55 | ZHU Cheng, LIU Chang’an, FU Yijun, et al. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater[J]. Applied Catalysis B: Environmental, 2019, 242: 178-185. |
56 | WANG Sibo, GUAN Buyuan, LOU Xiongwen, et al. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal of the American Chemical Society, 2018, 140 (15): 5037-5040. |
57 | WANG Li, WAN Jiawei, WANG Jiangyan, et al. Small structures bring big things: performance control of hollow multishelled structures[J]. Small Structures, 2021, 2 (1): 2000041. |
58 | WEI Renbin, HUANG Zanling, GU Guanghui, et al. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 231: 101-107. |
59 | ZHAO Fei, LI Hao, LIU Tongyao, et al. Spatially separated CdS hollow spheres with interfacial charge transfer and cocatalyst for enhancing photocatalytic hydrogen evolution[J]. Molecular Catalysis, 2019, 474: 110418. |
60 | BIE Chuanbiao, ZHU Bicheng, XU Feiyan, et al. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction[J]. Advanced Materials, 2019, 31 (42): 1902868. |
61 | YANG Haowei, FAN Jinlong, ZHOU Chengxin, et al. A Z-scheme BiVO4/CdS hollow sphere with a high photocatalytic hydrogen evolution activity[J]. Materials Letters, 2020, 280: 128317. |
62 | ZHENG Ningchao, OUYANG Ting, CHEN Yibo, et al. Ultrathin CdS shell-sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis[J]. Catalysis Science & Technology, 2019, 9 (6): 1357-1364. |
63 | SU Yun, AO Dan, LIU Hong, et al. MOF-derived yolk-shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5 (18): 8680-8689. |
64 | JIN Pengxia, WANG Lei, MA Xiaolei, et al. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride[J]. Applied Catalysis B: Environmental, 2021, 284: 119762. |
65 | WANG Xiao, CHEN Ye, FANG Yongjin, et al. Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58 (9): 2675-2679. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |