化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3758-3769.DOI: 10.16085/j.issn.1000-6613.2021-1889
收稿日期:
2021-09-03
修回日期:
2021-11-03
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
贾爱忠
作者简介:
池成龙(1996—),男,硕士研究生,研究方向为污水中重金属离子选择性去除。E-mail:基金资助:
CHI Chenglong(), JIA Aizhong(), SUN Daolai, ZHAO Xinqiang, WANG Yanji
Received:
2021-09-03
Revised:
2021-11-03
Online:
2022-07-25
Published:
2022-07-23
Contact:
JIA Aizhong
摘要:
离子印迹聚合物吸附材料对模板离子具有强识别能力,对其可实现高选择吸附,因而离子印迹技术常用于制备高选择性吸附材料。但传统方法制备的离子印迹吸附材料,因识别位点容易被包埋导致其吸附容量小、吸附-脱附速率低,而表面离子印迹技术则是采用模板离子和聚合单体直接在载体表面或附近区域构筑选择性识别位点,所有活性位点均暴露,从而有效地解决了上述问题。本文从技术原理与合成原料、制备工艺方法以及载体材料类型等方面对表面印迹聚合物吸附材料近期研究进展情况进行了概述。针对相关研究现状,从载体材料、功能单体、目标离子等角度分析和讨论了表面离子印迹聚合物吸附材料当前发展中的不足及其所面临的挑战,并对表面离子印迹技术发展趋势和前景进行了展望。
中图分类号:
池成龙, 贾爱忠, 孙道来, 赵新强, 王延吉. 表面离子印迹聚合物金属离子吸附材料研究进展[J]. 化工进展, 2022, 41(7): 3758-3769.
CHI Chenglong, JIA Aizhong, SUN Daolai, ZHAO Xinqiang, WANG Yanji. Research progress on adsorbents of surface ion-imprinted polymer for heavy metal ions[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3758-3769.
功能单体 | 模板离子 | 参考文献 |
---|---|---|
聚乙烯亚胺(PEI) | Cu2+,Cd2+,Cr3+ | [ |
3-氨基丙基三甲氧基硅烷(APS) | Cu2+ | [ |
3-氨基丙基三乙氧基硅烷(APTES) | Cu2+ | [ |
甲基丙烯酸(MAA) | Cu2+,Cr3+,Pb2+ | [ |
聚烯丙胺(PAA) | Cu2+ | [ |
3-巯基丙基三甲氧基硅烷(3-MPTMS) | Cd2+ | [ |
烯丙基硫脲(ATU) | Cd2+,Hg2+ | [ |
N-甲基丙烯酰-L-半胱氨酸(MAC) | Cd2+ | [ |
4-乙烯基吡啶(4-VP) | Cr2O | [ |
甲基丙烯酸甲酯(MMA) | Cr2O | [ |
丙烯酸(AA) | Cr2O | [ |
表1 表面离子印迹聚合物常用功能单体及对应离子模板
功能单体 | 模板离子 | 参考文献 |
---|---|---|
聚乙烯亚胺(PEI) | Cu2+,Cd2+,Cr3+ | [ |
3-氨基丙基三甲氧基硅烷(APS) | Cu2+ | [ |
3-氨基丙基三乙氧基硅烷(APTES) | Cu2+ | [ |
甲基丙烯酸(MAA) | Cu2+,Cr3+,Pb2+ | [ |
聚烯丙胺(PAA) | Cu2+ | [ |
3-巯基丙基三甲氧基硅烷(3-MPTMS) | Cd2+ | [ |
烯丙基硫脲(ATU) | Cd2+,Hg2+ | [ |
N-甲基丙烯酰-L-半胱氨酸(MAC) | Cd2+ | [ |
4-乙烯基吡啶(4-VP) | Cr2O | [ |
甲基丙烯酸甲酯(MMA) | Cr2O | [ |
丙烯酸(AA) | Cr2O | [ |
类别 | 载体 | 比表面积/m2·g-1 | 表面官能团 | 优点 | 缺点 | 改进措施 | 参考文献 |
---|---|---|---|---|---|---|---|
生物质材料 | 壳聚糖 | — | ―NH2、―COOH | 吸附容量大、易于回收、易降解 | 比表面积小、孔隙率低、稳定性差 | 制备稳定的复合材料并提高孔隙率 | [ |
海藻酸钠 | — | ―COOH、―OH | [ | ||||
纳米金属 氧化物 | Fe3O4 | — | ―OH | 比表面积大、顺磁性强或光催化活性好 | 酸性溶解、分散性差、回收困难 | 材料表面修饰或嵌入其他材料表面 | [ |
TiO2 | [ | ||||||
硅基材料 | 硅胶 | 800 | Si―OH | 比表面积大、孔道丰富、稳定 | 制备工艺复杂、条件苛刻、周期长 | 开发天然硅基材料 | [ |
SBA-15 | >1000 | Si―OH | [ | ||||
硅藻土 | 约 65 | Si―OH | 成本低、环境友好 | 比表面积较小、吸附容量较小 | 研发先进改性技术 | [ | |
碳基材料 | 多壁纳米管 | — | ―COOH、―OH | 比表面积大、易功能化、稳定性好 | 工艺复杂、吸附容量、再生性需提高 | 探索和建立高效、低成本的大规模生产技术 | [ |
石墨烯 | >2000 | ―COOH、―OH | [ | ||||
活性炭 | 600~2000 | ―COOH、―OH | [ | ||||
纳米纤维 | 约700 | ―COOH、―OH | [ | ||||
金属有机骨架 化合物 | UiO-66-NH2 | 1000~10000 | ―NH2 | 比表面积大、孔隙率高、孔径可调、易修饰 | 水中稳定性较差 | 进一步丰富改性及表面性质调控技术 | [ |
表2 表面离子印迹聚合物吸附剂常用载体性质
类别 | 载体 | 比表面积/m2·g-1 | 表面官能团 | 优点 | 缺点 | 改进措施 | 参考文献 |
---|---|---|---|---|---|---|---|
生物质材料 | 壳聚糖 | — | ―NH2、―COOH | 吸附容量大、易于回收、易降解 | 比表面积小、孔隙率低、稳定性差 | 制备稳定的复合材料并提高孔隙率 | [ |
海藻酸钠 | — | ―COOH、―OH | [ | ||||
纳米金属 氧化物 | Fe3O4 | — | ―OH | 比表面积大、顺磁性强或光催化活性好 | 酸性溶解、分散性差、回收困难 | 材料表面修饰或嵌入其他材料表面 | [ |
TiO2 | [ | ||||||
硅基材料 | 硅胶 | 800 | Si―OH | 比表面积大、孔道丰富、稳定 | 制备工艺复杂、条件苛刻、周期长 | 开发天然硅基材料 | [ |
SBA-15 | >1000 | Si―OH | [ | ||||
硅藻土 | 约 65 | Si―OH | 成本低、环境友好 | 比表面积较小、吸附容量较小 | 研发先进改性技术 | [ | |
碳基材料 | 多壁纳米管 | — | ―COOH、―OH | 比表面积大、易功能化、稳定性好 | 工艺复杂、吸附容量、再生性需提高 | 探索和建立高效、低成本的大规模生产技术 | [ |
石墨烯 | >2000 | ―COOH、―OH | [ | ||||
活性炭 | 600~2000 | ―COOH、―OH | [ | ||||
纳米纤维 | 约700 | ―COOH、―OH | [ | ||||
金属有机骨架 化合物 | UiO-66-NH2 | 1000~10000 | ―NH2 | 比表面积大、孔隙率高、孔径可调、易修饰 | 水中稳定性较差 | 进一步丰富改性及表面性质调控技术 | [ |
1 | SHAKERIAN F, KIM K H, KWON E, et al. Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions[J]. Trac Trends in Analytical Chemistry, 2016, 83: 55-69. |
2 | MA Z X, LI F, JIA A Z, et al. Facile synthesis of EDTA grafted 3D spherical-chain porous silica with high capacity for rapidly selective adsorption of Cu(Ⅱ) from aqueous solutions[J]. Journal of Porous Materials, 2021, 28(1): 299-310. |
3 | 马梓轩. 三维多孔二氧化硅的制备及其高效吸附重金属离子性能[D]. 天津: 河北工业大学, 2020. |
MA Zixuan. Preparation of porous silica with the three-dimensional and its highly efficient adsorption for heavy metal ions[D]. Tianjin: Hebei University of Technology, 2020. | |
4 | FU J Q, CHEN L X, LI J H, et al. Current status and challenges of ion imprinting[J]. Journal of Materials Chemistry A, 2015, 3(26): 13598-13627. |
5 | BRANGER C, MEOUCHE W, MARGAILLAN A. Recent advances on ion-imprinted polymers[J]. Reactive and Functional Polymers, 2013, 73(6): 859-875. |
6 | 张磊, 徐斐, 袁敏, 等. 表面离子印迹聚合物的制备技术研究进展[J]. 应用化工, 2018, 47(2): 351-354, 364. |
ZHANG Lei, XU Fei, YUAN Min, et al. Advances in preparation technology of surface ion imprinted polymer[J]. Applied Chemical Industry, 2018, 47(2): 351-354, 364. | |
7 | 傅骏青, 王晓艳, 李金花, 等. 重金属离子印迹技术[J]. 化学进展, 2016, 28(1): 83-90. |
FU Junqing, WANG Xiaoyan, LI Jinhua, et al. Ion imprinting technology for heavy metal ions[J]. Progress in Chemistry, 2016, 28(1): 83-90. | |
8 | MAFU L D, MSAGATI T A M, MAMBA B B. Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications[J]. Environmental Science and Pollution Research, 2013, 20(2): 790-802. |
9 | CHEN L X, XU S F, LI J H. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications[J]. Chemical Society Reviews, 2011, 40(5): 2922-2942. |
10 | 王俊莲, 刘新宇, 谢美英, 等. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012. |
WANG Junlian, LIU Xinyu, XIE Meiying, et al. Preparation of bulk ion-imprinted materials[J]. Progress in Chemistry, 2018, 30(7): 989-1012. | |
11 | 朱彩艳, 马慧敏, 张强, 等. 离子印迹聚合物功能单体的研究进展[J]. 化工进展, 2014, 33(11): 3013-3020, 3074. |
ZHU Caiyan, MA Huimin, ZHANG Qiang, et al. Recent advances in functional monomers in ion-imprinted polymer[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3013-3020, 3074. | |
12 | KANG J K, LEE S C, KIM S B. Enhancement of selective Cu(Ⅱ) sorption through preparation of surface-imprinted mesoporous silica SBA-15 under high molar concentration ratios of chloride and copper ions[J]. Microporous and Mesoporous Materials, 2018, 272: 193-201. |
13 | ZHENG X M, FAN R Y, ZHAO J Y. An ion-imprinted microporous polypropylene membrane for the selective removal of Cu(Ⅱ) from an aqueous solution[J]. Separation Science and Technology, 2012, 47(10): 1571-1582. |
14 | HUANG K, CHEN Y, ZHOU F, et al. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(Ⅱ) ions[J]. Journal of Hazardous Materials, 2017, 333: 137-143. |
15 | LI H, LI J Z, CHENG L. Novel Cr(Ⅲ) surface magnetic ion-imprinted materials based on graphene oxide for selective removal of Cr(Ⅲ) in aqueous solution[J]. Desalination and Water Treatment, 2015, 56(1): 204-215. |
16 | ZHAN Y C, LUO X B, NIE S S, et al. Selective separation of Cu(Ⅱ) from aqueous solution with a novel Cu(Ⅱ) surface magnetic ion-imprinted polymer[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6355-6361. |
17 | LUO X B, LUO S L, ZHAN Y C, et al. Novel Cu(Ⅱ) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol-gel process[J]. Journal of Hazardous Materials, 2011, 192(3): 949-955. |
18 | HE H, XIAO D L, HE J, et al. Preparation of a core-shell magnetic ion-imprinted polymer via a sol-gel process for selective extraction of Cu(Ⅱ) from herbal medicines[J]. The Analyst, 2014, 139(10): 2459-2466. |
19 | YUAN Z C, ZHU Y K, LAN Y, et al. Preparation of Cu(Ⅱ)-imprinted smart microgels for selective separation of copper ions[J]. Separation Science and Technology, 2015, 50(10): 1480-1486. |
20 | JAMSHIDI M, GHAEDI M, DASHTIAN K, et al. New ion-imprinted polymer-functionalized mesoporous SBA-15 for selective separation and preconcentration of Cr(Ⅲ) ions: modeling and optimization[J]. RSC Advances, 2015, 5(128): 105789-105799. |
21 | ARAVIND A, MATHEW B. Electrochemical sensor based on nanostructured ion imprinted polymer for the sensing and extraction of Cr(Ⅲ) ions from industrial wastewater[J]. Polymer International, 2018, 67(12): 1595-1604. |
22 | ZHANG H X, DOU Q, JIN X H, et al. Magnetic Pb(Ⅱ) ion-imprinted polymer prepared by surface imprinting technique and its adsorption properties[J]. Separation Science and Technology, 2015, 50(6): 901-910. |
23 | FAN Z L, LI S, LI R R, et al. Adsorption of Cu(Ⅱ) on surface ion-imprinted poly(allylamine)-silica material from aqueous solution[J]. Polymer-Plastics Technology and Engineering, 2014, 53(1): 30-37. |
24 | ZHAO B S, HE M, CHEN B B, et al. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection[J]. Spectrochimica Acta B: Atomic Spectroscopy, 2015, 107: 115-124. |
25 | YANG P, CAO H, MAI D, et al. A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(Ⅱ): preparation, adsorption properties and binding mechanism to Cd(Ⅱ)[J]. Reactive and Functional Polymers, 2020, 151: 104569. |
26 | MIAO Y, ZHANG H, XIE Q L, et al. Construction and selective removal of Cd ion based on diatom-based Cd (Ⅱ) ion-imprinted composite adsorbent[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598: 124856. |
27 | LI M, FENG C G, LI M Y, et al. Synthesis and characterization of a surface-grafted Cd(Ⅱ) ion-imprinted polymer for selective separation of Cd(Ⅱ) ion from aqueous solution[J]. Applied Surface Science, 2015, 332: 463-472. |
28 | ZHANG Q G, WU J Y, LUO X B. Facile preparation of a novel Hg(Ⅱ)-ion-imprinted polymer based on magnetic hybrids for rapid and highly selective removal of Hg(Ⅱ) from aqueous solutions[J]. RSC Advances, 2016, 6(18): 14916-14926. |
29 | ÇORMAN M E, ARMUTCU C, UZUN L, et al. Reversible and easy post-crosslinking method for developing a surface ion-imprinted hypercrosslinked monolith for specific Cd(Ⅱ) ion removal from aqueous solutions[J]. RSC Advances, 2016, 6(91): 88777-88787. |
30 | ZHOU Z Y, LIU X T, ZHANG M H, et al. Preparation of highly efficient ion-imprinted polymers with Fe3O4 nanoparticles as carrier for removal of Cr(Ⅵ) from aqueous solution[J]. Science of the Total Environment, 2020, 699: 134334. |
31 | HASSANPOUR S, TAGHIZADEH M, YAMINI Y. Magnetic Cr(Ⅵ) ion imprinted polymer for the fast selective adsorption of Cr(Ⅵ) from aqueous solution[J]. Journal of Polymers and the Environment, 2018, 26(1): 101-115. |
32 | TAGHIZADEH M, HASSANPOUR S. Selective adsorption of Cr(Ⅵ) ions from aqueous solutions using a Cr(Ⅵ)-imprinted polymer supported by magnetic multiwall carbon nanotubes[J]. Polymer, 2017, 132: 1-11. |
33 | KUMAR S, ALVEROĞLU E, BALOUCH A, et al. Fabrication of chromium-imprinted polymer: a real magneto-selective sorbent for the removal of Cr(Ⅵ) ions in real water samples[J]. New Journal of Chemistry, 2020, 44(43): 18668-18678. |
34 | LUO Z W, XU J H, ZHU D M, et al. Ion-imprinted polypropylene fibers fabricated by the plasma-mediated grafting strategy for efficient and selective adsorption of Cr(Ⅵ)[J]. Polymers, 2019, 11(9): 1508. |
35 | LIU W, ZHANG M H, LIU X T, et al. Preparation of surface ion-imprinted materials based on modified chitosan for highly selective recognition and adsorption of nickel ions in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 6033-6042. |
36 | ELSAYED N H, ALATAWI A, MONIER M. Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (Ⅱ) ions[J]. Reactive and Functional Polymers, 2020, 151: 104570. |
37 | WU P, HE Y Y, LU S Y, et al. A regenerable ion-imprinted magnetic biocomposite for selective adsorption and detection of Pb2+ in aqueous solution[J]. Journal of Hazardous Materials, 2021, 408: 124410. |
38 | MONIER M, BUKHARI A A H, ELSAYED N H. Designing and characterization of copper (Ⅱ) ion-imprinted adsorbent based on isatin functionalized chitosan[J]. International Journal of Biological Macromolecules, 2020, 155: 795-804. |
39 | JIANG X, AN Q D, XIAO Z Y, et al. Selective capture of lanthanum and lead cations over biomass-derived ion-imprinted biomacromolecule adsorbents[J]. Journal of Molecular Liquids, 2019, 291: 111290. |
40 | GAO X P, LIU J, LI M Y, et al. Mechanistic study of selective adsorption and reduction of Au (Ⅲ) to gold nanoparticles by ion-imprinted porous alginate microspheres[J]. Chemical Engineering Journal, 2020, 385: 123897. |
41 | 周爱玲. 海藻酸钠/硅基复合重金属离子吸附剂的制备及性能研究[D]. 天津: 河北工业大学, 2021. |
ZHOU A L. Study on preparation and performance of sodium alginate/silica-based composites for heavy metal ion adsorption[D]. Tianjin: Hebei University of Technology, 2021. | |
42 | IANOŞ R, PĂCURARIU C, MUNTEAN S G, et al. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters[J]. Journal of Alloys and Compounds, 2018, 741: 1235-1246. |
43 | NSABIMANA A, KITTE S A, WU F X, et al. Multifunctional magnetic Fe3O4/nitrogen-doped porous carbon nanocomposites for removal of dyes and sensing applications[J]. Applied Surface Science, 2019, 467/468: 89-97. |
44 | SHAH S M, SU X G, MUHAMMAD F, et al. Highly selective solid-phase extraction of Pb(Ⅱ) by ion-imprinted superparamagnetic mesoporous silica[J]. Chemistry Select, 2019, 4(1): 259-264. |
45 | FANG P, XIA W Z, ZHOU Y Q, et al. Ion-imprinted mesoporous silica/magnetic graphene oxide composites functionalized with Schiff-base for selective Cu(Ⅱ) capture and simultaneously being transformed as a robust heterogeneous catalyst[J]. Chemical Engineering Journal, 2020, 385: 123847. |
46 | LI Q, SU H J, LI J, et al. Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent[J]. Process Biochemistry, 2007, 42(3): 379-383. |
47 | CHEN A W, ZENG G M, CHEN G Q, et al. Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol[J]. Chemical Engineering Journal, 2012, 191: 85-94. |
48 | YIN X C, LONG J, XI Y, et al. Recovery of silver from wastewater using a new magnetic photocatalytic ion-imprinted polymer[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2090-2097. |
49 | SHAHATA M M. Adsorption of some heavy metal ions by used different immobilized substances on silica gel[J]. Arabian Journal of Chemistry, 2016, 9(6): 755-763. |
50 | HE H X, GAN Q, FENG C G. An ion-imprinted silica gel polymer prepared by surface imprinting technique combined with aqueous solution polymerization for selective adsorption of Ni(Ⅱ) from aqueous solution[J]. Chinese Journal of Polymer Science, 2018, 36(4): 462-471. |
51 | HE H X, GAN Q, FENG C G. Preparation and application of Ni(Ⅱ) ion-imprinted silica gel polymer for selective separation of Ni(Ⅱ) from aqueous solution[J]. RSC Advances, 2017, 7(25): 15102-15111. |
52 | KADAM R, PETR M, ZBOŘIL R, et al. Hexagonal mesoporous silica supported ultrasmall copper oxides for oxidative amidation of carboxylic acids[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12935-12945. |
53 | DA'NA E, SAYARI A. Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: applications to real water samples[J]. Desalination, 2012, 285: 62-67. |
54 | SHAHBAZI A, YOUNESI H, BADIEI A. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent: applications to industrial effluent treatment[J]. Korean Journal of Chemical Engineering, 2014, 31(9): 1598-1607. |
55 | GHANAVATI NASAB S, SEMNANI A, KARIMI M, et al. Synthesis of ion-imprinted polymer-decorated SBA-15 as a selective and efficient system for the removal and extraction of Cu(Ⅱ) with focus on optimization by response surface methodology[J]. The Analyst, 2019, 144(15): 4596-4612. |
56 | CEN S B, LI W M, HE R, et al. Preparation of an ion imprinted functionalized mesoporous silica for rapid and specific absorption Cr(Ⅲ) ions in effluents[J]. RSC Advances, 2017, 7(60): 37778-37786. |
57 | HUANG L L, WANG L Q, GONG L, et al. Preparation, characterization and adsorption characteristics of diatom-based Cd(Ⅱ) surface ion-imprinted polymer[J]. Journal of Dispersion Science and Technology, 2020, DOI: 10.1080/01932691.2020.1857260 . |
58 | 梁效铭, 钟溢健, 马丽丽, 等. 氨基化硅藻基As(Ⅴ)印迹复合材料的制备与性能[J]. 无机化学学报, 2019, 35(5): 828-836. |
LIANG Xiaoming, ZHONG Yijian, MA Lili, et al. Preparation and properties of aminated diatom-based As(Ⅴ) imprinted composites[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(5): 828-836. | |
59 | 余清凤, 马丽丽, 陈南春, 等. 硅藻基As(Ⅴ)离子印迹材料的制备及表征[J]. 环境工程, 2018, 36(3): 64-68, 97. |
YU Qingfeng, MA Lili, CHEN Nanchun, et al. Preparation of ion imprinted polymer based on diatom for adsorbing As(Ⅴ) in aqueous solution[J]. Environmental Engineering, 2018, 36(3): 64-68, 97. | |
60 | EBRAHIMZADEH H, MOAZZEN E, AMINI M M, et al. Novel ion imprinted polymer coated multiwalled carbon nanotubes as a high selective sorbent for determination of gold ions in environmental samples[J]. Chemical Engineering Journal, 2013, 215/216: 315-321. |
61 | ZHANG X, WANG H Q, SUN X R, et al. Preparation and properties of thermo-sensitive surface Pb(Ⅱ) ion-imprinted polymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577: 138-146. |
62 | LIANG Q W, GENG J J, LUO H J, et al. Fast and selective removal of Cr(Ⅵ) from aqueous solutions by a novel magnetic Cr(Ⅵ) ion-imprinted polymer[J]. Journal of Molecular Liquids, 2017, 248: 767-774. |
63 | LI Z H, CHEN L H, SU Q, et al. Synthesis and characterization of a surface-grafted Pb(Ⅱ)-imprinted polymer based on activated carbon for selective separation and pre-concentration of Pb(Ⅱ) ions from environmental water samples[J]. RSC Advances, 2019, 9(9): 5110-5120. |
64 | MISHRA S, VERMA N. Surface ion imprinting-mediated carbon nanofiber-grafted highly porous polymeric beads: synthesis and application towards selective removal of aqueous Pb(Ⅱ)[J]. Chemical Engineering Journal, 2017, 313: 1142-1151. |
65 | YUAN N, GONG X R, SUN W D, et al. Advanced applications of Zr-based MOFs in the removal of water pollutants[J]. Chemosphere, 2021, 267: 128863. |
66 | YUAN G Y, TU H, LIU J, et al. A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(Ⅱ) from aqueous solutions[J]. Chemical Engineering Journal, 2018, 333: 280-288. |
67 | MORCOS G S, IBRAHIM A A, EL-SAYED M M H, et al. High performance functionalized UiO metal organic frameworks for the efficient and selective adsorption of Pb (Ⅱ) ions in concentrated multi-ion systems[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105191. |
68 | LI L C, XU Y L, ZHONG D J, et al. CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(Ⅵ) efficient removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124255. |
69 | FENG Y F, JIANG H, LI S N, et al. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431: 87-92. |
70 | ZHOU L, LI N, JIN X Y, et al. A new nFe@ZIF-8 for the removal of Pb(Ⅱ) from wastewater by selective adsorption and reduction[J]. Journal of Colloid and Interface Science, 2020, 565: 167-176. |
71 | HUANG L, WU B C, WU Y J, et al. Porous and flexible membrane derived from ZIF-8-decorated hyphae for outstanding adsorption of Pb2+ ion[J]. Journal of Colloid and Interface Science, 2020, 565: 465-473. |
72 | WANG C H, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(Ⅵ) removal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24164-24171. |
73 | ZHANG B L, QIU W, WANG P P, et al. Mechanism study about the adsorption of Pb(Ⅱ) and Cd(Ⅱ) with iron-trimesic metal-organic frameworks[J]. Chemical Engineering Journal, 2020, 385: 123507. |
74 | ZHANG Y, ZHENG H, ZHANG P Y, et al. A facile method to achieve dopamine polymerization in MOFs pore structure for efficient and selective removal of trace lead (Ⅱ) ions from drinking water[J]. Journal of Hazardous Materials, 2021, 408: 124917. |
75 | LEE Y R, YU K, RAVI S, et al. Selective adsorption of rare earth elements over functionalized Cr-MIL-101[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23918-23927. |
76 | LIM C R, LIN S, YUN Y S. Highly efficient and acid-resistant metal-organic frameworks of MIL-101(Cr)-NH2 for Pd(Ⅱ) and Pt(Ⅳ) recovery from acidic solutions: adsorption experiments, spectroscopic analyses, and theoretical computations[J]. Journal of Hazardous Materials, 2020, 387: 121689. |
77 | GAO X P, GUO C, HAO J J, et al. Selective adsorption of Pd (Ⅱ) by ion-imprinted porous alginate beads: experimental and density functional theory study[J]. International Journal of Biological Macromolecules, 2020, 157: 401-413. |
78 | SHAMSIPUR M, FASIHI J, ASHTARI K. Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion[J]. Analytical Chemistry, 2007, 79(18): 7116-7123. |
79 | LI Y, LI X, CHU J, et al. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions[J]. Environmental Pollution, 2010, 158(6): 2317-2323. |
80 | PAN G Q, ZU B Y, GUO X Z, et al. Preparation of molecularly imprinted polymer microspheres via reversible addition-fragmentation chain transfer precipitation polymerization[J]. Polymer, 2009, 50(13): 2819-2825. |
81 | LIU Z C, HU Z Y, LIU Y, et al. Monodisperse magnetic ion imprinted polymeric microparticles prepared by RAFT polymerization based on γ-Fe2O3@meso-SiO2nanospheres for selective solid-phase extraction of Cu(Ⅱ) in water samples[J]. RSC Advances, 2015, 5(65): 52369-52381. |
82 | MENG M J, MENG X G, LIU Y, et al. An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition-fragmentation chain transfer polymerization for selective removal of Ce(Ⅲ) from aqueous solution[J]. Journal of Hazardous Materials, 2014, 278: 134-143. |
83 | 王蓝青, 钟溢健, 陈南春, 等. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022. |
WANG Lanqing, ZHONG Yijian, CHEN Nanchun, et al. Preparation of ion imprinted polymers by sol-gel method and their application in metal ions selective adsorption: a review[J]. Materials Reports, 2020, 34(5): 5016-5022. | |
84 | ZHANG M L, ZHANG Z H, LIU Y N, et al. Preparation of core-shell magnetic ion-imprinted polymer for selective extraction of Pb(Ⅱ) from environmental samples[J]. Chemical Engineering Journal, 2011, 178: 443-450. |
85 | GUO B, DENG F, ZHAO Y, et al. Magnetic ion-imprinted and ―SH functionalized polymer for selective removal of Pb(Ⅱ) from aqueous samples[J]. Applied Surface Science, 2014, 292: 438-446. |
[1] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[2] | 路涛, 胡嘉怡, 徐成, 胡鑫琳, 郭庆阳, 李朦. 超疏水海绵的简易制备及其高效油/水分离性能[J]. 化工进展, 2023, 42(10): 5353-5362. |
[3] | 范嘉昊, 张洋, 范兵强, 张贺东, 郑诗礼, 邹兴. (NH4)2SO4和Na2SO4混合溶液中(NH4)2SO4结晶动力学及铁/铝/锰/铬等离子对(NH4)2SO4结晶的影响规律[J]. 化工进展, 2023, 42(1): 488-496. |
[4] | 唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
[5] | 李若男, 周丽莎, 陈舜胜, 徐建雄, 邓子龙, 张洪才. 纤维素纳米纤维及其改性产物吸附重金属的研究进展[J]. 化工进展, 2022, 41(1): 310-319. |
[6] | 刘钦, 周新涛, 黄静, 罗中秋, 邵周军, 王路星, 韦宇, 雒云龙. 赤泥吸附重金属离子性能及其机理研究进展[J]. 化工进展, 2021, 40(6): 3455-3465. |
[7] | 孙曼颖, 姜伟丽, 周广林, 周红军, 李芹, 李想. 气体中微量甲醛的脱除研究进展[J]. 化工进展, 2021, 40(12): 6876-6888. |
[8] | 马双忱, 刘畅, 马岚, 孙尧, 许勇毅, 王峰, 杨定畅, 邢浩若. 电吸附用于微污染水处理:技术选择、工艺原理、未来发展[J]. 化工进展, 2020, 39(7): 2841-2849. |
[9] | 卞维柏, 潘建明. 选择性吸附提锂材料的研究进展[J]. 化工进展, 2020, 39(6): 2206-2217. |
[10] | 李竞草,吴冬霞,常丽萍,赵炜,王建成,胡江亮. 疏水性金属-有机骨架材料的研究进展[J]. 化工进展, 2020, 39(1): 224-232. |
[11] | 徐汝辉,姚耀春,梁风. 磷基负极材料在金属离子电池中的现状与趋势[J]. 化工进展, 2019, 38(9): 4142-4154. |
[12] | 罗元,谢坤,张克强,沈仕洲,王风. 镧(La)改性吸附材料脱除水体磷酸盐研究进展[J]. 化工进展, 2019, 38(11): 5005-5014. |
[13] | 覃发梅, 邱学青, 孙川, 丁子先, 方志强. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(07): 3390-3401. |
[14] | 冯明, 方莉, 郭彦霞, 程芳琴. 金属离子印迹电化学传感器研究进展[J]. 化工进展, 2019, 38(04): 1794-1803. |
[15] | 王建坤, 郭晶, 张昊, 郑帼, 周省. 氨基化淀粉螯合材料的制备及其在吸附Zn(Ⅱ)和Co(Ⅱ)中的应用[J]. 化工进展, 2018, 37(11): 4349-4357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |