化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4711-4733.DOI: 10.16085/j.issn.1000-6613.2021-0430

• • 上一篇    下一篇

新能源化工热力学

练成1,2(), 程锦1,2(), 黄盼2,3, 陶浩兰2,3, 杨洁1,2, 刘洪来1,2,3()   

  1. 1.华东理工大学化学与分子工程学院,上海 200237
    2.化学工程联合国家重点实验室,上海 200237
    3.华东理工大学化工学院,上海 200237
  • 收稿日期:2021-03-03 修回日期:2021-04-26 出版日期:2021-09-05 发布日期:2021-09-13
  • 通讯作者: 刘洪来
  • 作者简介:练成(1989—),男,特聘研究员,博士生导师,研究方向为新能源化工热力学。E-mail:liancheng@ecust.edu.cn|程锦(1998—),男,博士研究生,研究方向为非平衡态热力学。E-mail:chengjin9843@qq.com
  • 基金资助:
    国家自然科学基金创新群体项目(51621002);国家自然科学基金(91834301)

Thermodynamics of new energy chemical engineering

LIAN Cheng1,2(), CHENG Jin1,2(), HUANG Pan2,3, TAO Haolan2,3, YANG Jie1,2, LIU Honglai1,2,3()   

  1. 1.School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.State Key Laboratory of Chemical Engineering, Shanghai 200237, China
    3.School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2021-03-03 Revised:2021-04-26 Online:2021-09-05 Published:2021-09-13
  • Contact: LIU Honglai

摘要:

电化学中能源存储与转换技术等新能源技术是目前人类能源系统的重要技术组成部分,涉及多种物理化学过程,通过热力学的理论与模拟计算的方法对其进行研究,可以高效率地解决新能源的储存、释放和转化过程中的绝大部分问题。本文通过梳理总结国内外关于理论计算方面热力学在电化学领域的研究成果,对热力学的研究进行分类并对其性质、优缺点、适用范围等进行了详细介绍。本文介绍了电化学能源存储与转换领域的经典热力学、分子与统计热力学、非平衡态热力学、高通量计算与机器学习对于热力学研究的辅助。通过非平衡态热力学解决电化学问题是当下的发展方向与趋势。而伴随计算机技术的发展,机器学习则是未来该领域一个很有前景的研究方法。希望该综述对热力学在电化学领域的进一步研究和技术发展发挥一定的参考作用。

关键词: 电化学, 热力学, 模拟计算, 能源存储与转换, 机器学习

Abstract:

Energy storage and conversion technology in electrochemistry is an important part of human energy system, which involves a variety of physical and chemical processes. Through the theoretical and simulation calculation methods of thermodynamics, most of the problems of energy storage, release and conversion can be solved efficiently. In this paper, the research results of thermodynamics in the field of electrochemistry at home and abroad are summarized, the research of thermodynamics is classified, and its properties, advantages and disadvantages, application scope are introduced in detail. This paper introduces the classical thermodynamics, molecular and statistical thermodynamics, non-equilibrium thermodynamics, high-throughput computing and machine learning in the field of electrochemical energy storage and conversion. Solving electrochemical problems through non-equilibrium thermodynamics is the current development direction and trend. With the development of computer technology, machine learning is a promising research method in this field. It is hoped that this review will play a certain reference role in the further research and technical development of thermodynamics in the field of electrochemistry.

Key words: electrochemistry, thermodynamics, simulation, energy storage and conversion, machine learning

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn