化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4711-4733.DOI: 10.16085/j.issn.1000-6613.2021-0430
练成1,2(), 程锦1,2(), 黄盼2,3, 陶浩兰2,3, 杨洁1,2, 刘洪来1,2,3()
收稿日期:
2021-03-03
修回日期:
2021-04-26
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
刘洪来
作者简介:
练成(1989—),男,特聘研究员,博士生导师,研究方向为新能源化工热力学。E-mail:基金资助:
LIAN Cheng1,2(), CHENG Jin1,2(), HUANG Pan2,3, TAO Haolan2,3, YANG Jie1,2, LIU Honglai1,2,3()
Received:
2021-03-03
Revised:
2021-04-26
Online:
2021-09-05
Published:
2021-09-13
Contact:
LIU Honglai
摘要:
电化学中能源存储与转换技术等新能源技术是目前人类能源系统的重要技术组成部分,涉及多种物理化学过程,通过热力学的理论与模拟计算的方法对其进行研究,可以高效率地解决新能源的储存、释放和转化过程中的绝大部分问题。本文通过梳理总结国内外关于理论计算方面热力学在电化学领域的研究成果,对热力学的研究进行分类并对其性质、优缺点、适用范围等进行了详细介绍。本文介绍了电化学能源存储与转换领域的经典热力学、分子与统计热力学、非平衡态热力学、高通量计算与机器学习对于热力学研究的辅助。通过非平衡态热力学解决电化学问题是当下的发展方向与趋势。而伴随计算机技术的发展,机器学习则是未来该领域一个很有前景的研究方法。希望该综述对热力学在电化学领域的进一步研究和技术发展发挥一定的参考作用。
中图分类号:
练成, 程锦, 黄盼, 陶浩兰, 杨洁, 刘洪来. 新能源化工热力学[J]. 化工进展, 2021, 40(9): 4711-4733.
LIAN Cheng, CHENG Jin, HUANG Pan, TAO Haolan, YANG Jie, LIU Honglai. Thermodynamics of new energy chemical engineering[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4711-4733.
1 | 胡英. 近代化工热力学——应用研究的新进展[M]. 上海: 上海科学技术文献出版社, 1994. |
HU Y. New progress of modern chemical engineering thermodynamics—Application research[M]. Shanghai: Shanghai Science and Technology Literature Press, 1994. | |
2 | 李以圭. 金属溶剂萃取热力学[M]. 北京: 清华大学出版社, 1988. |
LI Yigui. Thermodynamics of metal solvent extraction [M]. Beijing: Tsinghua University Press, 1988. | |
3 | ZEMAITIS J F J, CLARK D M, RAFAL M, et al. Handbook of aqueous electrolyte thermodynamics[M]. Hoboken: John Wiley Sons, Inc., 1986. |
4 | 黄子卿. 电解质溶液理论导论(修订版)[M]. 北京: 科学出版社, 2010. |
HUANG Z Q. Introduction to electrolyte solution theory (Revised Edition)[M]. Beijing: Science Press, 2010. | |
5 | 李以圭, 陆九芳. 电解质溶液理论[M]. 北京: 清华大学出版社, 2005. |
LI Yigui, LU Jiufang. Theory of electrolyte solution [M]. Beijing: Tsinghua University Press, 2005. | |
6 | HORVATH A L. Handbook of aqueous electrolyte solutions, physical properties, estimation and correlation methods[M]. England: Ellis Horwood Ltd., 1985. |
7 | PITZER K S, PETERSON J R, SILVESTER L F. Thermodynamics of electrolytes. IX. Rare earth chlorides, nitrates, and perchlorates[J]. Journal of Solution Chemistry, 1978, 7(1): 45-56. |
8 | ROGERS P S Z, PITZER K S. Volumetric properties of aqueous sodium chloride solutions[J]. Journal of Physical and Chemical Reference Data, 1982, 11(1): 15-81. |
9 | PITZER K S. Activity coefficients in electrolyte solutions[M]. Boca Raton: CRC Press, 1979. |
10 | 陆小华, 王延儒, 时钧. 含盐溶液汽液平衡预测(Ⅰ)——Pitzer模型的扩展及其在多元体系中的应用[J]. 化工学报, 1989, 40(3): 293-300. |
LU Xiaohua, WANG Yanru, SHI Jun. Prediction of vapor liquid equilibria for salt containing systems (Ⅰ)—Extension of pitzer model and its applications to multicomponent systems[J]. Journal of Chemical Industry and Engineering (China), 1989,40(3):293-300. | |
11 | 陆小华, 王延儒, 时钧. 含盐溶液汽液平衡预测(Ⅱ)——参数的物理意义及估算[J]. 化工学报, 1989, 40(3): 301-306. |
LU Xiaohua, WANG Yanru, SHI Jun. Prediction of vapor-liquid equilibria for salt-containing systems (Ⅱ)—Physical meaning and estimation of the parameter in pitzer model[J]. Journal of Chemical Industry and Engineering (China), 1989, 40(3): 301-306. | |
12 | 陆小华, 王延儒, 时钧. 非水电解质浓溶液的热力学研究——HCl-CH3OH体系的汽液平衡[J]. 化工学报, 1990, 41(6): 695-701. |
LU Xiaohua, WANG Yanru, SHI Jun. The thermodynamics of concentrated nonaqueous strong electrolyte solutions—Vapor-liquid equlibrium of hydrochloride-methanol mixture[J]. Journal of Chemical Industry and Engineering (China), 1990, 41(6): 695-701. | |
13 | CHEN C C, BRITT H I, BOSTON J F, et al. Local composition model for excess Gibbs energy of electrolyte systems. Part Ⅰ: Single solvent, single completely dissociated electrolyte systems[J]. AIChE Journal, 1982, 28(4): 588-596. |
14 | CHEN C C, EVANS L B. A local composition model for the excess Gibbs energy of aqueous electrolyte systems[J]. AIChE Journal, 1986, 32(3): 444-454. |
15 | SANDER B, FREDENSLUND A, RASMUSSEN P. Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation[J]. Chemical Engineering Science, 1986, 41(5): 1171-1183. |
16 | SANDER B, RASMUSSEN P, FREDENSLUND A. Calculation of vapour-liquid equilibria in nitric acid-water-nitrate salt systems using an extended UNIQUAC equation[J]. Chemical Engineering Science, 1986, 41(5): 1185-1195. |
17 | KIKIC I, FERMEGLIA M, RASMUSSEN P. Unifac prediction of vapor—liquid equilibria in mixed solvent—salt systems[J]. Chemical Engineering Science, 1991, 46(11): 2775-2780. |
18 | LI J D, POLKA H M, GMEHLING J. A gE model for single and mixed solvent electrolyte systems: 1. Model and results for strong electrolytes[J]. Fluid Phase Equilibria, 1994, 94: 89-114. |
19 | POLKA H M, LI J D, GMEHLING J. A gE model for single and mixed solvent electrolyte systems. 2. Results and comparison with other models[J]. Fluid Phase Equilibria, 1994, 94: 115-127. |
20 | CARNAHAN N F, STARLING K E. Equation of state for nonattracting rigid spheres[J]. The Journal of Chemical Physics, 1969, 51(2): 635-636. |
21 | MANSOORI G A, CARNAHAN N F, STARLING K E, et al. Equilibrium thermodynamic properties of the mixture of hard spheres[J]. The Journal of Chemical Physics, 1971, 54(4): 1523-1525. |
22 | BLUM L. Mean spherical model for asymmetric electrolytes[J]. Molecular Physics, 1975, 30(5): 1529-1535. |
23 | COPEMAN T W, STEIN F P. A perturbed hard-sphere equation of state for solutions containing an electrolyte[J]. Fluid Phase Equilibria, 1987, 35(1/2/3): 165-187. |
24 | HU Y, XU Y N, PRAUSNITZ J. Molecular thermodynamics of gas solubility[J]. Fluid Phase Equilibria, 1985, 23(1): 15-40. |
25 | XU Y N, HU Y. Prediction of Henry’s constants of gases in electrolyte solutions[J]. Fluid Phase Equilibria, 1986, 30: 221-228. |
26 | ZU L H, ZHANG W, QU L B, et al. Mesoporous materials for electrochemical energy storage and conversion[J]. Advanced Energy Materials, 2020, 10(38): 2002152. |
27 | SCHRÖDINGER E. An undulatory theory of the mechanics of atoms and molecules[J]. Physical Review, 1926, 28(6): 1049-1070. |
28 | SCHRÖDINGER E. Quantisierung als Eigenwertproblem[J]. Annalen Der Physik, 1926, 385(13): 437-490. |
29 | BORN M, HEISENBERG W. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 1924, 379(9): 1-31. |
30 | BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices[J]. American Journal of Physics, 1955, 23(7): 474. |
31 | HARTREE D R. The wave mechanics of an atom with a non-coulomb central field. Part Ⅳ. Further results relating to terms of the optical spectrum[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1929, 25(3): 310-314. |
32 | HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871. |
33 | KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138. |
34 | ALFREDSSON M, OJAMÄE L, HERMANSSON K G. A comparison of Hartree—Fock, MP2, and DFT results for the HCN dimer and crystal[J]. International Journal of Quantum Chemistry, 1996, 60(3): 767-778. |
35 | PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B: Condensed Matter, 1993, 48(7): 4978. |
36 | HAMMER B, HANSEN L B, NØRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59(11): 7413-7421. |
37 | PERDEW, BURKE, ERNZERHOF. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
38 | TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40): 16909-16916. |
39 | ZHOU G, TIAN H, JIN Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 840-845. |
40 | HUANG K, LIU Y, LIU H L. Understanding and predicting lithium crystal growth on perfect and defective interfaces: a Kohn-Sham density functional study[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37239-37246. |
41 | LIU G, XU S, WU L Y, et al. First-principles study of two-dimensional zirconium nitrogen compounds: Anode materials for Na-ion batteries[J]. Materials Chemistry and Physics, 2020, 250: 123028. |
42 | FAN K, YING Y R, LI X Y, et al. Theoretical investigation of V3C2 MXene as prospective high-capacity anode material for metal-ion (Li, Na, K, and Ca) batteries[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18207-18214. |
43 | LI D Q, CHEN X F, XIANG P, et al. Chalcogenated-Ti3C2X2 MXene (X=O, S, Se and Te) as a high-performance anode material for Li-ion batteries[J]. Applied Surface Science, 2020, 501: 144221. |
44 | PATRYKIEJEW A, SOKOŁOWSKI S. Adsorption of associating fluids on solid surfaces: wetting transition from density functional theory[J]. The Journal of Physical Chemistry B, 1999, 103(21): 4466-4473. |
45 | TARAZONA P, EVANS R. A simple density functional theory for inhomogeneous liquids[J]. Molecular Physics, 1984, 52(4): 847-857. |
46 | ROSENFELD Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing[J]. Physical Review Letters, 1989, 63(9): 980-983. |
47 | JIANG D E, MENG D, WU J Z. Density functional theory for differential capacitance of planar electric double layers in ionic liquids[J]. Chemical Physics Letters, 2011, 504(4/5/6): 153-158. |
48 | HENDERSON D, LAMPERSKI S, JIN Z H, et al. Density functional study of the electric double layer formed by a high density electrolyte[J]. The Journal of Physical Chemistry B, 2011, 115(44): 12911-12914. |
49 | VATAMANU J, BORODIN O, SMITH G D. Molecular simulations of the electric double layer structure, differential capacitance, and charging kinetics for N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide at graphite electrodes[J]. The Journal of Physical Chemistry B, 2011, 115(12): 3073-3084. |
50 | HU Z, VATAMANU J, BORODIN O, et al. A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces[J]. Physical Chemistry Chemical Physics, 2013, 15(34): 14234-14247. |
51 | BERNARD M O, PLAPP M, GOUYET J F. Mean-field kinetic lattice gas model of electrochemical cells[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(1Pt 1): 011604. |
52 | KIYOHARA K, ASAKA K. Monte Carlo simulation of electrolytes in the constant voltage ensemble[J]. The Journal of Chemical Physics, 2007, 126(21): 214704. |
53 | KIYOHARA K, ASAKA K. Monte Carlo simulation of porous electrodes in the constant voltage ensemble[J]. The Journal of Physical Chemistry C, 2007, 111(43): 15903-15909. |
54 | CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
55 | RAYMUNDO-PIÑERO E, KIERZEK K, MACHNIKOWSKI J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon, 2006, 44(12): 2498-2507. |
56 | JIANG D E, JIN Z H, WU J Z. Oscillation of capacitance inside nanopores[J]. Nano Letters, 2011, 11(12): 5373-5377. |
57 | WENG Z, LI F, WANG D W, et al. Controlled electrochemical charge injection to maximize the energy density of supercapacitors[J]. Angewandte Chemie International Edition, 2013, 52(13): 3722-3725. |
58 | LIAN C, KONG X, LIU H, et al. On the hydrophilicity of electrodes for capacitive energy extraction[J]. Journal of Physics Condensed Matter, 2016, 28(46): 464008. |
59 | YANG J, DING Y J, LIAN C, et al. Theoretical insights into the structures and capacitive performances of confined ionic liquids[J]. Polymers, 2020, 12(3): 722. |
60 | YANG J, LIAN C, LIU H L. Chain length matters: structural transition and capacitance of room temperature ionic liquids in nanoporous electrodes[J]. Chemical Engineering Science, 2020, 227: 115927. |
61 | LIAN C, LIU K, LIU H L, et al. Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors[J]. The Journal of Physical Chemistry C, 2017, 121(26): 14066-14072. |
62 | PETROSYAN S A, RIGOS A A, ARIAS T A. Joint density-functional theory: ab initio study of Cr2O3 surface chemistry in solution[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15436-15444. |
63 | PETROSYAN S A, BRIERE J F, ROUNDY D, et al. Joint density-functional theory for electronic structure of solvated systems[J]. Physical Review B, 2007, 75(20): 205105. |
64 | ZHAN C, NEAL J, WU J Z, et al. Quantum effects on the capacitance of graphene-based electrodes[J]. The Journal of Physical Chemistry C, 2015, 119(39): 22297-22303. |
65 | ZHAN C, JIANG D E. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 789-794. |
66 | ZHAN C, ZHANG Y, CUMMINGS P T, et al. Computational insight into the capacitive performance of graphene edge planes[J]. Carbon, 2017, 116: 278-285. |
67 | ZHAN C, JIANG D E. Understanding the pseudocapacitance of RuO2 from joint density functional theory[J]. Journal of Physics: Condensed Matter, 2016, 28(46): 464004. |
68 | ZHAN C, NAGUIB M, LUKATSKAYA M, et al. Understanding the MXene pseudocapacitance[J]. The Journal of Physical Chemistry Letters, 2018, 9(6): 1223-1228. |
69 | GUNCELER D, LETCHWORTH-WEAVER K, SUNDARARAMAN R, et al. The importance of nonlinear fluid response in joint density-functional theory studies of battery systems[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 074005. |
70 | LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014, 13(10): 961-969. |
71 | CHOUDHURY S, ARCHER L A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities[J]. Advanced Electronic Materials, 2016, 2(2): 1500246. |
72 | OZHABES Y, GUNCELER D, ARIAS T A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. Physics, 2015, arxiv:. |
73 | ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. I. General method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466. |
74 | RAHMAN A. Correlations in the motion of atoms in liquid argon[J]. Physical Review, 1964, 136(2A): A405-A411. |
75 | CHEN M, WU J D, YE T, et al. Adding salt to expand voltage window of humid ionic liquids[J]. Nature Communications, 2020, 11: 5809. |
76 | LI C W, BO Z, YANG H C, et al. Ion dynamics of water-in-salt electrolyte with organic solvents in nanoporous supercapacitor electrodes[J]. ChemElectroChem, 2020, 7(9): 2048-2054. |
77 | MA K, ZHANG C G, WOODWARD C E, et al. Bridging the gap between macroscopic electrochemical measurements and microscopic molecular dynamic simulations: porous carbon supercapacitor with ionic liquids[J]. Electrochimica Acta, 2018, 289: 29-38. |
78 | WANG Y L, HUO F, HE H Y, et al. The confined [Bmim][BF4] ionic liquid flow through graphene oxide nanochannels: a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17773-17780. |
79 | DUIN A C T VAN, STRACHAN A, STEWMAN S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. The Journal of Physical Chemistry A, 2003, 107(19): 3803-3811. |
80 | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
81 | DUIN A C T VAN, DASGUPTA S, LORANT F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
82 | HOSSAIN M J, PAWAR G, LIAW B, et al. Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: a ReaxFF reactive force field study[J]. The Journal of Chemical Physics, 2020, 152(18): 184301. |
83 | YUN K S, PAI S J, YEO B C, et al. Simulation protocol for prediction of a solid-electrolyte interphase on the silicon-based anodes of a lithium-ion battery: ReaxFF reactive force field[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2812-2818. |
84 | YEO B C, JUNG H, LEE H W, et al. Atomistic simulation protocol for improved design of Si-O-C hybrid nanostructures as Li-ion battery anodes: ReaxFF reactive force field[J]. The Journal of physical Chemistry C, 2017, 121(42): 23268-23275. |
85 | LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene: preparation, properties, and applications[J]. Frontiers of Physics, 2015, 10(3): 276-286. |
86 | PANCHMATIA P M, ORERA A, REES G J, et al. Oxygen defects and novel transport mechanisms in apatite ionic conductors: combined 17O NMR and modeling studies[J]. Angewandte Chemie International Edition, 2011, 50(40): 9328-9333. |
87 | IFTIMIE R, MINARY P, TUCKERMAN M E. Ab initio molecular dynamics: concepts, recent developments, and future trends[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6654-6659. |
88 | HASSANALI A A, CUNY J, VERDOLINO V, et al. Aqueous solutions: state of the art in ab initio molecular dynamics[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 2014, 372(2011): 20120482. |
89 | MO Y F, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chemistry of Materials, 2012, 24(1): 15-17. |
90 | DENG Z, MO Y F, ONG S P. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries[J]. NPG Asia Materials, 2016, 8(3): e254. |
91 | HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: 15893. |
92 | MO Y F, ONG S P, CEDER G. Insights into diffusion mechanisms in P2 layered oxide materials by first-principles calculations[J]. Chemistry of Materials, 2014, 26(18): 5208-5214. |
93 | ONG S P, MO Y F, RICHARDS W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science, 2013, 6(1): 148-156. |
94 | DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition optimization of the lithium-rich Li3OCl1–xBrx anti-perovskite superionic conductors[J]. Chemistry of Materials, 2015, 27(10): 3749-3755. |
95 | MEIER K, LAINO T, CURIONI A. Solid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. The Journal of Physical Chemistry C, 2014, 118(13): 6668-6679. |
96 | HE X F, ZHU Y Z, EPSTEIN A, et al. Statistical variances of diffusional properties from ab initio molecular dynamics simulations[J]. Npj Computational Materials, 2018, 4: 18. |
97 | DEMIREL Y, SANDLER S I. Nonequilibrium thermodynamics in engineering and science[J]. The Journal of Physical Chemistry B, 2004, 108(1): 31-43. |
98 | JOHANNESSEN E, GROSS J, GROSS J, et al. Nonequilibrium thermodynamics of interfaces using classical density functional theory[J]. The Journal of Chemical Physics, 2008, 129(18): 184703. |
99 | CAO L, KE P, QIAO L Y, et al. Nonequilibrium thermodynamics and fluctuation relations for small systems[J]. Chinese Physics B, 2014, 23(7): 070501. |
100 | TAO H L, LIAN C, LIU H L. Multiscale modeling of electrolytes in porous electrode: from equilibrium structure to non-equilibrium transport[J]. Green Energy & Environment, 2020, 5(3): 303-321. |
101 | BAZANT M Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics[J]. Accounts of Chemical Research, 2013, 46(5): 1144-1160. |
102 | KARIMI-SIBAKI E, KHARICHA A, WU M, et al. Confrontation of the Ohmic approach with the ionic transport approach for modeling the electrical behavior of an electrolyte[J]. Ionics, 2018, 24(7): 2157-2165. |
103 | LIAN C, JANSSEN M, LIU H L, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging[J]. Physical Review Letters, 2020, 124(7): 076001. |
104 | PREHAL C, KOCZWARA C, AMENITSCH H, et al. Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors[J]. Nature Communications, 2018, 9: 4145. |
105 | LI J, CAI L J, SHANG J, et al. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis[J]. Advanced Materials, 2016, 28(21): 4059-4064. |
106 | SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): aad4998. |
107 | LIU M, PANG Y J, ZHANG B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016, 537(7620): 382-386. |
108 | SUTER S, HAUSSENER S. Optimizing mesostructured silver catalysts for selective carbon dioxide conversion into fuels[J]. Energy & Environmental Science, 2019, 12(5): 1668-1678. |
109 | BOHRA D, CHAUDHRY J H, BURDYNY T, et al. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system[J]. Energy & Environmental Science, 2019, 12(11): 3380-3389. |
110 | LIS D, BACKUS E H G, HUNGER J, et al. Liquid flow along a solid surface reversibly alters interfacial chemistry[J]. Science, 2014, 344(6188): 1138-1142. |
111 | LIAN C, KONG X, LIU H, et al. Flow effects on silicate dissolution and ion transport at an aqueous interface[J]. Physical Chemistry Chemical Physics, 2019, 21(13): 6970-6975. |
112 | D'ENTREMONT A, PILON L. First-principles thermal modeling of electric double layer capacitors under constant-current cycling[J]. Journal of Power Sources, 2014, 246: 887-898. |
113 | HSIEH C Y, LIN T C, LIU C, et al. Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system[J]. Journal of Differential Equations, 2020, 269(9): 7287-7310. |
114 | JANSSEN M, ROIJ R VAN. Reversible heating in electric double layer capacitors[J]. Physical Review Letters, 2017, 118(9): 096001. |
115 | JANSSEN M, BIER M. Transient response of an electrolyte to a thermal quench[J]. Physical Review E, 2019, 99(4): 042136. |
116 | BONETTI M, NAKAMAE S, HUANG B T, et al. Thermoelectric energy recovery at ionic-liquid/electrode interface[J]. The Journal of Chemical Physics, 2015, 142(24): 244708. |
117 | ZHONG J X, HUANG C L. Influence factors of thermal driven ion transport in nano-channel for thermoelectricity application[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119501. |
118 | DIETZEL M, HARDT S. Thermoelectricity in confined liquid electrolytes[J]. Physical Review Letters, 2016, 116(22): 225901. |
119 | FU L, JOLY L, MERABIA S. Giant thermoelectric response of nanofluidic systems driven by water excess enthalpy[J]. Physical Review Letters, 2019, 123(13): 138001. |
120 | CEDER G. Opportunities and challenges for first-principles materials design and applications to Li battery materials[J]. MRS Bulletin, 2010, 35(9): 693-701. |
121 | JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002. |
122 | CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3): 191-201. |
123 | HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508. |
124 | HAUTIER G, JAIN A, CHEN H L, et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations[J]. Journal of Materials Chemistry, 2011, 21(43): 17147. |
125 | BALACHANDRAN P V, BRODERICK S R, RAJAN K. Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2011, 467(2132): 2271-2290. |
126 | WEI J, CHU X, SUN X Y, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338-358. |
127 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
128 | YANG D, WANG Y J, PAN R, et al. State-of-health estimation for the lithium-ion battery based on support vector regression[J]. Applied Energy, 2018, 227: 273-283. |
129 | ZHOU Y T, WANG Y N, WANG K, et al. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors[J]. Applied Energy, 2020, 260: 114169. |
130 | SU H P, LIAN C, LIU J C, et al. Machine learning models for solvent effects on electric double layer capacitance[J]. Chemical Engineering Science, 2019, 202: 186-193. |
131 | ZHU S, LI J J, MA L Y, et al. Artificial neural network enabled capacitance prediction for carbon-based supercapacitors[J]. Materials Letters, 2018, 233: 294-297. |
132 | YAN Q, YU J, SURAM S K, et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): 3040-3043. |
133 | JOSHI R P, EICKHOLT J, LI L, et al. Machine learning the voltage of electrode materials in metal-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18494-18503. |
134 | PARK M S, PARK I, KANG Y S, et al. A search map for organic additives and solvents applicable in high-voltage rechargeable batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(38): 26807-26815. |
135 | JAIN A, HAUTIER G, ONG S P, et al. Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5942-5953. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[5] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[6] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[12] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[13] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[14] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
[15] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |